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Chapter 1

The Real Number System

1.1 Basic Set Theory

In this section, we are going to provide some basic terminology required to under-

stand the forthcoming concepts about the real number system.

1.1.1 Universal Set

The understanding that the members of all sets under consideration in any given

context come from a speci�c collection of elements, called the universal set.

For this chapter of the course our universal set will be the set of real

numbers.

If an element x is in A, we write x ∈ A and say that x is a member of A. If an

element x is not in A, we write x /∈ A and say that x is not a member of A.

How to de�ne a set?

{4, 5, 6, 7}.

1.1.2 Set Builder Notion

If P is a property that is meaningful and unambiguous for elements of a set S, then

we write

{x ∈ S : P (x)},

for the set of all elements x in S for which the property P is true.

If every element of a set A also belongs to a set B, we say that A is a subset of

B and write A ⊂ B.

Proper subset: We say that A is proper subset of B if there exist at least one

element of B which is not in A.

Equal sets: Two sets are said to be equal if they contain the same number of

elements.

Examples: Consider the set of natural numbers N = {1, 2, 3, ...}.
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• {x ∈ N : x2 − 3x+ 2 = 0} = {1, 2}.

• {x ∈ N : x2 − 4x+ 2 = 0}.

• The set of even numbers

{2k : k ∈ N}.

• The set of odd numbers

{2k − 1 : k ∈ N}.

Let S and T be sets.

• S contains T , and we write S ⊃ T or T ⊂ S, if every member of T is also in

S. In this case, T is a subset of S.

• S − T is the set of elements that are in S but not in T .

• S equals T , and we write S = T , if S contains T and T contains S; thus,

S = T if and only if S and T have the same members.

Let S and T be sets.

• S strictly contains T if S contains T but T does not contain S; that is, if every

member of T is also in S, but at least one member of S is not in T .

• The complement of S, denoted by Sc, is the set of elements in the universal

set that are not in S.

• The union of S and T , denoted by S ∪T , is the set of elements in at least one

of S and T

Let S and T be sets.

• The intersection of S and T , denoted by S ∩ T , is the set of elements in both

S and T If S ∩ T = ∅ (the empty set), then S and T are disjoint sets

• A set with only one member x0 is a singleton set , denoted by {x0}.

Let S and T be sets.

• The intersection of S and T , denoted by S ∩ T , is the set of elements in both

S and T If S ∩ T = ∅ (the empty set), then S and T are disjoint sets

• A set with only one member x0 is a singleton set , denoted by {x0}.
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Figure 1.1: (a) Subset (b) Union of two sets (c) Intersection of two sets, (d) Disjoint

sets

• The set of natural numbers

• The set of prime numbers

• Fundamental Theorem of arithmetic

• Diophantines

• A little bit about number theory

The set of natural numbers:

N = {1, 2, 3, ...}.

1.2 Number Theory

Number theory is a branch of mathematics that studies the properties of, and the

relationships between, particular types of numbers.

• The set of natural numbers N.

• The prime numbers.
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The primes are the building blocks of the positive integers.

Fundamental Theorem of Arithmetic: Every positive integer can be uniquely

written as the product of primes in nondecreasing order.

How may prime numbers are there? (2500 years ago, Euclid provided the proof)

Many di�erent approaches have been used to determine whether an integer is

prime. For example, in the nineteenth century, Pierre de Fermat showed

that p divides 2p − 2 whenever p is prime.

The search for integer solutions of equations is another important part

of number theory.

An equation with the added provision that only integer solutions are sought is called

diophantine, after the ancient Greek mathematician Diophantus.

Example:

an + bn = cn, n ∈ Z.

The set of nonnegative integers:

Z+ = {0, 1, 2, 3, ...}.

The set of nonpositive integers:

Z− = {0,−1,−2,−3, ...}.

The set of integers:

Z = {0,±1,±2,±3, ...}.

Some properties of the natural numbers:

2 + 4 = 4 + 2

m+ 3 = p+ 3 then m = p.

4 + (2 + 7) = (4 + 2) + 7.

1.3 Principle of Mathematical Induction

Let P (n)be a mathematical statement, where n ∈ N (or Z+). If

• P (1) is true.

• P (n) is true implies P (n+ 1) is true.

Then P (n) is true for all n ∈ N (or Z+).

Examples:
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• 12 + 22 + 32 + ...+ n2 = n(n+1)(2n+1)
6 .

• 13 + 23 + 33 + ...+ n3 = n2(n+1)2

4 .

• Prove that if (x + 1/x) is an integer then (xn + 1/xn) is also an integer for

any positive integer n.

Theorem: Suppose that m,n, p ∈ Z+. Then

• m+ n = n+m, (commutativity)

• (m+ n) + p = n+ (m+ p), (associativity)

• if m+ n = p+ n, then m = p (cancelation)

• if m+ n = 0, then m = n = 0

Proof : Proof of �rst property.

Step I: De�ne U = {m ∈ Z+ : 0 +m = m+ 0}.

Step II: De�ne V = {n ∈ Z+ : (m+ 1) + n = (m+ n) + 1, for all m ∈ Z+}.

Step III: De�ne W = {n ∈ Z+ : m+ n = n+m, for all m ∈ Z+}.

m+ (n+ 1) = (m+ n) + 1 (1.1)

Step I: De�ne U = {m ∈ Z+ : 0 +m = m + 0}. Notice that 0 ∈ U . Suppose

m ∈ U and consider 0 + (m+ 1) = (m+ 1) and we have (0 +m) + 1 = m+ 1.

Thus m+ 1 ∈ U , and so U = Z+.

Step II: De�ne V = {n ∈ Z+ : (m+ 1) + n = (m+ n) + 1, for all m ∈ Z+}.
0 ∈ V , suppose n ∈ V , then

(m+ 1) + (n+ 1) = ((m+ 1) + n) + 1 by (1.1)

= ((m+ n) + 1) + 1, since n ∈ V

= (m+ (n+ 1)) + 1 by (1.1).

Hence we have V = Z+.

Step III: De�ne W = {n ∈ Z+ : m+ n = n+m, for all m ∈ Z+}.
Using the �rst step we have 0 ∈W . Suppose n ∈W . Then

m+ (n+ 1) = (m+ n) + 1 by (1.1)

= (n+m) + 1, since n ∈W

= (n+ 1) +m, from step II.

Hence W = Z+.

Theorem: Suppose that m,n, p ∈ Z+. Then
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• m.n = n.m, (commutativity)

• (m.n).p = n.(m.p), (associativity)

• if m.n = p.n and n ̸= 0, then m = p (cancellation)

• if m.n = 0, then m = 0 or n = 0.

• 0.n = 0 and 1.n = n.

1.3.1 An initial segment

An initial segment I of N is a nonempty subset of N with the property that if n ∈ I

and m ≤ n then m ∈ I.

Example:

• Consider the set

{1, 2, 3, ..., 20}.

• Consider the set

{1, 2, 3, ..., n}.

• Consider the set

{2, 4, 6, 8, 10}.

Proposition: If I is an initial segment of N then either I = N or there exists n ∈ N
such that I = In = {m ∈ N : m ≤ n}.

Proof : It follows immediately from the de�nition of an initial segment that ifm /∈ I

and n ≥ m then n /∈ I. If I ̸= N, then N\I is non-empty. Letm0 be its least element.

Suppose, if possible, that m0 = 1. If n ∈ N, then n ≥ 1, so that n /∈ I and I is the

empty set. Thus m0 > 1, and so there exists n ∈ N such that m0 = n + 1. Then

n ∈ I, and so In ⊆ I. But if p > n then p ≥ n+1 = m0, and so p /∈ I. Thus I ⊆ In.

Recall a one to one and onto mapping: A mapping (function) f : A → B is

said to be one to one if

f(x1) = f(x2) ⇒ x1 = x2.

A mapping (function) f : A → B is said to be onto if for every y ∈ B there

exists at least an x ∈ A such that

f(x) = y.

A mapping (function) is said to be bijective if the mapping is one to one and

onto.
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1.4 Finite and In�nite Set

A set A is �nite if either A is empty or there exists n ∈ N and a bijective mapping

c : In → A. Thus the �nite sequence (c1, ..., cn) lists the elements of A, without

repetition.

A set is in�nite if it is not �nite.

Proposition: If g : Im → In is an one to one (injective) mapping then m ≤ n.

Proof :

• The proof is by induction on m. The result is trivially true if m = 1.

• Suppose that it holds for m, and that f : Im+1 → In is injective. Then

m+1 > 2, so that f(Im+1) contains at least two points, and so n = k+1, for

some k ∈ N.

• Let τ : In → In be the mapping that transposes f(m + 1) and n and leaves

the other elements of In �xed.

• Then τ ◦ f : Im+1 → In is injective, and τ(f(Im)) ⊆ Ik.

• By the inductive hypothesis, m ≤ k, and so m+ 1 ≤ k + 1 = n.

Corollary: If A is a non-empty �nite set, there exists a unique n ∈ N for which

there exists a bijection c : In → A.

Proof : Suppose that c : In → A and c′ : In′ → A are bijections.

Then c−1 ◦ c′ : In′ → In is a bijection, and so n′ ≤ n.

Similarly, n ≤ n′.

Remark: The number n is known as cardinality of A and is written as | A |.

Proposition: Suppose that A is a �nite set, and that f : A → B is a bijection.

Then B is �nite, and | B |=| A |.

Proof : For if C : I|A| → A is a bijection, then the mapping

f ◦ C : I|A| → B

is the bijection.
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1.5 Field

A �eld is a set F , together with two laws of composition, addition (+) and multi-

plication (.) such that for all a, b, c ∈ F the following properties holds

• a+ b = b+ a and ab = ba (commutative laws).

• (a+ b) + c = a+ (b+ c) and (ab)c = a(bc) (associative laws).

• a(b+ c) = ab+ ac (distributive law).

• There are distinct members 0 and 1 such that a+0 = a and a1 = a for all a.

• For each a ∈ F there is an element −a ∈ F such that a + (−a) = 0, and if

a ̸= 0, there is an element 1/a such that a(1/a) = 1.

Remark: The left distributive law also holds.

Examples:

• Let z2 = {0, 1} such that

0 + 0 = 1 + 1 = 0; 0 + 1 = 1 + 0 = 1

and

0.0 = 0.1 = 1.0 = 0, 1.1 = 1.

• Is the set of integers a �eld?

1.6 Dedekind In�nite Set

Dedekind de�ned a set A to be in�nite if there is an injective map j : A→ A which

is not onto (surjective); such sets are now called Dedekind in�nite.

Example: Show that N is Dedekind in�nite.

The mapping f : N→ N de�ned by f(n) = 2n is injective, and is not surjective.

Corollary: The set of natural numbers N is in�nite set.

Countable sets: A setA is countable if it is �nite or if there is a bijection c : N→ A;

otherwise it is uncountable.
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Remark: A set is countable if it is empty or if there is a bijection from an initial

segment of N onto A. The function c is called an enumeration of A. A set is

countably in�nite if it is in�nite and countable.

Thus A is countably in�nite if and only if the elements of A can be listed, or

enumerated, as an in�nite sequence (c1, c2, ...), without repetition.

If A is countable (countably in�nite) and j : A → B is a bijection, then B is

countable (countably in�nite). Not every set is countable. It was Cantor who �rst

showed, in 1873, that there are di�erent sizes of in�nite set, showing that the set of

real numbers is uncountable.

Proposition: Let A be a non-empty set. Then the following are equivalent.

(a) A is countable.

(b) There exists a surjection f : N→ A.

(c) There exists an injection g : A→ N.

Theorem: The set N× N is countable.

Proof : De�ne the mapping f : N× N→ N by

f(k, l) = 2k2l.

Use above proposition to prove that N× N is countable.

1.7 The Set of Rational Numbers

Construction of set of rational numbers: Let Z∗ = Z\{0} be the set of nonzero
integers. De�ne a relation on Z× Z∗ by setting (p, q) ∼ (r, s) if ps = qr.

Proposition: The relation (p, q) ∼ (r, s) is an equivalence relation on Z× Z∗.

Proof :

Transitive: Suppose (p, q) ∼ (r, s) and (r, s) ∼ (t, u), we need to show that (p, q) ∼
(t, u). Consider

pusr = (ps)(ru) = (qr)(ts) = qtsr

Q is abelian group under addition: We de�ne addition on Q by

p

q
+

r

s
=

ps+ qr

qs
.

We de�ne the multiplication as

(
p
q

)(
r
s

)
= pr

qs .

Proposition: Let Q∗ = Q/{0/1}. Then, (Q∗, .) and (Q∗,+) are abelian group.
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The set of rational numbers is de�ned as

Q = {m
n

: m,n ∈ Z, n ̸= 0}.

Example: Find solution of the equation p =
√
2 in the set of rational numbers

if possible.

Solution: See Lecture.

Example: Let A = {p ∈ Q : p2 < 2}. We will show that for every p ∈ A, we

can �nd a rational number q such that p < q.

To do this, we associate with each rational p > 0 the number

q = p− p2 − 2

p+ 2
=

2p+ 2

p+ 2
. (1.2)

Then

q2 − 2 =
2(p2 − 2)

(p+ 2)2
. (1.3)

• If p is in A then p2 − 2 < 0, (1.2) shows that q > p and (1.3) shows that

q2 < 2. Thus q is in A.

Let B = {p ∈ Q : p2 > 2}. We will show that for every p ∈ B, we can �nd a

rational number q such that q < p.

• If p is in B then p2 − 2 > 0, (1.2) shows that 0 < q < p and (1.3) shows that

q2 > 2. Thus q is in B.

1.8 Ordered Set

Let S be a set. An order on S is a relation , denoted by <, with the following

properties

• For each pair a, b ∈ S, exactly one of the following is true:

a = b, a < b, or b < a.

• If a, b, c ∈ S such that If a < b and b < c, then a < c. (The relation < is

transitive.)

• If a < b, then a+ c < b+ c for any c, and if 0 < c, then ac < bc.

Example: The set of rational numbers Q is an order set, if r < s is de�ned to

means that s− r is a positive rational number.

An ordered set is a set S in which an order is de�ned.

The notation x ≤ y indicates that x < y or x = y, without specifying which one

of these two is hold.

What is the negation of x > y?
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1.8.1 Partial Order

: A partial order is a relation R on a set S such that for all a, b, c ∈ S, we have the

following

• aRa (Re�exivity).

• If aRb and bRa implies a = b (Anti Symmetric).

• If aRb, bRc then aRc (Transitve).

1.9 Lower Bound

Suppose the set S is an ordered set, and E ⊂ S. If there exists a b such that x ≥ b

whenever x ∈ E. We say that E is bounded below. In this case, b is a lower bound

of E.

If b is a lower bound of E, then so is any smaller number.

1.9.1 In�mum

If α is a lower bound of E, but no number greater than α is a lower bound of E,

then α is an in�mum of E, and we write

α = inf E.

Example: Recall the set A = {p ∈ Q : p2 > 2}.

1.10 Upper Bound

Suppose the set S is an ordered set, and E ⊂ S. If there exists a b such that x ≤ b

whenever x ∈ E. We say that E is bounded above In this case, b is an upper bound

of E.

If b is an upper bound of E, then so is any larger number

1.10.1 Supremum

If β is an upper bound of E, but no number less than β is an upper bound of E,

then β is a supremum of E, and we write

β = supE.

Example: Recall the set A = {p ∈ Q : p2 < 2}.



1.11. Least Upper Bound Property 13

Example: If S is the set of negative numbers, then any nonnegative number is an

upper bound of S, and supS = 0.

Example: If S1 is the set of negative integers, then any number a such that a ≥ −1
is an upper bound of S1, and supS1 = −1.

Remark: The supremum or in�mum of a set may or may not belong to that set.

Example: Consider the set

E = {p ∈ Q : p < 0}.

What are the upper bounds?

What is the supremum of this set?

Is it belong to the set?

Example: Consider the set

E1 = {p ∈ Q : p ≤ 0}.

What are the upper bounds?

What is the supremum of this set?

Is it belong to the set?

Example: Consider the set

E2 = {1/n : n ∈ N}.

1.11 Least Upper Bound Property

An ordered set S is said to have the least-upper-bound property if the following is

true:

If E ⊂ S, E is not empty, and E is bounded above, then sup E exists in S.

Recall the set A = {p ∈ Q : p2 > 2}.

Recall the set B = {p ∈ Q : p2 < 2}.

Consider the set

E2 = {1/n : n ∈ N}.

Theorem: Suppose S is an ordered set with the least-upper-bound property, B ⊆ S,

B is not empty, and B is bounded below. Let L be the set of all lower bounds of

B. Then

a = supL
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exists in S, and a = inf B. In particular inf B exists in S.

Proof : L is not empty set.

L is bounded above.

S satisfy least-upper-bound property therefore L has a supremum in S; call it

a.

If γ < a then γ is not an upper bound of L, hence γ /∈ B. It follows that a ≤ x

for every x ∈ B.

Thus a ∈ L.

If a < β then β /∈ L, since a is an upper bound of L.

We have shown that a ∈ L but β /∈ L if β > a.

In other words, a is a lower bound of B, but β is not if β > a.

This means that a = inf B.

Theorem: There exists an ordered �eld R which has the least-upper-bound prop-

erty

Moreover, R contains Q as a sub�eld.

1.12 The Completeness Axiom

If a nonempty set of real numbers is bounded above, then it has a supremum.

The above property is called completeness, and we say that the real number

system is a complete ordered �eld.

Theorem: If a nonempty set S of real numbers is bounded above, then supS is the

unique real number β such that

• x ≤ β for all x in S;

• if ε > 0 (no matter how small), there is an x0 in S such that x0 > β − ε.

Proof : We �rst show that β = supS has �rst and second properties. Since β is an

upper bound of S, it must satisfy the �rst property. Since any real number a less

than β can be written as β − ε with ε = β − a > 0, second property is just another

way of saying that no number less than β is an upper bound of S. Hence, β = supS

satis�es �rst and second properties.

Now we show that there cannot be more than one real number with �rst and

second properties. Suppose that β1 < β2 and β2 has the second property ; thus, if

ε > 0, there is an x0 in S such that x0 > β2 − ε. Then, by taking ε = β2 − β1, we

see that there is an x0 in S such that

x0 > β2 − (β2 − β1) = β1,

so β1 cannot have the �rst property. Therefore, there cannot be more than one real

number that satis�es both parts.
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1.13 The Archimedean Property of R

Theorem: If ρ and ε are positive, then nε > ρ for some integer n.

Proof : The proof is by contradiction. If the statement is false, ρ is an upper bound

of the set

S = {x = nε, n ∈ Z}.

Therefore, S has a supremum β (Why?), by de�nition of least upper bound property

of real numbers.

Therefore,

nε ≤ β for all integers n. (1.4)

Since n+ 1 is an integer whenever n is, (1.4) implies that

(n+ 1)ε ≤ β

and therefore

nε ≤ β − ε

for all integers n.

1.14 Dense Set in R

A set D is said to be dense in the set of real numbers if every open interval (a, b)

contains a member of D.

Theorem: The rational numbers are dense in R, that is, if a and b are real numbers

with a < b, there is a rational number p/q such that a < p/q < b.

Recall the The Archimedean property

Theorem: If ρ and ε are positive, then nε > ρ for some integer n.

Proof of the theorem: The Archimedean property with ρ = 1 and ε = b − a,

there is a positive integer q such that q(b− a) > 1.

There is also an integer j such that j > qa. This is obvious if a ≤ 0, and it

follows from Archimedean property with ε = 1 and ρ = qa if a > 0.

Let p be the smallest integer such that p > qa. Then p− 1 ≤ qa, so

qa < p ≤ qa+ 1.

Since 1 < q(b− a), this implies that

qa < p < qa+ q(b− a) = qb,

so qa < p < qb. Therefore, a < p/q < b.
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1.15 The Set of Rational Numbers is not Complete

The rational number system is not complete; that is, a set of rational numbers may

be bounded above (by rational numbers), but not have a rational upper bound less

than any other rational upper bound, that is, that set does not have a rational

supremum.

Recall: Theorem: If a nonempty set S of real numbers is bounded above, then

supS is the unique real number β such that

• x ≤ β for all x in S;

• if ε > 0 (no matter how small), there is an x0 in S such that x0 > β − ε.

Consider the set

A = {p ∈ Q : p2 < 2}.

If p ∈ A, then p <
√
2.

Then using the fact that there is a rational number between every two real numbers

implies that if ε > 0 there is a rational number r0 such that
√
2− ε < r0 <

√
2, so

using above Theorem implies that
√
2 = supA. However,

√
2 is irrational ; that is,

it cannot be written as the ratio of integers.

Therefore, if r1 is any rational upper bound of A, then
√
2 < r1. Since there is

a rational number between every two real numbers, there is a rational number r2
such that

√
2 < r2 < r1. Since r2 is also a rational upper bound of A, this shows

that A has no rational supremum.

ExampleProduct of a rational and irrational number is irrational.

Solution: See lecture.

Example: Sum of a rational and an irrational number is irrational.

Proof : See lecture.

Theorem: The set of irrational numbers is dense in the reals ; that is, if a and b

are real numbers with a < b, there is an irrational number t such that a < t < b.

Proof : Since between every two real numbers there is a rational number, therefore

there are rational numbers r1 and r2 such that

a < r1 < r2 < b. (1.5)

Let

t = r1 +
1√
2
(r2 − r1).

Then t is irrational (why?) and r1 < t < r2, so a < t < b, from (1.5).
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1.16 Applications of Properties of Field

Proposition: The axioms of addition imply the following

(a) If x+ y = x+ z then y = z (Cancellation law).

(b) If x+ y = x then y = 0 (Uniqueness of the additive identity).

(c) If x+ y = 0 then y = −x (Uniqueness of the additive inverse).

(d) −(−x) = x.

Proof : If x+ y = x+ z, then from the axioms of �eld we have

y = 0 + y = (−x+ x) + y = −x+ (x+ y)

= −x+ (x+ z) = (−x+ x) + z = 0 + z = z.

This proves (a).

• Take z = 0 in (a) to obtain (b).

• Take z = −x in (a) to obtain (c).

• Since −x+ x = 0, (c) with −xin place of x gives (d).

Proposition: The axioms of multiplication imply the following

(a) If x ̸= 0 and xy = xz then y = z (Cancellation law).

(b) If x ̸= 0 and xy = x then y = 1 (Uniqueness of the multiplicative identity).

(c) If x ̸= 0 and xy = 1 then y = 1/x (Uniqueness of the additive inverse).

(d) If x ̸= 0 then 1/(1/x) = x.

Proposition: The �eld axioms imply the following statements for any x, y, z ∈
F

(a) 0x = 0.

(b) If x ̸= 0 and y ̸= 0 then xy ̸= 0.

(c) (−x)y = −(xy) = x(−y).

(d) (−x)(−y) = xy.

The manipulative properties of the real numbers, such as the relations

(a+ b)2 = a2 + 2ab+ b2,

(3a+ 2b)(4c+ 2d) = 12ac+ 6ad+ 8bc+ 4bd,

(−a) = (−1)a, a(−b) = (−a)b = −ab,
a

b
+

c

d
=

ad+ bc

bd
(b, d ̸= 0),
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all follow from the axioms of �eld.

Theorem: For every real x > 0 and every integer n > 0 there is one and only one

positive real y such that yn = x.

Proof : The uniqueness is clear, since if there are two positive numbers y1 and y2
then

0 < y1 < y2 ⇒ yn1 < yn2 .

Let E be the set containing of all positive real numbers t such that tn < x.

The set E is not empty, as if t = x/(x+ 1) then 0 ≤ t < 1 and tn < t < x.

If t > 1+ x then tn ≥ t > x, so that t /∈ E. Thus t ∈ E is an upper bound of E.

Then by least upper bound property there exists y ∈ R such that

y = supE.

We need to prove that yn = x we will show that each of the inequalities yn < x and

yn > x leads to a contradiction.

Recall the identity bn−an = (b−a)(bn−1+bn−2a+ ...+an−1) yields the identity

bn − an = (b− a)nbn−1,

when 0 < a < b.

Assume yn < x, choose h so that 0 < h < 1 and

h <
x− yn

n(y + 1)n−1
.

Put a = y, b = y + h. Then

(y + h)n − yn < hn(y + h)n−1 < hn(y + 1)n−1 < x− yn.

Thus (y + h)n < x, and y + h ∈ E, which is contradiction to the fact that y is an

upper bound of E.

Assume yn > x, put

k =
yn − x

nyn−1
.

Then 0 < k < y. If t ≥ y − k, we conclude that

yn − tn ≤ yn − (y − k)n < knyn−1 = yn − x.

Thus tn > x, and t /∈ E. It follows that y − k is an upper bound of E. But

y − k < y, which contradicts the fact that y is the least upper bound of E.

Theorem: If a and b are any two real numbers, then

|a+ b| ≤ |a|+ |b|. (1.6)

Proof : There are four possibilities:
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(a) If a ≥ 0 and b ≥ 0, then a+ b ≥ 0, so |a+ b| = a+ b = |a|+ |b|.

(b) If a ≤ 0 and b ≤ 0, then a+ b ≤ 0, so |a+ b| = −a+ (−b) = |a|+ |b|.

(c) If a ≥ 0 and b ≤ 0, then a+ b = |a| − |b|.

(d) If a ≤ 0 and b ≥ 0, then a+ b = −|a|+ |b|.

Eq. 1.6 holds in cases (c) and (d), since

|a+ b| =

{
|a| − |b| if |a| ≥ |b|,
|b| − |a| if |b| ≥ |a|.

(1.7)

Corollary: If a and b are any two real numbers, then

|a− b| ≥
∣∣|a| − |b|∣∣, and |a+ b| ≥

∣∣|a| − |b|∣∣. (1.8)

Proof : Replacing a by a− b in (1.6) yields

|a| ≤ |a− b|+ |b| ⇒ |a− b| ≥ |a| − |b|.

Interchanging a and b here yields

|b− a| ≥ |b| − |a|,

which is equivalent to

|a− b| ≥ |b| − |a|, (1.9)

since |b− a| = |a− b|. Since

∣∣|a| − |b|∣∣ = { |a| − |b| if |a| > |b|,

|b| − |a| if |b| > |a|.

(??) and (1.9) imply (1.8). Replacing b by −b in (1.8) yields (??), since | − b| = |b|.

1.17 The Extended Real Number System

A nonempty set S of real numbers is unbounded above if it has no upper bound, or

unbounded below if it has no lower bound.

It is convenient to adjoin to the real number system two �ctitious points, +∞
(which we usually write more simply as ∞) and −∞, and to

De�ne the order relationships between them and any real number x by

−∞ < x <∞. (1.10)

We call ∞ and −∞ points at in�nity .
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If S is a nonempty set of reals, we write

supS =∞ (1.11)

to indicate that S is unbounded above, and

inf S = −∞ (1.12)

to indicate that S is unbounded below.

If S = {x : x < 2},

then supS = 2 and inf S = −∞.

If S = {x : x ≥ −2},

then supS =∞ and inf S = −2.
If S is the set of all integers, then supS =∞ and inf S = −∞.

A member of the extended reals di�ering from −∞ and ∞ is �nite; that is, an

ordinary real number is �nite. However, the word ��nite� in ��nite real number�

is redundant and used only for emphasis, since we would never refer to ∞ or −∞
as real numbers. The real number system with ∞ and −∞ adjoined is called the

extended real number system, or simply the extended reals.

We must de�ned arithmetic operations with ±∞. A member of the extended

reals di�ering from −∞ and ∞ is �nite; that is, an ordinary real number is �nite.

However, the word ��nite� in ��nite real number� is redundant and used only for

emphasis, since we would never refer to ∞ or −∞ as real numbers.

The arithmetic relationships among ∞, −∞, and the real numbers are de�ned

as follows.

• If a is any real number, then

a+∞ = ∞+ a =∞,

a−∞ = −∞+ a = −∞,
a

∞
=

a

−∞
= 0.

• If a > 0, then

a∞ = ∞a =∞,

a (−∞) = (−∞) a = −∞.

• If a < 0, then

a∞ = ∞a = −∞,

a(−∞) = (−∞)a =∞.



1.18. Principle of Mathematical Induction 21

We also de�ne

∞+∞ =∞∞ = (−∞)(−∞) =∞

and

−∞−∞ =∞(−∞) = (−∞)∞ = −∞.

Finally, we de�ne

|∞| = | −∞| =∞.

It is not useful to de�ne ∞−∞, 0 · ∞, ∞/∞, and 0/0. They are called inde-

terminate forms, and left unde�ned.

1.18 Principle of Mathematical Induction

The rigorous construction of the real number system starts with a set N of unde�ned

elements called natural numbers, with the following properties. The set of natural

number N satisfy the following:

• N is nonempty.

• Associated with each natural number n there is a unique natural number n′

called the successor of n.

• There is a natural number n that is not the successor of any natural number.

The set of natural number N satisfy the following:

• Distinct natural numbers have distinct successors; that is, if n ̸= m, then

n′ ̸= m′.

• The only subset of N that contains n and the successors of all its elements is

N itself.

Theorem: Let P1, P2,. . . , Pn, . . . be propositions, one for each positive integer,

such that

• P1 is true;

• for each positive integer n, Pn implies Pn+1.

Then Pn is true for each positive integer n.

Proof : Let

M = {n ∈ N and Pn is true}.

From �rst axiom of Peano's, 1 ∈ M, and from second axiom, n + 1 ∈ M whenever

n ∈M.

Therefore, M = N, by fourth axiom.
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Example: Let Pn be the proposition that

1 + 2 + · · ·+ n =
n(n+ 1)

2
.

Solution: Then P1 is the proposition that 1 = 1, which is certainly true.

If Pn is true, then adding n+ 1 to both sides of the equation yields

(1 + 2 + · · ·+ n) + (n+ 1) =
n(n+ 1)

2
+ (n+ 1)

= (n+ 1)
(n
2
+ 1
)

=
(n+ 1)(n+ 2)

2
=

(n+ 1)(n+ 2)

2
,

Example: For each nonnegative integer n, let xn be a real number and suppose

that

|xn+1 − xn| ≤ r|xn − xn−1|, n ≥ 1,

where r is a �xed positive number.

Show that

|xn − xn−1| ≤ rn−1|x1 − x0| if n ≥ 1.

Solution: For n = 1, 2, and 3, we �nd that

|x2 − x1| ≤ r|x1 − x0|,
|x3 − x2| ≤ r|x2 − x1| ≤ r2|x1 − x0|,
|x4 − x3| ≤ r|x3 − x2| ≤ r3|x1 − x0|.

• It is important to verify P1, since Pn may imply Pn+1 even if some or all of

the propositions P1, P2, . . . , Pn, . . . are false.

• Let Pn be the proposition that 2n−1 is divisible by 2. If Pn is true then Pn+1

is also, since

2n+ 1 = (2n− 1) + 2.

However, we cannot conclude that Pn is true for n ≥ 1. In fact, Pn is false for

every n.
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1.18.1 Principle of Mathematical Induction For Z

Theorem: Let n0 be any integer (positive, negative, or zero).

Let Pn0 , Pn0+1, . . . , Pn, . . . be propositions, one for each integer n ≥ n0, such

that

• Pn0 is true ;

• for each integer n ≥ n0, Pn implies Pn+1.

Then Pn is true for every integer n ≥ n0.

Proof : For m ≥ 1, let Qm be the proposition de�ned by Qm = Pm+n0−1. Then

Q1 = Pn0 is true by �rst part.

If m ≥ 1 and Qm = Pm+n0−1 is true, then Qm+1 = Pm+n0 is true by second

part with n replaced by m+ n0 − 1.

Therefore, Qm is true for all m ≥ 1 by Mathematical induction Theorem with

P replaced by Q and n replaced by m. This is equivalent to the statement that Pn

is true for all n ≥ n0.

Example: Prove the proposition Pn given by

3n+ 16 > 0, n ≥ −5.

Example: Let Pn be the proposition that

n!− 3n > 0, n ≥ 7.

If Pn is true, then

(n+ 1)!− 3n+1 = n!(n+ 1)− 3n+1

> 3n(n+ 1)− 3n+1 (by the induction assumption)

= 3n(n− 2).

Therefore, Pn implies Pn+1 if n > 2. By trial and error, n0 = 7 is the smallest

integer such that Pn0 is true; hence, Pn is true for n ≥ 7, by Theorem ??.

Theorem: Let n0 be any integer (positive, negative, or zero). Let Pn0 , Pn0+1,. . . ,

Pn, . . . be propositions, one for each integer n ≥ n0, such that

• Pn0 is true ;

• for n ≥ n0, Pn+1 is true if Pn0 , Pn0+1,. . . , Pn are all true.
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Then Pn is true for n ≥ n0.

Example: Let S = {x ∈ R : 0 < x < 1}, T = {x ∈ (0, 1) : x is rational},
and U = {x ∈ (0, 1) : x is irrational}. Then S ⊃ T and S ⊃ U , and the inclusion is

strict in both cases. The unions of pairs of these sets are

S ∪ T = S, S ∪ U = S, and T ∪ U = S,

and their intersections are

S ∩ T = T, S ∩ U = U, and T ∩ U = ∅.

1.19 Generalization of Union and Intersection

: If F is an arbitrary collection of sets, then ∪{S : S ∈ F} is the set of all elements

that are members of at least one of the sets in F , and ∩{S : S ∈ F} is the set of all
elements that are members of every set in F .

The union and intersection of �nitely many sets S1, . . . , Sn are also written as∪n
k=1 Sk and

∩n
k=1 Sk.

The union and intersection of an in�nite sequence {Sk}∞k=1 of sets are written

as
∪∞

k=1 Sk and
∩∞

k=1 Sk.

Example: If F is the collection of sets

Sρ = {x : ρ < x ≤ 1 + ρ},

where 0 < ρ ≤ 1/2, then∪
{Sρ : Sρ ∈ F} = {x : 0 < x ≤ 3/2}∩
{Sρ : Sρ ∈ F} = {x : 1/2 < x ≤ 1}.

Example: If, for each positive integer k, the set Sk is the set of real numbers that

can be written as x = m/k for some integer m,

then
∪∞

k=1 Sk is the set of rational numbers and
∩∞

k=1 Sk is the set of integers.

If a and b are in the extended reals and a < b, then the open interval (a, b) is

de�ned by

(a, b) = {x : a < x < b}.

The open intervals (a,∞) and (−∞, b) are semi-in�nite if a and b are �nite, and

(−∞,∞) is the entire real line.

ε-neighborhood: If x0 is a real number and ε > 0, then the open interval (x0 −
ε, x0 + ε) is an ε-neighborhood of x0. If a set S contains an ε-neighborhood of x0,

then S is a neighborhood of x0, and x0 is an interior point of S.

The set of interior points of S is the interior of S, denoted by S0. If every point

of S is an interior point (that is, S0 = S), then S is open.
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A set S is closed if Sc is open.

Example: An open interval (a, b) is an open set, because if x0 ∈ (a, b) and ε ≤
min{x0 − a, b− x0}, then

(x0 − ε, x0 + ε) ⊂ (a, b).

The entire line R = (−∞,∞) is open, and therefore ∅ = Rc is closed. However, ∅
is also open. for to deny this is to say that ∅ contains a point that is not an interior

point, which is absurd because ∅ contains no points. Since ∅ is open, R(= ∅c) is
closed. Thus, R and ∅ are both open and closed. They are the only subsets of R
with this property

A deleted neighborhood of a point x0 is a set that contains every point of some

neighborhood of x0 except for x0 itself.

For example,

S = {x : 0 < |x− x0| < ε}

is a deleted neighborhood of x0. We also say that it is a deleted ε-neighborhood of

x0.

Theorem: The following statements are true for arbitrary collections, �nite or

in�nite, of open and closed sets.

• The union of open sets is open.

• The intersection of closed sets is closed.

Proof : Let G be a collection of open sets and

S = ∪{G : G ∈ G}.

If x0 ∈ S, then x0 ∈ G0 for some G0 in G, and since G0 is open, it contains

some ε-neighborhood of x0. Since G0 ⊂ S, this ε-neighborhood is in S, which is

consequently a neighborhood of x0. Thus, S is a neighborhood of each of its points,

and therefore open, by de�nition.

Let F be a collection of closed sets and T = ∩{F : F ∈ F}.
Then T c = ∪F c : F ∈ F and, since each F c is open, T c is open, from the �rst

part. Therefore, T is closed, by de�nition.

Examples: If −∞ < a < b <∞, the set

[a, b] = {x ∈ R : a ≤ x ≤ b}

is closed, since its complement is the union of the open sets (−∞, a) and (b,∞). We

say that [a, b] is a closed interval.
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Examples: The set

[a, b) = {x ∈ R : a ≤ x < b}

is a half-closed or half-open interval

If −∞ < a < b <∞, as is

(a, b] = {x ∈ R : a < x ≤ b};

however, neither of these sets is open or closed. (Why not?)

Examples: Semi-in�nite closed intervals are sets of the form

[a,∞) = {x ∈ R : a ≤ x}

(−∞, a] = {x ∈ R : x ≤ a},

where a is �nite. They are closed sets, since their complements are the open intervals

(−∞, a) and (a,∞), respectively.

Let S be a subset of R. Then

• x0 is a limit point of S if every deleted neighborhood of x0 contains a point

of S.

• x0 is a boundary point of S if every neighborhood of x0 contains at least one

point in S and one not in S. The set of boundary points of S is the boundary

of S, denoted by ∂S. The closure of S, denoted by S, is S = S ∪ ∂S.

Let S be a subset of R. Then

• x0 is an isolated point of S if x0 ∈ S and there is a neighborhood of x0 that

contains no other point of S.

Let S be a subset of R. Then

• x0 is exterior to S if x0 is in the interior of Sc. The collection of such points

is the exterior of S.

Let S = (−∞,−1] ∪ (1, 2) ∪ {3}. Then

• The set of limit points of S is (−∞,−1] ∪ [1, 2].

• ∂S = {−1, 1, 2, 3} and S = (−∞,−1] ∪ [1, 2] ∪ {3}.

Let S = (−∞,−1] ∪ (1, 2) ∪ {3}. Then

• 3 is the only isolated point of S.

• The exterior of S is (−1, 1) ∪ (2, 3) ∪ (3,∞).
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For n ≥ 1, let

In =

[
1

2n+ 1
,
1

2n

]
and S =

∞∪
n=1

In.

Then

• The set of limit points of S is S ∪ {0}.

• ∂S = x : x = 0 or x = 1/n (n ≥ 2) and S = S ∪ {0}.

• S has no isolated points.

• The exterior of S is

(−∞, 0) ∪

[ ∞∪
n=1

(
1

2n+ 2
,

1

2n+ 1

)]
∪
(
1

2
,∞
)
.

1.20 Open Coverings

A collection H of open sets is an open covering of a set S if every point in S is

contained in a set H belonging to H; that is, if

S ⊂ ∪{H ∈ H : H ∈ H}.

Example: The set

S1 = [0, 1],

is covered by the family of open intervals

H1 =

{(
x− 1

N
, x+

1

N

) ∣∣∣∣ 0 < x < 1

}
,

(N = positive integer), .

Example: The set

S2 = {1, 2, . . . , n, . . . },

is covered by the family of open intervals

H2 =

{(
n− 1

4
, n+

1

4

) ∣∣∣∣n = 1, 2, . . .

}
.

Example: The sets

S3 =

{
1,

1

2
, . . . ,

1

n
, . . .

}
, and S4 = (0, 1)

are covered by the families of open intervals

H3 =

{(
1

n+ 1
2

,
1

n− 1
2

)∣∣∣∣n = 1, 2, . . .

}
,

and
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H4 = {(0, ρ)| 0 < ρ < 1},

respectively.

Theorem: If H is an open covering of a closed and bounded subset S of the

real numbers then S has an open covering H̃ consisting of �nitely many open sets

belonging to H.

Compact set: A closed and bounded set of real numbers is called compact .

The Heine-Borel theorem says that any open covering of a compact set S contains

a �nite collection that also covers S.

This theorem and its converse show that we could just as well de�ne a set S of

reals to be compact if it has the Heine-Borel property; that is, if every open covering

of S contains a �nite subcovering.

The same is true of Rn. This de�nition generalizes to more abstract spaces (called

topological spaces) for which the concept of boundedness need not be de�ned.

Example: The set

S1 = [0, 1],

is covered by the family of open intervals

H1 =

{(
x− 1

N
, x+

1

N

) ∣∣∣∣ 0 < x < 1

}
,

(N = positive integer), .

The 2N intervals from H1 centered at the points xk = k/2N (0 ≤ k ≤ 2N − 1)

cover S1.

Example: The set

S2 = {1, 2, . . . , n, . . . },

S3 =

{
1,

1

2
, . . . ,

1

n
, . . .

}
, and S4 = (0, 1)

are not compact sets.

Theorem: A set S is closed if and only if no point of Sc is a limit point of S.

Corollary: A set S is closed if and only if S contains all of its limit points.

Remark: Hence, a set with no limit points is closed according to the corollary, in

agreement with Theorem. For example, any �nite set is closed. More generally, S

is closed if there is a δ > 0 such |x − y| ≥ δ for every pair {x, y} of distinct points
in S.



Chapter 2

Sequences and Series

2.1 Sequences

An in�nite sequence (more brie�y, a sequence) of real numbers is a real-valued

function de�ned on a set of integers n : n ≥ k. We call the values of the function

the terms of the sequence.

We denote a sequence by listing its terms in order; thus,

{sn}∞k = {sk, sk+1, . . . }.

Examples: Consider the following sequences

{
1

n2 + 1

}∞

0

=

{
1,

1

2
,
1

5
, . . . ,

1

n2 + 1
, . . .

}
,

{(−1)n}∞0 = {1,−1, 1, . . . , (−1)n, . . . } ,

{
1

n− 2

}∞

3

=

{
1,

1

2
,
1

3
, . . . ,

1

n− 2
, . . .

}
.

The real number sn is the nth term of the sequence.

Examples: Usually we are interested only in the terms of a sequence and the order

in which they appear, but not in the particular value of k in (??). Therefore, we

regard the sequences The sequences are{
1

n− 2

}∞

3

and

{
1

n

}∞

1

identical.

In the absence of any indication to the contrary, we take k = 0 unless sn is given

by a rule that is invalid for some nonnegative integer, in which case k is understood

to be the smallest positive integer such that sn is de�ned for all n ≥ k. For example,

if

sn =
1

(n− 1)(n− 5)
,

then k = 6.
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2.1.1 Convergent Sequence

A sequence {sn} converges to a limit L if for every ε > 0 there is an integer N such

that

|sn − L| < ε if n ≥ N.

In this case we say that {sn} is convergent and write

lim
n→∞

sn = L.

Figure 2.1: Convergence of the sequence

A sequence that does not converge diverges, or is divergent

Example: If sn = c for n ≥ k, then |sn − c| = 0 for n ≥ k, and limn→∞ sn = c.

Example: If

sn =

{
2n+ 1

n+ 1

}
,

then limn→∞ sn = 2, since

|sn − 2| =

∣∣∣∣2n+ 1

n+ 1
− 2n+ 2

n+ 1

∣∣∣∣
=

1

n+ 1
;

Theorem: The limit of a convergent sequence is unique.

Proof : Suppose that

lim
n→∞

sn = s and lim
n→∞

sn = s′.

We must show that s = s′. Let ε > 0. From de�nition, there are integers N1 and

N2 such that

|sn − s| < ε if n ≥ N1

(because limn→∞ sn = s), and

|sn − s′| < ε if n ≥ N2
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(because limn→∞ sn = s′). These inequalities both hold if n ≥ N = max(N1, N2),

which implies that

|s− s′| = |(s− sN ) + (sN − s′)|
≤ |s− sN |+ |sN − s′| < ε+ ε = 2ε.

Since this inequality holds for every ε > 0 and |s − s′| is independent of ε, we

conclude that |s− s′| = 0; that is, s = s′.

A sequence {sn} is said to be divergent to ∞ if for any real number a, sn > a

for large n and written as

lim
n→∞

sn =∞

Similarly,

lim
n→∞

sn = −∞

if for any real number a, sn < a for large n. not regard {sn} as convergent unless
limn→∞ sn is �nite, as required by De�nition of limit. To emphasize this distinction,

we say that {sn} diverges to ∞ (−∞) if limn→∞ sn =∞ (−∞).

Example: The sequence {n/2+ 1/n} diverges to ∞, since, if a is any real number,

then
n

2
+

1

n
> a if n ≥ 2a.

Therefore, we write

lim
n→∞

(
n

2
+

1

n

)
=∞

Example: The sequence {n − n2} diverges to −∞, since, if a is any real number,

then

−n2 + n = −n(n− 1) < a if n > 1 +
√
|a|.

Therefore, we write

lim
n→∞

(−n2 + n) = −∞.

Example: The sequence {(−1)nn3} diverges, but not to −∞ or ∞.

2.2 Bounded Sequence

A sequence {sn} is bounded above if there is a real number b such that

sn ≤ b for all n,

bounded below if there is a real number a such that

sn ≥ a for all n,

or bounded if there is a real number r such that

|sn| ≤ r for all n.
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Example: If sn = [1+(−1)n]n, then {sn} is bounded below (sn ≥ 0) but unbounded

above.

{−sn} is bounded above (−sn ≤ 0) but unbounded below.

If sn = (−1)n, then {sn} is bounded.

If sn = (−1)nn, then {sn} is not bounded above or below.

Theorem: A convergent sequence is bounded.

Proof : By taking ε = 1, we see that if limn→∞ sn = s, then there is an integer N

such that

|sn − s| < 1 if n ≥ N.

Therefore,

|sn| = |(sn − s) + s| ≤ |sn − s|+ |s| < 1 + |s| if n ≥ N,

and

|sn| ≤ max{|s0|, |s1|, . . . , |sN−1|, 1 + |s|}

for all n, so {sn} is bounded.

Theorem: A sequence {sn} converges to s if and only if every neighborhood of s

contains sn for all but �nitely many n.

2.3 Monotonic Sequences

A sequence {sn} is nondecreasing if sn ≥ sn−1 for all n, or nonincreasing if sn ≤ sn−1

for all n.

A monotonic sequence is a sequence that is either nonincreasing or nondecreas-

ing. If sn > sn−1 for all n, then {sn} is increasing , while if sn < sn−1 for all n, {sn}
is decreasing .

Theorem:

• If {sn} is nondecreasing, then limn→∞ sn = sup{sn}.

• If {sn} is nonincreasing, then limn→∞ sn = inf{sn}.

Recall: The de�nition of supremum and in�mum of a set.

Proof : Let β = sup{sn}. If β <∞, then by de�nition if ε > 0 then

β − ε < sN ≤ β

for some integer N .

Since sN ≤ sn ≤ β if n ≥ N , it follows that

β − ε < sn ≤ β if n ≥ N.
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This implies that |sn − β| < ε if n ≥ N , so limn→∞ sn = β, by de�nition.

If β = ∞ and b is any real number, then sN > b for some integer N . Then

sn > b for n ≥ N , so limn→∞ sn =∞.

For the proof of the second part try yourself.

Example: If s0 = 1 and sn = 1− e−sn−1 , then 0 < sn ≤ 1 for all n, by induction.

Since sn+1 − sn = −(e−sn − e−sn−1) if n ≥ 1.

The mean value theorem implies that

sn+1 − sn = e−tn(sn − sn−1) if n ≥ 1, (2.1)

where tn is between sn−1 and sn. Since s1 − s0 = −1/e < 0, it follows by induction

from (2.1) that sn+1 − sn < 0 for all n.

Hence, {sn} is bounded and decreasing, and therefore convergent.

Remark: Let {xn} and {sn} be two sequences. If 0 ≤ xn ≤ sn for n ≥ N , where

N is some �xed number, and if

sn → 0,

then

xn → 0.

2.4 Some Special Sequences

Theorem: If p > 0, then

lim
n→∞

1

np
= 0.

Proof : Before presenting the proof let us recall the following:

Recall the binomial theorem:

(1 + x)n = 1 + nx+ x(n− 1)
x2

2!
+ ....

We have the following inequality

1 + nx ≤ (1 + x)n, x > 0.

Theorem: If p > 0, then

lim
n→∞

n
√
p = 1.

Proof : We will discuss the three cases when p = 1, when p > 1 and when 0 < p < 1.

If p > 1, put xn = n
√
p− 1. Then xn > 0, and, by the binomial theorem

1 + nxn ≤ (1 + xn)
n = p,
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so that

0 < xn ≤
p− 1

n
.

Theorem: Show that

lim
n→∞

n
√
n = 1.

Proof : Take xn = n
√
n− 1.

Then xn ≥ 0, and, by the binomial theorem

n = (1 + xn)
n ≥ n(n− 1)

2
x2n.

Hence

0 ≤ xn ≤
√

2

n− 1
, n ≥ 2.

Theorem: If p > 0 and α is real, then

lim
n→∞

nα

(1 + p)n
= 0.

Proof : Let k be an integer such that k > α, k > 0.

For n > 2k,

(1 + p)n >
n(n− 1)...(n− k + 1)

k!
pk >

nkpk

2kk!
.

Hence

0 <
nα

(1 + p)n
<

2kk!

pk
nα−k, n > 2k.

Since α− k < 0, nα−k → 0 by

lim
n→∞

1

np
= 0.

Theorem: If |x| < 1, then

lim
n→∞

xn = 0.

Theorem: Let limn→∞ sn = s and limn→∞ tn = t, where s and t are �nite.

Then

lim
n→∞

(csn) = cs (2.2)

if c is a constant;

lim
n→∞

(sn + tn) = s+ t,

lim
n→∞

(sn − tn) = s− t,

lim
n→∞

(sntn) = st,

lim
n→∞

sn
tn

=
s

t
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if tn is nonzero for all n and t ̸= 0.

Proof : We write

sntn − st = sntn − stn + stn − st = (sn − s)tn + s(tn − t);

hence,

|sntn − st| ≤ |sn − s| |tn|+ |s| |tn − t|.

Since {tn} converges, it is bounded.
Therefore, there is a number R such that |tn| ≤ R for all n, and (??) implies

that

|sntn − st| ≤ R|sn − s|+ |s| |tn − t|. (2.3)

By de�nition, if ε > 0 there are integers N1 and N2 such that

|sn − s| < ε if n ≥ N1

|tn − t| < ε if n ≥ N2.

If N = max(N1, N2), then both inequalities hold when n ≥ N , and the (2.3) implies

that

|sntn − st| ≤ (R+ |s|)ε if n ≥ N.

This proves (2.3).

We consider the special case where sn = 1 for all n and t ̸= 0; thus, we want to

show that

lim
n→∞

1

tn
=

1

t
.

First, observe that since limn→∞ tn = t ̸= 0, there is an integer M such that

|tn| ≥ |t|/2 if n ≥M .

By de�nition with ε = |t|/2; thus, there is an integer M such that |tn− t| < |t/2|
if n ≥M .

Therefore,

|tn| = |t+ (tn − t)| ≥ ||t| − |tn − t|| ≥ |t|
2

if n ≥M.

If ε > 0, choose N0 so that |tn − t| < ε if n ≥ N0, and let N = max(N0,M). Then∣∣∣∣ 1tn − 1

t

∣∣∣∣ = |t− tn|
|tn| |t|

≤ 2ε

|t|2
if n ≥ N.

hence, limn→∞ 1/tn = 1/t. Now we obtain (2.3) in the general case from (2.3) with

{tn} replaced by {1/tn}.

Example: Find the limit of the sequence

sn =
1

n
sin

nπ

4
+

2(1 + 3/n)

1 + 1/n
.
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Solution: We apply the applicable parts of Theorem as follows:

lim
n→∞

sn = lim
n→∞

1

n
sin

nπ

4
+

2 [limn→∞ 1 + 3 limn→∞(1/n)]

limn→∞
1 + lim

n→∞
(1/n)

= 0 +
2(1 + 3 · 0)

1 + 0
= 2.

Example: Find the limit of the sequence sn = limn→∞
(n/2)+logn
3n+4

√
n

.

Solution:

lim
n→∞

(n/2) + log n

3n+ 4
√
n

= lim
n→∞

1/2 + (log n)/n

3 + 4n−1/2

=
limn→∞ 1/2 + limn→∞(log n)/n

limn→∞ 3 + 4 limn→∞ n−1/2

=
1/2 + 0

3 + 0

=
1

6
.

2.5 Subsequence

A sequence {tk} is a subsequence of a sequence {sn} if

tk = snk
, k ≥ 0,

where {nk} is an increasing in�nite sequence of integers in the domain of {sn}. We

denote the subsequence {tk} by {snk
}.

Example: If

{sn} =
{
1

n

}
=

{
1,

1

2
,
1

3
, . . . ,

1

n
, . . .

}
,

then letting nk = 2k yields the subsequence

{s2k} =
{

1

2k

}
=

{
1

2
,
1

4
, . . . ,

1

2k
, . . .

}
,

and letting nk = 2k + 1 yields the subsequence

{s2k+1} =
{

1

2k + 1

}
=

{
1,

1

3
, . . . ,

1

2k + 1
, . . .

}
.

Example: The sequence {sn} de�ned by

sn = (−1)n
(
1 +

1

n

)
does not converge, but {sn} has subsequences that do. For example,

{s2k} =
{
1 +

1

2k

}
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lim
k→∞

s2k = 1.

Example: The sequence {sn} de�ned by

sn = (−1)n
(
1 +

1

n

)
does not converge, but {sn} has subsequences that do.

For example,

{s2k+1} =
{
−1− 1

2k + 1

}
lim
k→∞

s2k+1 = −1.

It can be shown that a subsequence {snk
} of {sn} converges to 1 if and only if nk is

even for k su�ciently large, or to −1 if and only if nk is odd for k su�ciently large.

Otherwise, {snk
} diverges.

Theorem: If

lim
n→∞

sn = s (−∞ ≤ s ≤ ∞),

then

lim
k→∞

snk
= s

for every subsequence {snk
} of {sn}.

Proof : By de�nition for every ε > 0, there is an integer N such that

|sn − s| < ε if n ≥ N.

Since {nk} is an increasing sequence, there is an integer K such that nk ≥ N if

k ≥ K. Therefore,

|snk
− L| < ε if k ≥ K.

Theorem: If {sn} is monotonic and has a subsequence {snk
} such that

lim
k→∞

snk
= s,

then

lim
n→∞

sn = s.

Recall the following theorem:

If {sn} is nondecreasing, then limn→∞ sn = sup{sn}.

If {sn} is nonincreasing, then limn→∞ sn = inf{sn}.
Proof : Since {snk

} is also nondecreasing in this case, it is su�cient to show that

sup{snk
} = sup{sn}



2.5. Subsequence 38

Since the set of terms of {snk
} is contained in the set of terms of {sn},

sup{sn} ≥ sup{snk
}.

Since {sn} is nondecreasing, there is for every n an integer nk such that sn ≤ snk
.

This implies that

sup{sn} ≤ sup{snk
}.

Theorem: A point x is a limit point of a set S if and only if there is a sequence

{xn} of points in S such that xn ̸= x for n ≥ 1, and

lim
n→∞

xn = x.

Proof : By de�nition for each ε > 0, there is an integer N such that 0 < |xn−x| < ε

if n ≥ N .

Therefore, every ε-neighborhood of x contains in�nitely many points of S. This

means that x is a limit point of S.

For necessity, let x be a limit point of S. Then, for every integer n ≥ 1, the interval

(x− 1/n, x+ 1/n) contains a point xn (̸= x) in S.

Since |xm − x| ≤ 1/n if m ≥ n, limn→∞ xn = x.

Theorem:

• If {xn} is bounded, then {xn} has a convergent subsequence.

• If {xn} is unbounded above, then {xn} has a subsequence {xnk
} such that

lim
k→∞

xnk
=∞.

• If {xn} is unbounded below, then {xn} has a subsequence {xnk
} such that

lim
k→∞

xnk
= −∞.

Proof : Let S be the set of distinct numbers that occur as terms of {xn}.
(For example, if {xn} = {(−1)n}, S = {1,−1}; if {xn} =

{1, 12 , 1,
1
3 , . . . , 1, 1/n, . . . }, S = {1, 12 , . . . , 1/n, . . . }.)

If S contains only �nitely many points, then some x in S occurs in�nitely often

in {xn}; that is, {xn} has a subsequence {xnk
} such that xnk

= x for all k. Then

limk→∞ xnk
= x, and we are �nished in this case.

If S is in�nite, then, since S is bounded (by assumption), the Bolzano-

Weierstrass theorem implies that S has a limit point x.

There is a sequence of points {yj} in S, distinct from x, such that

lim
j→∞

yj = x.
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Although each yj occurs as a term of {xn}, {yj} is not necessarily a subsequence of

{xn}, because if we write
yj = xnj .

There is no reason to expect that {nj} is an increasing sequence as required in

de�nition of subsequence.

However, it is always possible to pick a subsequence {njk} of {nj} that is in-
creasing, and then the sequence {yjk} = {snjk

} is a subsequence of both {yj} and
{xn}.

2.6 Limit Superior and Limit Inferior

Theorem:

• If {sn} is bounded above and does not diverge to −∞, then there is a unique

real number s such that, if ε > 0,

sn < s+ ε for large n (2.4)

and

sn > s− ε for in�nitely many n. (2.5)

• If {sn} is bounded below and does not diverge to ∞, then there is a unique

real number s such that, if ε > 0,

sn > s− ε for large n (2.6)

and

sn < s+ ε for in�nitely many n. (2.7)

Proof : Proof of the �rst part. Since {sn} is bounded above, there is a number β

such that sn < β for all n. Since {sn} does not diverge to −∞, there is a number

α such that sn > α for in�nitely many n. If we de�ne

Mk = sup{sk, sk+1, . . . , sk+r, . . . },

then α ≤ Mk ≤ β, so {Mk} is bounded. Since {Mk} is nonincreasing (why?), it

converges. Let

s = lim
k→∞

Mk. (2.8)

If ε > 0, then Mk < s+ ε for large k, and since sn ≤Mk for n ≥ k, s satis�es (2.4).

If (2.5) were false for some positive ε, there would be an integer K such that

sn ≤ s− ε if n ≥ K.

However, this implies that

Mk ≤ s− ε if k ≥ K,
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which contradicts (2.8). Therefore, s has the stated properties.

Now we must show that s is the only real number with the stated properties. If

t < s, the inequality

sn < t+
s− t

2
= s− s− t

2

cannot hold for all large n, because this would contradict (2.5) with ε = (s − t)/2.

If s < t, the inequality

sn > t− t− s

2
= s+

t− s

2

cannot hold for in�nitely many n, because this would contradict (2.4) with ε =

(t− s)/2. Therefore, s is the only real number with the stated properties.

The numbers s and s de�ned in the previous Theorem are called the limit supe-

rior and limit inferior , respectively, of {sn}, and denoted by

s = lim sup
n→∞

sn and s = lim inf
n→∞

sn.

We also de�ne

lim sup
n→∞

sn = ∞ if {sn} is not bounded above,

lim sup
n→∞

sn = −∞ if lim
n→∞

sn = −∞,

lim inf
n→∞

sn = −∞ if {sn} is not bounded below,

lim inf
n→∞

sn = ∞ if lim
n→∞

sn =∞.

Theorem: Every sequence {sn} of real numbers has a unique limit superior, s, and

a unique limit inferior, s, in the extended reals, and

s ≤ s.

Examples:

lim sup
n→∞

rn =


∞, |r| > 1,

1, |r| = 1,

0, |r| < 1;

and

lim inf
n→∞

rn =



∞, r > 1,

1, r = 1,

0, |r| < 1,

−1, r = −1,
−∞, r < −1.
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Example:

lim sup
n→∞

n2 = lim inf
n→∞

n2 = ∞,

lim sup
n→∞

(−1)n
(
1− 1

n

)
= 1,

lim inf
n→∞

(−1)n
(
n− 1

n

)
= −1,

and

lim sup
n→∞

[1 + (−1)n]n2 = ∞,

lim inf
n→∞

[1 + (−1)n]n2 = 0.

Theorem: If {sn} is a sequence of real numbers, then

lim
n→∞

sn = s (2.9)

if and only if

lim sup
n→∞

sn = lim inf
n→∞

sn = s. (2.10)

Proof : If s = ±∞, the equivalence of (2.9) and (2.10) follows immediately from

their de�nitions. If limn→∞ sn = s (�nite), then de�nition of a convergent sequence

implies that (2.4)�(2.7) hold with s and s replaced by s. Hence, (2.10) follows from

the uniqueness of s and s. For the converse, suppose that s = s and let s denote

their common value. Then (2.4) and (2.6) imply that

s− ε < sn < s+ ε

for large n, and (2.9) follows from De�nition and the uniqueness of limn→∞ sn.

2.7 Cauchy Sequence

A sequence {sn} of real numbers is called a Cauchy sequence if for every ε > 0,

there is an integer N such that

|sn − sm| < ε if m,n ≥ N.

Theorem: If {sn} is a Cauchy sequence of real numbers, then {sn} is bounded.

Proof : See Lecture

Theorem (Cauchy's convergence criterion): A sequence {sn} of real numbers
converges if and only if, for every ε > 0, there is an integer N such that

|sn − sm| < ε if m,n ≥ N.
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Proof : Suppose that limn→∞ sn = s and ε > 0.

There is an integer N such that

|sr − s| < ε

2
if r ≥ N.

Therefore,

|sn − sm| = |(sn − s) + (s− sm)| ≤ |sn − s|+ |s− sm| < ε,

whenever n,m ≥ N . Therefore, the stated condition is necessary for convergence of

{sn}.
Recall a Cauchy sequence {sn} is bounded. So s and s are �nite.

Now suppose that ε > 0 and N satis�es |sn − sm| < ε, n,m ≥ N .

From de�nition of limit superior and limit inferior

|sn − s| < ε, |sm − s| < ε

for some integer m,n > N .

Since

|s− s| = |(s− sn) + (sn − sm) + (sm − s)|
≤ |s− sn|+ |sn − sm|+ |sm − s|.

We have

|s− s| < 3ε.

Since ε is an arbitrary positive number, this implies that s = s, so {sn} converges.

2.8 Series

If {an}∞k is an in�nite sequence of real numbers, the symbol

∞∑
n=k

an

is an in�nite series, and an is the nth term of the series.

We say that
∑∞

n=k an converges to the sum A, and write

∞∑
n=k

an = A,

if the sequence {An}∞k de�ned by

An = ak + ak+1 + · · ·+ an, n ≥ k,

converges to A.
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2.8.1 Sequence of Partial Sums

The �nite sum An is the nth partial sum of
∑∞

n=k an.

If {An}∞k diverges, we say that
∑∞

n=k an diverges.

In particular, if limn→∞An =∞ or −∞, we say that
∑∞

n=k an diverges to ∞ or

−∞, and write
∞∑
n=k

an =∞ or
∞∑
n=k

an = −∞.

2.8.2 Oscillatory Series

A divergent in�nite series that does not diverge to ±∞ is said to oscillate, or be

oscillatory .

Example: Consider the series

∞∑
n=0

rn, −1 < r < 1.

Here an = rn (n ≥ 0). The nth term of sequence of partial sum is

An = 1 + r + r2 + · · ·+ rn =
1− rn+1

1− r
,

which converges to 1/(1− r) as n→∞. Thus, we write

∞∑
n=0

rn =
1

1− r
, −1 < r < 1.

Example: The nth term of sequence of partial sum is

An = 1 + r + r2 + · · ·+ rn =
1− rn+1

1− r
,

If |r| > 1, then
∑∞

n=0 r
n diverges; if r > 1, then

∞∑
n=0

rn =∞,

Example: The nth term of sequence of partial sum is

An = 1 + r + r2 + · · ·+ rn =
1− rn+1

1− r
,

If r < −1,
∑∞

n=0 r
n oscillates, since its partial sums alternate in sign and their

magnitudes become arbitrarily large for large n.
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If r = −1, then A2m+1 = 0 and A2m = 1 for m ≥ 0, while if r = 1, An = n+ 1;

in both cases the series diverges.

Theorem: The sum of a convergent series is unique.

Proof : See Lecture.

Theorem: Let
∑∞

n=k an = A and
∑∞

n=k bn = B, where A and B are �nite.

Then
∞∑
n=k

(can) = cA

if c is a constant,
∞∑
n=k

(an + bn) = A+B,

and
∞∑
n=k

(an − bn) = A−B.

These relations also hold if one or both of A and B is in�nite, provided that the

right sides are not indeterminate.

2.9 Dropping Finitely Many Terms

For example, suppose that we drop the �rst k terms of a series
∑∞

n=0 an, and consider

the new series
∑∞

n=k an. sums of the two series by

An = a0 + a1 + · · ·+ an, n ≥ 0,

A′
n = ak + ak+1 + · · ·+ an, n ≥ k.

An = (a0 + a1 + · · ·+ ak−1) +A′
n, n ≥ k,

it follows that A = limn→∞An exists (in the extended reals) if and only if A′ =

limn→∞A′
n does, and in this case

A = (a0 + a1 + · · ·+ ak−1) +A′.

An important principle follows from this.

Lemma: Suppose that for n su�ciently large (that is, for n ≥ N) the terms of∑∞
n=k an satisfy some condition that implies convergence of an in�nite series. Then∑∞
n=k an converges.

Similarly, suppose that for n su�ciently large the terms
∑∞

n=k an satisfy some

condition that implies divergence of an in�nite series. Then
∑∞

n=k an diverges.

Example: The series
∑∞

k an converges if (−1)nan > 0, |an+1| < |an|, and

limn→∞ an = 0.
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The terms of
∞∑
n=1

16 + (−2)n

n2n

do not satisfy these conditions for all n ≥ 1, but they do satisfy them for su�ciently

large n.

Theorem: A series
∑

an converges if and only if for every ε > 0 there is an integer

N such that

|an + an+1 + · · ·+ am| < ε if m ≥ n ≥ N.

Proof : In terms of the partial sums {An} of
∑

an,

an + an+1 + · · ·+ am = Am −An−1.

Therefore, (??) can be written as

|Am −An−1| < ε if m ≥ n ≥ N.

Since
∑

an converges if and only if {An} converges, Theorem implies the conclusion.

Theorem: Show that the series
∞∑
n=1

1
n is divergent.

Proof : Consider the sequence of partial sums

s1 = 1, s2 = 1 +
1

2
, s3 = 1 +

1

2
+

1

3
, s41 +

1

2
+

1

3
+

1

4
, ...

form strictly increasing sequence

s1 < s2 < s3 < ... < sn < ...

s21 = 1 +
1

2
>

1

2
+

1

2

s4=22 = s2 +
1

3
+

1

4
> s2 +

1

4
+

1

4
>

4

2

s8=33 = s4 +
1

5
+

1

6
+

1

7
+

1

8
> s4 +

1

8
+

1

8
+

1

8
+

1

8
>

4

2

...s2n >
n+ 1

2
.

If M is any constant, we can �nd a positive integer n such that

n+ 1

2
> M.

But for this n, we have

s2n >
n+ 1

2
> M.
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so that no constant M is greater than or equal to every partial sum of the harmonic

series.

Example: Consider the geometric series
∑

rn.

If |r| < 1 and m ≥ n, then

|Am −An| = |rn+1 + rn+2 + · · ·+ rm|

≤ |r|n+1(1 + |r|+ · · ·+ |r|m−n−1)

= |r|n+1 1− |r|m−n

1− |r|
<
|r|n+1

1− |r|
.

If ε > 0, choose N so that
|r|N+1

1− |r|
< ε.

Then Cauchy's convergence criterion implies that

|Am −An| < ε if m ≥ n ≥ N.

Now Theorem implies that
∑

rn converges if |r| < 1, as in Example ??.

Corollary: If
∑

an converges, then limn→∞ an = 0

Proof : If
∑

an converges, then for each ε > 0 there is an integer K such that∣∣∣∣∣
∞∑
n=k

an

∣∣∣∣∣ < ε if k ≥ K;

that is,

lim
k→∞

∞∑
n=k

an = 0.

Be careful: limn→∞ an = 0 Necessary condition.

Not su�cient.

Example: For the harmonic series limn→∞
1
n = 0.

But we have proved that
∞∑
n=1

1

n

is divergent.

Corollary: If
∑

an converges, then for each ε > 0 there is an integer K such that∣∣∣∣∣
∞∑
n=k

an

∣∣∣∣∣ < ε if k ≥ K;
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that is,

lim
k→∞

∞∑
n=k

an = 0.

Example: If |r| < 1, then∣∣∣∣∣
∞∑
n=k

rn

∣∣∣∣∣ =
∣∣∣∣∣rk

∞∑
n=k

rn−k

∣∣∣∣∣ =
∣∣∣∣∣rk

∞∑
n=0

rn

∣∣∣∣∣ = |r|k

1− r
.

Therefore, if
|r|K

1− r
< ε,

then ∣∣∣∣∣
∞∑
n=k

rn

∣∣∣∣∣ < ε if k ≥ K,

which implies that limk→∞
∑∞

n=k r
n = 0.

2.10 Series of Nonnegative Terms

The series
∑

an is said to be series of nonnegative terms if an ≥ 0 for n ≥ k. The

theory of series
∑

an with terms that are nonnegative for su�ciently large n is

simpler than the general theory, since such

The series of nonnegative terms either converges to a �nite limit or diverges to

∞.

Recall the following theorem:

• If {sn} is nondecreasing, then limn→∞ sn = sup{sn}.

• If {sn} is nonincreasing, then limn→∞ sn = inf{sn}.

Theorem: If an ≥ 0 for n ≥ k, then
∑

an converges if its partial sums are bounded,

or diverges to ∞ if they are not. These are the only possibilities and, in either case,

∞∑
n=k

an = sup{An : n ≥ k},

where

An = ak + ak+1 + · · ·+ an, n ≥ k.

Proof : Since An = An−1 + an and an ≥ 0 (n ≥ k), the sequence {An} is nonde-
creasing, so the conclusion follows from Theorem and de�nition of convergence of a

series.

Recall the theorem: If an ≥ 0 for n ≥ k, then
∑

an converges if its partial sums

are bounded, or diverges to ∞ if they are not. These are the only possibilities and,

in either case,
∞∑
n=k

an = sup{An : n ≥ k},
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where

An = ak + ak+1 + · · ·+ an, n ≥ k.

2.11 The Comparison Test

Theorem: Suppose that

0 ≤ an ≤ bn, n ≥ k.

Then

•
∑

an <∞ if
∑

bn <∞.

•
∑

bn =∞ if
∑

an =∞.

Proof : If

An = ak + ak+1 + · · ·+ an and Bn = bk + bk+1 + · · ·+ bn, n ≥ k,

then, we have

An ≤ Bn.

If
∑

bn <∞, then {Bn} is bounded above implies that {An} is also; therefore,∑
an <∞.

On the other hand, if
∑

an = ∞, then {An} is unbounded above implies that

{Bn} is also; therefore,
∑

bn = ∞.

Example: Discuss the convergence of the series
∑ rn

n .

Solution: Since
rn

n
< rn, n ≥ 1,

and
∑

rn < ∞ if 0 < r < 1, the series
∑

rn/n converges if 0 < r < 1, by the

comparison test.

Comparing these two series is inconclusive if r > 1, since it does not help to

know that the terms of
∑

rn/n are smaller than those of the divergent series
∑

rn.

If r < 0, the comparison test does not apply, since the series then have in�nitely

many negative terms. Since

rn < nrn

and
∑

rn =∞ if r ≥ 1, the comparison test implies that
∑

nrn =∞ if r ≥ 1.

Comparing these two series is inconclusive if 0 < r < 1, since it does not help to

know that the terms of
∑

nrn are larger than those of the convergent series
∑

rn.
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Recall the following: If an ≥ 0 for n ≥ k, then
∑

an converges if its partial sums

are bounded, or diverges to ∞ if they are not. These are the only possibilities and,

in either case,
∞∑
n=k

an = sup{An : n ≥ k},

where

An = ak + ak+1 + · · ·+ an, n ≥ k.

Theorem: Suppose a1 ≥ a2 ≥ ... ≥ 0. Then the series
∑∞

n=1 an converges if and

only if the series
∞∑
k=0

2ka2k converges.

Proof : Consider the sequence of partial sum

sn = a1 + a2 + ...+ an, tk = a1 + 2a2 + ...+ 2ka2k .

For n < 2k, we have

sn ≤ a1 + (a2 + a3) + ...+ (a2k + ...+ a2k+1−1)

≤ a1 + 2a2 + ...+ 2ka2k = tk

so that

sn ≤ tk, (∗).

On the other hand, if n > 2k, we have

sn ≥ a1 + a2 + (a3 + a4) + ...+ (a2k−1+1 + ...+ a2k)

≥ 1

2
a1 + a2 + 2a4 + ...+ 2k−1a2k =

1

2
tk

so that

2sn ≥ tk (∗∗).

By (*) and (**) both sequences {sn} and {tk} are either both bounded or both

unbounded.

Recall the following theorem:

Theorem: If
∑

an converges, then limn→∞ an = 0.

Theorem: Suppose a1 ≥ a2 ≥ ... ≥ 0. Then the series
∑∞

n=1 an converges if and

only if the series
∞∑
k=0

2ka2k converges.

Theorem: The series
∑ 1

np converges if p > 1 and diverges if p ≤ 1.

Proof : If p = 0, then
∑ 1

np is divergent. If p < 0, then once again
∑ 1

np is divergent.

(Why) If p > 0 then the series
∑ 1

np and the series

∞∑
k=0

2k
1

2kp
=

∞∑
k=0

2(1−p)k.
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Notice that 21−p < 1 if and only if 1 − p < 0. Take x = 21−p, then we have

|x| < 1 and the series
∞∑
k=0

2(1−p)k becomes

∞∑
k=0

xk.

The monotonicity of the logarithmic function implies {log n} increases. Hence

{1/n log n} decreases.
Theorem: If p > 1,

∞∑
n=2

1

n(log n)p
,

converges, if p ≤ 1, the series diverges.

Proof : The monotonicity of the logarithmic function implies {log n} increases.

Hence {1/n log n} decreases.
The series

∞∑
n=2

1

n(log n)p
,

and
∞∑
k=1

1

2k(k log 2)p
=

1

(log 2)p

∞∑
k=1

1

kp
.

Remark: Consider the series

∞∑
n=3

1

n log n log log n
,

diverges whereas
∞∑
n=3

1

n log n(log log n)2
,

converges.

Example: Show that the series

∞∑ 1

(n2 + n)q

converges if q > 1/2.

Solution: By comparison with the convergent series
∑

1/n2q, since

1

(n2 + n)q
<

1

n2q
, n ≥ 1.

This comparison is inconclusive if q ≤ 1/2, since then∑ 1

n2q
=∞,
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and it does not help to know that the terms of
∑∞ 1

(n2+n)q
are smaller than those

of a divergent series. However, we can use the comparison test here, after a little

trick.

Observe that

∞∑
n=k−1

1

(n+ 1)2q
=

∞∑
n=k

1

n2q
=∞, q ≤ 1/2,

and
1

(n+ 1)2q
<

1

(n2 + n)q
.

Therefore, the comparison test implies that∑ 1

(n2 + n)q
=∞, q ≤ 1/2.

2.12 The Number e

The number e is de�ned by in�nite series and is given

e =

∞∑
n=0

1

n!
.

where n! = 1.2.3...n if n ≥ 1 and 0! = 1.

We have

sn = 1 + 1 +
1

1.2
+

1

1.2.3
+ ...+

1

1.2.3...n

< 1 + 1 +
1

2
+ ...+

1

2n−1
< 3,

the series converges, and the de�nition makes sense.

Approximation of the number e: Let

sn = 1 + 1 +
1

1.2
+

1

1.2.3
+ ...+

1

1.2.3...n
,

then we have

e− sn =
1

(n+ 1)!
+

1

(n+ 2)!
+

1

(n+ 3)!
+ ...

<
1

(n+ 1)!

(
1 +

1

n+ 1
+

1

(n+ 1)2
+ ...

)
=

1

n!n
.

We can conclude that

0 < e− sn <
1

n!n
.
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Approximation of the number e: We can conclude that

0 < e− sn <
1

n!n
.

For example , take n = 10, thus s10 approximate e with an error less than 10−7.

Theorem: e = limn→∞

(
1 + 1

n

)n

= e.

Proof : Let

sn =

n∑
k=0

1

k!
, tn =

(
1 +

1

n

)n

.

We have by using binomial theorem

tn = 1 + 1 +
1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
+ ...

+
1

n!

(
1− 1

n

)(
1− 2

n

)
...

(
1− n− 1

n

)
.

the series converges, and the de�nition makes sense.

Hence tn ≤ sn, so that

lim
n→∞

sup tn ≤ e (2.11)

Next if n ≥ m,

tn ≥ 1 + 1 +
1

2!

(
1− 1

n

)
+ ...+

1

m!

(
1− 1

n

)(
1− 2

n

)
...

(
1− m− 1

n

)
.

Let n→∞, keeping m �xed. We get

lim
n→∞

inf tn ≥ 1 + 1 +
1

2!
+ ...+

1

m!
,

so that

sm ≤ lim
n
→∞ inf tn.

Letting m→∞, we �nally get

e ≤ lim
n→∞

inf tn (∗∗).

Theorem: The number e is an irrational number.

Proof : Before we start the proof recall the following identity

0 < e− sn <
1

n!n
.

Suppose on contrary that e is a rational number. Then e = p/q, where p and q are

positive integers.
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Take n = q then the above identity becomes

0 < e− sq <
1

q!q
⇒ 0 < q!(e− sq) <

1

q
.

The number q!e will be an integer (Why?)

Since

q!sq = q!

(
1 + 1 +

1

2!
+ ...+

1

q!

)
is an integer, we see that q!(e − sq) is an integer. Since q ≥ 1, the identity 0 <

q!(e− sq) <
1
q implies an integer between 0 and 1.

Theorem: Suppose that an ≥ 0 and bn > 0 for n ≥ k. Then

•
∑

an <∞ if
∑

bn <∞ and lim supn→∞ an/bn <∞.

•
∑

an =∞ if
∑

bn =∞, and lim infn→∞ an/bn > 0.

Proof : If lim supn→∞ an/bn <∞, then {an/bn} is bounded, so there is a constant

M and an integer k such that

an ≤Mbn, n ≥ k.

Since
∑

bn < ∞, implies that
∑

(Mbn) < ∞. Now
∑

an < ∞, by the comparison

test.

If lim infn→∞ an/bn > 0, there is a constant m and an integer k such that

an ≥ mbn, n ≥ k.

Since
∑

bn = ∞, implies that
∑

(mbn) = ∞. Now
∑

an = ∞, by the comparison

test.

Theorem: Suppose that an ≥ 0 and bn > 0 for n ≥ k. Then

•
∑

an <∞ if
∑

bn <∞ and lim supn→∞ an/bn <∞.

•
∑

an =∞ if
∑

bn =∞, and lim infn→∞ an/bn > 0.

Example: Let∑
bn =

∑ 1

np+q
and

∑
an =

∑ 2 + sinnπ/6

(n+ 1)p(n− 1)q
.

Then
an
bn

=
2 + sinnπ/6

(1 + 1/n)p(1− 1/n)q
,
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so

lim sup
n→∞

an
bn

= 3 and lim inf
n→∞

an
bn

= 1.

Since
∑

bn <∞ if and only if p+ q > 1, the same is true of
∑

an, by the previous

Theorem.

Corollary: Suppose that an ≥ 0 and bn > 0 for n ≥ k, and

lim
n→∞

an
bn

= L,

where 0 < L <∞.

Example: Let ∑
bn =

∑ 1

np+q

and ∑
an =

∑ 2 + sinnπ/6

(n+ 1)p(n− 1)q
.

Example: Recall the series limn→∞
1

(n2+n)q
, we have proved that the series is con-

vergent for q > 1/2 by using a trick and applying comparison test.

lim
n→∞

1

(n2 + n)q

/
1

n2q
= lim

n→∞

1

(1 + 1/n)q
= 1,

so ∑ 1

(n2 + n)q
and

∑ 1

n2q

converge or diverge together.

Recall the following

Theorem: Suppose that an ≥ 0 and bn > 0 for n ≥ k. Then

•
∑

an <∞ if
∑

bn <∞ and lim supn→∞ an/bn <∞.

•
∑

an =∞ if
∑

bn =∞, and lim infn→∞ an/bn > 0.

2.13 The Ratio Test

Theorem: Suppose that an > 0, bn > 0, and

an+1

an
≤ bn+1

bn
.

Then

•
∑

an <∞ if
∑

bn <∞.
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•
∑

bn =∞ if
∑

an =∞.

Proof : We can rewrite
an+1

bn+1
≤ an

bn
,

we see that {an/bn} is nonincreasing. Therefore, lim supn→∞ an/bn < ∞, and by

applying the Theorem we have proved the �rst part.

Theorem: Suppose that an > 0, bn > 0, and

an+1

an
≤ bn+1

bn
.

Then

•
∑

bn =∞ if
∑

an =∞.

Proof : Suppose that
∑

an = ∞. Since {an/bn} is nonincreasing, there is a

number ρ such that bn ≥ ρan for large n.

Since
∑

(ρan) =∞ if
∑

an =∞, (with an replaced by ρan) implies that
∑

bn =

∞.

Example: If
∑

an =
∑(

2 + sin nπ
2

)
rn. then

an+1

an
= r

2 + sin (n+1)π
2

2 + sin nπ
2

which assumes the values 3r/2, 2r/3, r/2, and 2r, each in�nitely many times.

Hence,

lim sup
n→∞

an+1

an
= 2r and lim inf

n→∞

an+1

an
=

r

2
.

Therefore,
∑

an converges if 0 < r < 1/2 and diverges if r > 2. The ratio test is

inconclusive if 1/2 ≤ r ≤ 2.

Corollary: Suppose that an > 0 (n ≥ k) and

lim
n→∞

an+1

an
= L.

Then

•
∑

an <∞ if L < 1.

•
∑

an =∞ if L > 1.

The test is inconclusive if L = 1.

Example: Decide about the series
∑

an =
∑

nrn−1.
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Solution: Since
an+1

an
=

(n+ 1)rn

nrn−1
=

(
1 +

1

n

)
r,

so

lim
n→∞

an+1

an
= r.

The series converges if 0 < r < 1 and diverges if r > 1.

By using corollary the ratio test is inconclusive if r = 1. But recall that for

a convergent series the nth term must approach towards zero. Hence the series

diverges.

Remark: The ratio test does not imply that
∑

an <∞ if merely

an+1

an
< 1, (2.12)

for large n, since this could occur with limn→∞ an+1/an = 1, in which case the test

is inconclusive.

However, the next theorem shows that
∑

an < ∞ if (2.12) is replaced by the

stronger condition that
an+1

an
≤ 1− p

n

for some p > 1 and large n. It also shows that
∑

an =∞ if

an+1

an
≥ 1− q

n

for some q < 1 and large n.

Theorem (Raabe's test): Suppose that an > 0 for large n. Let

M = lim sup
n→∞

n

(
an+1

an
− 1

)
and m = lim inf

n→∞
n

(
an+1

an
− 1

)
.

Then

•
∑

an <∞ if M < −1.

•
∑

an =∞ if m > −1.

The test is inconclusive if m ≤ −1 ≤M.

Example: If ∑
an =

∑ n!

α(α+ 1)(α+ 2) · · · (α+ n− 1)
, α > 0,

then

lim
n→∞

an+1

an
= lim

n→∞

n+ 1

α+ n
= 1,

so the ratio test is inconclusive.
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However,

lim
n→∞

n

(
an+1

an
− 1

)
= lim

n→∞
n

(
n+ 1

α+ n
− 1

)
= lim

n→∞

n(1− α)

α+ n
= 1− α,

so Raabe's test implies that
∑

an <∞ if α > 2 and
∑

an =∞ if 0 < α < 2.

2.14 Cauchy's Root Test

Theorem: If an ≥ 0 for n ≥ k, then

•
∑

an <∞ if lim supn→∞ a
1/n
n < 1.

•
∑

an =∞ if lim supn→∞ a
1/n
n > 1.

The test is inconclusive if lim supn→∞ a
1/n
n = 1.

Proof : If lim supn→∞ a
1/n
n < 1, there is an r such that 0 < r < 1 and a

1/n
n < r

for large n. Therefore, an < rn for large n. Since
∑

rn < ∞, the comparison test

implies that
∑

an <∞.

If lim supn→∞ a
1/n
n > 1, then a

1/n
n > 1 for in�nitely many values of n, so

∑
an =

∞.

Example: Cauchy's root test is inconclusive if∑
an =

∑ 1

np
,

because then

lim sup
n→∞

a1/nn = lim
n→∞

(
1

np

)1/n

= lim
n→∞

exp
(
− p

n
logn

)
= 1

for all p.

However, we know that
∑

1/np <∞ if p > 1 and
∑

1/np =∞ if p ≤ 1.

Example: If ∑
an =

∑(
2 + sin

nπ

4

)n
rn,

then

lim sup
n→∞

a1/nn = lim sup
n→∞

(
2 + sin

nπ

4

)
r = 3r,

and so
∑

an < ∞ if r < 1/3 and
∑

an = ∞ if r > 1/3. The test is inconclusive if

r = 1/3, but then |a8m+2| = 1 for m ≥ 0, so
∑

an =∞.
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2.15 Absolute Convergence

2.16 Absolute Convergence

A series
∑

an converges absolutely , or is absolutely convergent , if
∑
|an| <∞.

Example: A convergent series
∑

an of nonnegative terms is absolutely convergent,

since
∑

an and
∑
|an| are the same.

More generally, any convergent series whose terms are of the same sign for su�ciently

large n converges absolutely.

Example: Consider the series ∑ sinnθ

np
,

where θ is arbitrary and p > 1.

Solution: Since ∣∣∣∣sinnθnp

∣∣∣∣ ≤ 1

np

and
∑

1/np <∞ if p > 1, the comparison test implies that∑∣∣∣∣sinnθnp

∣∣∣∣ <∞, p > 1.

Therefore, the given series converges absolutely if p > 1.

Example: If 0 < p < 1, then the series∑ (−1)n

np

does not converge absolutely, since∑∣∣∣∣(−1)nnp

∣∣∣∣ =∑ 1

np
=∞.

However, the series converges, by the alternating series test, which we prove below.

Remark: Any test for convergence of a series with nonnegative terms can be used

to test an arbitrary series
∑

an for absolute convergence by applying it to
∑
|an|.

Example: Determine the series∑
an =

∑
(−1)n n!

α(α+ 1) · · · (α+ n− 1)
, α > 0,

for absolutely convergent or not?
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We apply Raabe's test to∑
an =

∑ n!

α(α+ 1) · · · (α+ n− 1)
.

From previous example,
∑
|an| <∞ if α > 2 and

∑
|an| =∞ if α < 2. Therefore,∑

an converges absolutely if α > 2, but not if α < 2.

Notice that this does not imply that
∑

an diverges if α < 2.

Theorem: If
∑

an converges absolutely, then
∑

an converges.

Proof : See Lecture.

Example: For example, the Theorem implies that∑ sinnθ

np

converges if p > 1, since it then converges absolutely.

What about the converse of the theorem?

Conditional convergence

2.17 Dirichlet's Test for Series

Theorem: The series
∑∞

n=k anbn converges if limn→∞ an = 0,∑
|an+1 − an| <∞,

and

|bk + bk+1 + · · ·+ bn| ≤M, n ≥ k,

for some constant M.

Proof : De�ne Bn = bk + bk+1 + · · ·+ bn, n ≥ k and consider the partial sums of∑∞
n=k anbn:

Sn = akbk + ak+1bk+1 + · · ·+ anbn, n ≥ k. (2.13)

By substituting

bk = Bk and bn = Bn −Bn−1, n ≥ k + 1,

into (2.13), we obtain

Sn = akBk + ak+1(Bk+1 −Bk) + · · ·+ an(Bn −Bn−1).

Rewriting as

Sn = (ak − ak+1)Bk + (ak+1 − ak+2)Bk+1 + · · ·
+ (an−1 − an)Bn−1 + anBn.

(2.14)
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(The procedure that led from (2.13) to (2.14) is called summation by parts. It

is analogous to integration by parts.)

Now (2.14) can be viewed as

Sn = Tn−1 + anBn, (2.15)

where

Tn−1 = (ak − ak+1)Bk + (ak+1 − ak+2)Bk+1 + · · ·+ (an−1 − an)Bn−1;

that is, {Tn} is the sequence of partial sums of the series

∞∑
j=k

(aj − aj+1)Bj . (2.16)

Since

|(aj − aj+1)Bj | ≤M |aj − aj+1|

from given conditions and the comparison test imply that the series (2.16) converges

absolutely. Absolutely convergence implies that {Tn} converges.
Let T = limn→∞ Tn. Since {Bn} is bounded and limn→∞ an = 0, we infer from

(2.15) that

lim
n→∞

Sn = lim
n→∞

Tn−1 + lim
n→∞

anBn = T + 0 = T.

Therefore,
∑

anbn converges.

Example: Apply Dirichlet's test to the following series

∞∑
n=2

sinnθ

n+ (−1)n
, θ ̸= kπ (k = integer),

Solution: We take

an =
1

n+ (−1)n
and bn = sinnθ.

Then limn→∞ an = 0, and

|an+1 − an| <
3

n(n− 1)

(verify), so ∑
|an+1 − an| <∞.

Now

Bn = sin 2θ + sin 3θ + · · ·+ sinnθ.
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We can write

Bn =
(cos 3

2θ − cos 5
2θ) + + · · ·+

(
cos
(
n− 1

2

)
θ − cos(n+ 1

2)θ
)

2 sin(θ/2)

=
cos 3

2θ − cos(n+ 1
2)θ

2 sin(θ/2)
,

which implies that |Bn| ≤
∣∣∣ 1
sin(θ/2)

∣∣∣ , n ≥ 2.

Since {an} and {bn} satisfy the hypotheses of Dirichlet's theorem,
∑

anbn con-

verges.

Remark: Dirichlet's test takes a simpler form if {an} is nonincreasing, as follows.

Corollary: The series
∑

anbn converges if an+1 ≤ an for n ≥ k, limn→∞ an = 0,

and

|bk + bk+1 + · · ·+ bn| ≤M, n ≥ k,

for some constant M.

Proof : Recall the Dirichlet's test for series, we need to show that

∞∑
n=k

|an+1 − an| = ak <∞.

If an+1 ≤ an, then
∑m

n=k |an+1 − an| =
∑m

n=k(an − an+1) = ak − am+1.

Since limm→∞ am+1 = 0, it follows that

∞∑
n=k

|an+1 − an| = ak <∞.

Therefore, the hypotheses of Dirichlet's test are satis�ed, so
∑

anbn converges.

Example: Discuss the convergence of the series∑ sinnθ

np
.

Solution: The given series is convergent if p > 1.

If we take an = 1/np and bn = sinnθ, then we have

an+1 ≤ an, lim
n→∞

= 0.

and we have proved in previous example that

|bk + bk+1 + · · ·+ bn| ≤M, n ≥ k,

Consequently, the given series also converges if 0 < p ≤ 1 and this follows from

Abel's test.
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2.18 Alternating Series

Series whose terms alternate between positive and negative, called alternating series.

∞∑
k=1

(−1)k+1 1

k
.

∞∑
k=1

(−1)k 1
k
.

∞∑
k=1

(−1)kak,
∞∑
k=1

(−1)k+1ak.

Corollary (Alternating series test): The series
∑

(−1)nan converges if 0 ≤
an+1 ≤ an and limn→∞ an = 0.

Proof : Let bn = (−1)n; recall that

Bn = bk + bk+1 + · · ·+ bn, n ≥ k.

Then {|Bn|} is a sequence of zeros and ones and therefore bounded. The conclusion

now follows from Abel's test.

Example: Show that the series is convergent

∞∑
k=1

(−1)k+1 1

k
.

Example: Show that the series is convergent

∞∑
k=1

(−1)k+1 k + 3

k(k + 1)
.

2.19 Grouping Terms in a Series

• The terms of a �nite sum can be grouped by putting parenthesis arbitrarily.

• For example,

(1 + 7) + (6 + 5) + 4 =

(1 + 7 + 6) + (5 + 4).
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• Is the same true for in�nite series?

Theorem: Suppose that
∑∞

n=k an = A, where −∞ ≤ A ≤ ∞. Let {nj}∞1 be an

increasing sequence of integers, with n1 ≥ k.

De�ne

b1 = ak + · · ·+ an1 ,

b2 = an1+1 + · · ·+ an2 ,

...

br = anr−1+1 + · · ·+ anr .

Then
∞∑
j=1

bnj = A.

Proof : If Tr is the rth partial sum of
∑∞

j=1 bnj and {An} is the nth partial sum of∑∞
s=k as.

Then

Tr = b1 + b2 + · · ·+ br

= (a1 + · · ·+ an1) + (an1+1 + · · ·+ an2) + · · ·+
(anr−1+1 + · · ·+ anr)

= Anr .

Thus, {Tr} is a subsequence of {An}, so

lim
r→∞

Tr = lim
n→∞

An = A.

Example: If
∑∞

n=0(−1)nan satis�es the hypotheses of the alternating series test

and converges to the sum S

Then the theorem of grouping terms in a series enables us to write

S =

k∑
n=0

(−1)nan + (−1)k+1
∞∑
j=1

(ak+2j−1 − ak+2j)

and

S =

k∑
n=0

(−1)nan + (−1)k+1

ak+1 −
∞∑
j=1

(ak+2j − ak+2j−1)

.
Since 0 ≤ an+1 ≤ an, these two equations imply that S − Sk is between 0 and

(−1)k−1ak+1.
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• Be careful while introducing parenthesis to a divergent series

• Apply carefully the previous theorem

Example: For example, it is tempting to write

∞∑
n=1

(−1)n+1 = (1− 1) + (1− 1) + · · · = 0 + 0 + · · ·

and conclude that
∑∞

n=1(−1)n = 0.

But equally tempting to write

∞∑
n=1

(−1)n+1 = 1− (1− 1)− (1− 1)− · · ·

= 1− 0− 0− · · ·

and conclude that
∑∞

n=1(−1)n+1 = 1.

Is there a contradiction with the theorem? Of course, there is no contradiction

here, since Theorem does not apply to this series, and neither of these operations is

legitimate.

2.20 Rearrangements of Series

Theorem: If
∑∞

n=1 bn is a rearrangement of an absolutely convergent series∑∞
n=1 an, then

∑∞
n=1 bn also converges absolutely, and to the same sum.

Proof : Let

An = |a1|+ |a2|+ · · ·+ |an| and Bn = |b1|+ |b2|+ · · ·+ |bn|.

For each n ≥ 1, there is an integer kn such that b1, b2, . . . , bn are included among

a1, a2, . . . , akn , so Bn ≤ Akn . Since {An} is bounded, so is {Bn}, and therefore∑
|bn| <∞.

Now let

An = a1 + a2 + · · ·+ an, Bn = b1 + b2 + · · ·+ bn,

A =

∞∑
n=1

an, and B =

∞∑
n=1

bn.

We must show that A = B. Suppose that ε > 0. From Cauchy's convergence

criterion for series and the absolute convergence of
∑

an, there is an integer N such

that

|aN+1|+ |aN+2|+ · · ·+ |aN+k| < ε, k ≥ 1.
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Choose N1 so that a1, a2, . . . , aN are included among b1, b2, . . . , bN1 . If n ≥ N1,

then An and Bn both include the terms a1, a2, . . . , aN , which cancel on subtraction;

thus, |An−Bn| is dominated by the sum of the absolute values of �nitely many terms

from
∑

an with subscripts greater than N .

Since every such sum is less than ε,

|An −Bn| < ε if n ≥ N1.

Therefore, limn→∞(An −Bn) = 0 and A = B.

2.21 Addition and Multiplication of Series

Theorem (Addition of series): If
∑

an = A and
∑

bn = B; then their sum
∑

(an+

bn) = A+B and
∑

can = cA, for some �xed c.

Proof : Consider the sequence of partial sums

Product of in�nite series: Given two series

∞∑
n=0

an and
∞∑
n=0

bn.

We can arrange all possible products aibj (i, j ≥ 0) in a two-dimensional array:

a0b0 a0b1 a0b2 a0b3 · · ·
a1b0 a1b1 a1b2 a1b3 · · ·
a2b0 a2b1 a2b2 a2b3 · · ·
a3b0 a3b1 a3b2 a3b3 · · ·
...

...
...

...

(2.17)

where the subscript on a is constant in each row and the subscript on b is constant

in each column.

Any sensible de�nition of the product( ∞∑
n=0

an

)( ∞∑
n=0

bn

)

clearly must involve every product in this array exactly once; thus, we might de�ne

the product of the two series to be the series
∑∞

n=0 pn, where {pn} is a sequence

obtained by ordering the products in (2.17) according to some method that chooses
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every product exactly once. One way to do this is indicated by

a0b0 → a0b1 a0b2 → a0b3 · · ·
↓ ↑ ↓

a1b0 ← a1b1 a1b2 a1b3 · · ·
↓ ↑ ↓

a2b0 → a2b1 → a2b2 a2b3 · · ·
↓

a3b0 ← a3b1 ← a3b2 ← a3b3 · · ·
↓
...

...
...

...

(2.18)

Product of in�nite series: Another by

a0b0 → a0b1 a0b2 → a0b3 a0b4 · · ·
↙ ↗ ↙ ↗

a1b0 a1b1 a1b2 a1b3 · · ·
↓ ↗ ↙ ↗

a2b0 a2b1 a2b2 a2b3 · · ·
↙ ↗

a3b0 a3b1 a3b2 a3b3 · · ·
↓ ↗

a4b0
...

...
...

(2.19)

There are in�nitely many others, and to each corresponds a series that we might

consider to be the product of the given series. This raises a question: If

∞∑
n=0

an = A and
∞∑
n=0

bn = B.

where A and B are �nite, does every product series
∑∞

n=0 pn constructed by ordering

the products in (2.17) converge to AB?

The next theorem tells us when the answer is yes.

Theorem: Let
∑∞

n=0 an = A and
∑∞

n=0 bn = B,

where A and B are �nite, and at least one term of each series is nonzero. Then∑∞
n=0 pn = AB for every sequence {pn} obtained by ordering the products if and

only if
∑

an and
∑

bn converge absolutely. Moreover, in this case,
∑

pn converges

absolutely.
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Proof : Before we start the proof let us recall one way of writing the product is

a0b0 → a0b1 a0b2 → a0b3 · · ·
↓ ↑ ↓

a1b0 ← a1b1 a1b2 a1b3 · · ·
↓ ↑ ↓

a2b0 → a2b1 → a2b2 a2b3 · · ·
↓

a3b0 ← a3b1 ← a3b2 ← a3b3 · · ·
↓
...

...
...

...

(2.20)

First, let {pn} be the sequence obtained by arranging the products {aibj} ac-
cording to the scheme indicated just above, and de�ne

An = a0 + a1 + · · ·+ an, An = |a0|+ |a1|+ · · ·+ |an|,

Bn = b0 + b1 + · · ·+ bn, Bn = |b0|+ |b1|+ · · ·+ |bn|,

Pn = p0 + p1 + · · ·+ pn, Pn = |p0|+ |p1|+ · · ·+ |pn|.

From arrangement, we see that

P0 = A0B0, P3 = A1B1, P8 = A2B2,

and, in general,

P(m+1)2−1 = AmBm. (2.21)

Similarly,

P (m+1)2−1 = AmBm. (2.22)

If
∑
|an| <∞ and

∑
|bn| <∞, then {AmBm} is bounded.

Since Pm ≤ P (m+1)2−1, (2.22) implies that {Pm} is bounded.

Therefore,
∑
|pn| <∞, so

∑
pn converges. Now∑∞

n=0 pn = limn→∞ Pn (by de�nition)

= limm→∞ P(m+1)2−1

= limm→∞AmBm (from (2.21))

= (limm→∞Am) (limm→∞Bm)

= AB.

Since any other ordering of the products produces a rearrangement of the absolutely

convergent series
∑∞

n=0 pn.

Theorem about rearrangements of absolutely convergent series implies that∑
|qn| <∞ for every such ordering and that

∑∞
n=0 qn = AB.
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This shows that the stated condition is su�cient.

For necessity, again let
∑∞

n=0 pn be obtained from the ordering indicated in

(2.20). Suppose that
∑∞

n=0 pn and all its rearrangements converge to AB. Then∑
pn must converge absolutely (Why).

Therefore, {Pm2−1} is bounded, and (2.22) implies that {Am} and {Bm} are
bounded.

(Here we need the assumption that neither
∑

an nor
∑

bn consists entirely of

zeros. Why?) Therefore,
∑
|an| <∞ and

∑
|bn| <∞.

2.22 Power Series

Maclaurin and Taylor series: If f has derivatives of all order at x0, then we call

the series

∞∑
n=0

(x− x0)
n = f(x0) + f ′(x0)(x− x0) +

f ′′(x0)

2!
(x− x0)

2 + ...

+
fn(x0)

n!
(x− x0)

n + ...

is known as Taylor series for f at the point x = x0.

The special case of Taylor series when x0 = 0, the series is known as Maclaurin

series
∞∑
n=0

xn = f(0) + f ′(0)x+
f ′′(0)

2!
x2 + ...+

fn(0)

k!
xn + ....

Examples:

ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+ ...+

xn

n!
+ ....

sinx =

∞∑
n=0

(−1)n x2n+1

(2n+ 1)!
= x− x3

3!
+

x5

5!
− ...+ (−1)n x2n+1

(2n+ 1)!
+ ....

cosx =

∞∑
n=0

(−1)n x2n

(2n)!
= 1− x2

2!
+

x4

4!
− x6

6!
+ ...+ (−1)n x2n

(2n)!
+ ....

1

1− x
=

∞∑
n=0

xn = 1 + x+ x2 + ...+ xn + ....

Power Series: An in�nite series of the form

∞∑
n=0

an(x− x0)
n,

where x0 and a0, a1, . . . , are constants, is called a power series in x− x0.
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If x0 = 0 then power series becomes

∞∑
n=0

anx
n.

Theorem: For the power series
∑∞

n=0 an(x − x0)
n, de�ne R in the extended real

numbers by
1

R
= lim sup

n→∞
|an|1/n.

In particular, R = 0, R =∞ or 0 < R <∞. Then the power series converges

• If lim supn→∞ |an|1/n = ∞ then R = 0 and the power series converges only

for x = x0.

• If lim supn→∞ |an|1/n = 0, then R =∞ and the power series converges for all

x.

• If lim supn→∞ |an|1/n ̸= 0 such that 0 < R < ∞, then power series converges

for x in (x0 −R, x0 +R).

• The series diverges if |x− x0| > R.

• No general statement can be made concerning convergence at the endpoints

x = x0+R and x = x0−R : the series may converge absolutely or conditionally

at both, converge conditionally at one and diverge at the other, or diverge at

both.

Theorem: For the power series
∑∞

n=0 an(x − x0)
n, de�ne R in the extended real

numbers by
1

R
= lim sup

n→∞
|an|1/n.

Proof : Put y = x− x0, cn = any
n and apply the root test

lim sup
n→∞

|cn|1/n = |y| lim sup
n→∞

|an|1/n =
|y|
R

.

Remark: R is called the radius of convergence of the power series and (x0−R, x0+

R) is known as interval of convergence.

Example: For the power series∑ sinnπ/6

2n
(x− 1)n,
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what is an, x0 and R?

Solution: For R, we have

lim sup
n→∞

|an|1/n = lim sup
n→∞

(
| sinnπ/6

2n

)1/n

=
1

2
lim sup
n→∞

(| sinnπ/6|)1/n

=
1

2
(1) =

1

2
.

Therefore, R = 2 and Theorem about the convergence of power series implies

that the series converges absolutely uniformly in closed subintervals of (−1, 3) and
diverges if x < −1 or x > 3.

Remark: The Theorem about the convergence of the power series does not tell us

what happens when x = −1 or x = 3. we can see that the series diverges in both

these cases since its general term does not approach zero.

Example: For the power series ∑ xn

n
,

what is an, x0 and R?

Solution: For R, we have

lim sup
n→∞

|an|1/n = lim sup
n→∞

(
1

n

)1/n

= lim sup
n→∞

exp

(
1

n
log

1

n

)
= e0 = 1.

Therefore, R = 1 and the series converges absolutely uniformly in closed subintervals

of (−1, 1) and diverges if |x| > 1.

For x = −1 the series becomes
∑

(−1)n/n, which converges conditionally, and

at x = 1 the series becomes
∑

1/n, which diverges.

Theorem: The radius of convergence of
∑

an(x− x0)
n is given by

1

R
= lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣
if the limit exists in the extended real number system.

Proof : It is su�cient to show that if

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
exists in the extended real number system, then

L = lim sup
n→∞

|an|1/n.
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Let 0 < L <∞, if

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
holds with 0 < L <∞ and 0 < ε < L, there is an integer N such that

L− ε <

∣∣∣∣am+1

am

∣∣∣∣ < L+ ε if m ≥ N,

so

|am|(L− ε) < |am+1| < |am|(L+ ε) if m ≥ N.

By induction,

|aN |(L− ε)n−N < |an| < |aN |(L+ ε)n−N if n > N.

Therefore, if

K1 = |aN |(L− ε)−N and K2 = |aN |(L+ ε)−N ,

then

K
1/n
1 (L− ε) < |an|1/n < K

1/n
2 (L+ ε). (2.23)

Since limn→∞K1/n = 1 if K is any positive number, (2.23) implies that

L− ε ≤ lim inf
n→∞

|an|1/n ≤ lim sup
n→∞

|an|1/n ≤ L+ ε.

Since ε is an arbitrary positive number, it follows that

lim
n→∞

|an|1/n = L,

hence the proof.

Example: Determine the radius of convergence for the power series∑ xn

n!
.

Solution: We have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

n!

(n+ 1)!
= lim

n→∞

1

n+ 1
= 0.

Therefore, R =∞; that is, the series converges for all x.

Example: Determine the radius and interval of convergence for the power series∑
n!xn.
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Solution:We have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n+ 1)!

n!
= lim

n→∞
(n+ 1) =∞.

Therefore, R = 0, and the series converges only if x = 0.

Example: Find the interval of convergence for the power series∑ (−1)n

4nnp
x2n (p = constant), (2.24)

Solution: The given power series has in�nitely many zero coe�cients (of odd powers

of x).

However, by setting y = x2, we obtain the series∑ (−1)n

4nnp
yn, (2.25)

which has nonzero coe�cients for which

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

4nnp

4n+1(n+ 1)p
=

1

4
lim
n→∞

(
1 +

1

n

)−p

=
1

4
.

Therefore, (2.25) converges if |y| < 4 and diverges if |y| > 4.

Setting y = x2, we conclude that (2.24) converges if |x| < 2 and diverges if

|x| > 2.
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Continuity

Function: A rule f that assigns to each member of a nonempty set D a unique

member of a set Y is a function from D to Y . The relationship between a member

x of D and the member y of Y that f assigns to x as

y = f(x).

The set D is the domain of f , denoted by Df . The members of Y are the possible

values of f .

If y0 ∈ Y and there is an x0 in D such that f(x0) = y0 then we say that f

attains or assumes the value y0. The set of values attained by f is the range of f .

A real-valued function of a real variable is a function whose domain and range are

both subsets of the real numbers.

Examples: Consider the functions

f(x) = x2, g(x) = sinx, and h(x) = ex.

The functions f , g, and h de�ned on the extended real number system (−∞,∞).

• The range of f is [0,∞).

• The range of g is [−1, 1].

• The range of h is (0,∞).

The equation

[f(x)]2 = x

does not de�ne a function except on the singleton set {0}. If x < 0, no real number

satis�es the [f(x)]2 = x, while if x > 0, two real numbers satisfy [f(x)]2 = x.

However, the conditions

[f(x)]2 = x and f(x) ≥ 0

de�ne a function f on Df = [0,∞) with values f(x) =
√
x.

Similarly, the conditions

[g(x)]2 = x and g(x) ≤ 0
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de�ne a function g on Dg = [0,∞) with values g(x) = −
√
x. The ranges of f and

g are [0,∞) and (−∞, 0], respectively.

We �rst de�ne the Cartesian product X × Y of two nonempty sets X and Y to

be the set of all ordered pairs (x, y) such that x ∈ X and y ∈ Y ; thus,

X × Y = {(x, y) : x ∈ X, y ∈ Y }.

If (x, y) and (x, y1) are in f , then y = y1. The set of x's that occur as �rst members

of f is the of f .

If x is in the domain of f , then the unique y in Y such that (x, y) ∈ f is the

value of f at x, and we write y = f(x).

The set of all such values, a subset of Y , is the range of f .

If Df ∩Dg ̸= ∅, then f + g, f − g, and fg are de�ned on Df ∩Dg by

(f + g)(x) = f(x) + g(x),

(f − g)(x) = f(x)− g(x),

and

(fg)(x) = f(x)g(x).

The quotient f/g is de�ned by (
f

g

)
(x) =

f(x)

g(x)

for x in Df ∩Dg such that g(x) ̸= 0.

Example: De�ne (f+g)(x), (f−g)(x), (fg)(x) and (f/g), for the functions f(x) =√
4− x2 and g(x) =

√
x− 1.

Solution: First of all observe that Df = [−2, 2] and Dg = [1,∞).

Then f + g, f − g, and fg are de�ned on Df ∩Dg = [1, 2] by

(f + g)(x) =
√

4− x2 +
√
x− 1,

(f − g)(x) =
√

4− x2 −
√
x− 1,

and

(fg)(x) = (
√

4− x2)(
√
x− 1) =

√
(4− x2)(x− 1).

The quotient f/g is de�ned on (1, 2] by(
f

g

)
(x) =

√
4− x2

x− 1
.

Although the last expression in (??) is also de�ned for −∞ < x < −2, it does not
represent fg for such x, since f and g are not de�ned on (−∞,−2].
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3.1 Limits

The tangent line problem: Given a function f and a point P (x0, y0) on its graph,

�nd an equation of the line that is tangent to the graph at P .

The area problem: Given a function f , �nd the area between the graph of f and

an interval [a, b] on the x-axis.

Figure 3.1: Tangent line as a limit of secant line

Figure 3.2: Area under the curve as limit
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Example: Examine the behavior of the function f(x) = x2− x+1 for x values

closer to 2.

Figure 3.3: Limit x→ 2

3.1.1 Limits (An informal view)

If the values of f(x) can be made as close as we like to L by taking values of x

su�ciently close to a (but not equal to a), then we write

lim
x→a

f(x) = L.

Sometimes it is also written as

f(x)→ L, as x→ a.

Example: Investigate the limit

lim
x→1

x− 1√
x− 1

.

Figure 3.4: Limit x→ 1 when f(x) is not de�ned at x = 1

Example: Investigate the limit

lim
x→0

sinx

x
.
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Figure 3.5: Limit x→ 0 when f(x) is not de�ned at x = 0

Example: Investigate the limit

lim
x→0

|x|
x
.

Figure 3.6: Limit x→ 0

3.1.2 Formal De�nition of Limit

We say that f(x) approaches the limit L as x approaches x0, and write

lim
x→x0

f(x) = L,

if f is de�ned on some deleted neighborhood of x0 and, for every ε > 0, there is a

δ > 0 such that

|f(x)− L| < ε, whenever 0 < |x− x0| < δ. (3.1)

Example: For the function de�ned by f(x) = cx, where c ∈ R. Show that

lim
x→x0

f(x) = cx0.



3.1. Limits 78

Solution: We write

|f(x)− cx0| = |cx− cx0| = |c||x− x0|.

If c ̸= 0, this yields

|f(x)− cx0| < ε

if

|x− x0| < δ,

where δ is any number such that 0 < δ ≤ ε/|c|.
If c = 0, then f(x)− cx0 = 0 for all x, so |f(x)− cx0| < ε holds for all x.

Example: Prove that limx→2(3x− 5) = 1.

Solution: See Lecture.

Example: For the function

f(x) = x sin
1

x
, x ̸= 0,

show that

lim
x→0

f(x) = 0.

Solution: Even though f is not de�ned at x0 = 0, because if

0 < |x| < δ = ε,

then

|f(x)− 0| =
∣∣∣∣x sin 1

x

∣∣∣∣ ≤ |x| < ε.

On the other hand, the function

g(x) = sin
1

x
, x ̸= 0,

has no limit as x approaches 0, since it assumes all values between −1 and 1 in every

neighborhood of the origin.

Theorem: If limx→x0 f(x) exists, then it is unique.

Proof : Suppose that limit of the function exists and it is L1 and L2. Let ε > 0.

From de�nition of the limit, there are positive numbers δ1 and δ2 such that

|f(x)− Li| < ε if 0 < |x− x0| < δi, i = 1, 2.



3.1. Limits 79

If δ = min(δ1, δ2), then

|L1 − L2| = |L1 − f(x) + f(x)− L2|
≤ |L1 − f(x)|+ |f(x)− L2| < 2ε if 0 < |x− x0| < δ.

We have now established an inequality that does not depend on x; that is,

|L1 − L2| < 2ε.

Since this holds for any positive ε, L1 = L2.

Theorem: If

lim
x→x0

f(x) = L1 and lim
x→x0

g(x) = L2. (3.2)

then

lim
x→x0

(f + g)(x) = L1 + L2,

lim
x→x0

(f − g)(x) = L1 − L2,

lim
x→x0

(fg)(x) = L1L2,

lim
x→x0

(
f

g

)
(x) =

L1

L2
, L2 ̸= 0.

Proof : From (3.2) and de�nition of the limit, if ε > 0, there is a δ1 > 0 such that

|f(x)− L1| < ε (3.3)

if 0 < |x− x0| < δ1, and a δ2 > 0 such that

|g(x)− L2| < ε (3.4)

if 0 < |x− x0| < δ2. Suppose that

0 < |x− x0| < δ = min(δ1, δ2), (3.5)

so that (3.3) and (3.4) both hold. Then

|(f ± g)(x)− (L1 ± L2)| = |(f(x)− L1)± (g(x)− L2)|
≤ |f(x)− L1|+ |g(x)− L2| < 2ε,

which proves (3.3) and (3.3).

We write

|(fg)(x)− L1L2| = |f(x)g(x)− L1L2|

= |f(x)(g(x)− L2) + L2(f(x)− L1)|

≤ |f(x)||g(x)− L2|+ |L2||f(x)− L1|

≤ (|f(x)|+ |L2|)ε
≤ (|f(x)− L1|+ |L1|+ |L2|)ε

≤ (ε+ |L1|+ |L2|)
≤ (1 + |L1|+ |L2|)ε
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First observe that if L2 ̸= 0, there is a δ3 > 0 such that

|g(x)− L2| <
|L2|
2

, |g(x)| > |L2|
2

if 0 < |x− x0| < δ3.

Now suppose that 0 < |x− x0| < min(δ1, δ2, δ3). Then∣∣∣∣(f

g

)
(x)− L1

L2

∣∣∣∣ =

∣∣∣∣f(x)g(x)
− L1

L2

∣∣∣∣ = |L2f(x)− L1g(x)|
|g(x)L2|

≤ 2

|L2|2
|L2f(x)− L1g(x)|

=
2

|L2|2
|L2[f(x)− L1] + L1[L2 − g(x)]|

≤ 2

|L2|2
[|L2||f(x)− L1|+ |L1||L2 − g(x)|]

≤ 2

|L2|2
(|L2|+ |L1|)ε.

Example: Find

lim
x→2

9− x2

x+ 1
and lim

x→2
(9− x2)(x+ 1).

Solution: If c is a constant, then limx→x0 c = c, and limx→x0 x = x0. Therefore

lim
x→2

(9− x2) = lim
x→2

9− lim
x→2

x2

= lim
x→2

9− ( lim
x→2

x)2

= 9− 22 = 5,

and

lim
x→2

(x+ 1) = lim
x→2

x+ lim
x→2

1 = 2 + 1 = 3.

Therefore,

lim
x→2

9− x2

x+ 1
=

limx→2(9− x2)

limx→2(x+ 1)
=

5

3

and

lim
x→2

(9− x2)(x+ 1) = lim
x→2

(9− x2) lim
x→2

(x+ 1) = 5 · 3 = 15.

Example: The function

f(x) = 2x sin
√
x

satis�es the inequality

|f(x)| < ε, whenever 0 < x < δ = ε/2.
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However, this does not mean that limx→0 f(x) = 0, since f is not de�ned for negative

x.

Example: The function

g(x) = x+
|x|
x
, x ̸= 0,

can be rewritten as

g(x) =

{
x+ 1, x > 0,

x− 1, x < 0;

hence, every open interval containing x0 = 0 also contains points x1 and x2 such

that |g(x1) − g(x2)| is as close to 2 as we please. Therefore, limx→x0 g(x) does not

exist.

Although f(x) and g(x) do not approach limits as x approaches zero, they each

exhibit a de�nite sort of limiting behavior for small positive values of x, as does

g(x) for small negative values of x. The kind of behavior we have in mind is de�ned

precisely as follows.

Example: Investigate the limit

lim
x→0

|x|
x
.

3.2 One Sided Limits

We say that f(x) approaches the left-hand limit L as x approaches x0 from the left ,

and write

lim
x→x0−

f(x) = L,

if f is de�ned on some open interval (a, x0) and, for each ε > 0, there is a δ > 0

such that

|f(x)− L| < ε if x0 − δ < x < x0.

We say that f(x) approaches the right-hand limit L as x approaches x0 from the

right , and write

lim
x→x0+

f(x) = L,
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if f is de�ned on some open interval (x0, b) and, for each ε > 0, there is a δ > 0

such that

|f(x)− L| < ε if x0 < x < x0 + δ.

Example: Let

g(x) =
x+ |x|(1 + x)

x
sin

1

x
, x ̸= 0.

Solution: If x < 0, then

g(x) = −x sin 1

x
, lim

x→0−
g(x) = 0,

since

|g(x)− 0| =
∣∣∣∣x sin 1

x

∣∣∣∣ ≤ |x| < ε

if −ε < x < 0; that is, we have δ = ε.

If x > 0, then

g(x) = (2 + x) sin
1

x
,

which takes on every value between −2 and 2 in every interval (0, δ).

Hence, g(x) does not approach a right-hand limit at x approaches 0 from the

right. This shows that a function may have a limit from one side at a point but fail

to have a limit from the other side.

Example: Prove that

lim
x→0+

√
x = 0.

Solution: See Lecture.

Example: Show that

lim
x→0+

(
|x|
x

+ x

)
= 1, lim

x→0−

(
|x|
x

+ x

)
= −1,

Solution: See Lecture

Theorem: A function f has a limit at x0 if and only if it has left- and right-hand

limits at x0, and they are equal. More speci�cally,

lim
x→x0

f(x) = L

if and only if

lim
x→x0+

f(x) = lim
x→x0−

f(x) = L.
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3.3 Limits at ±∞

If f is de�ned on an interval (a,∞), then f(x) approaches the limit L as x approaches

∞, and write

lim
x→∞

f(x) = L.

For each ε > 0, there is a number β such that

|f(x)− L| < ε if x > β.

x    ∞
lim f (x) = L

β

y

L +

L −

L

x

Figure 3.7: Limits at ±∞

Examples: Let

f(x) = 1− 1

x2
, g(x) =

2|x|
1 + x

, and h(x) = sinx.

Find limits when x→ ±∞.

Solution: We have

lim
x→∞

f(x) = 1,

since

|f(x)− 1| = 1

x2
< ε if x >

1√
ε
.

We have

lim
x→∞

g(x) = 2,

since

|g(x)− 2| =
∣∣∣∣ 2x

1 + x
− 2

∣∣∣∣ = 2

1 + x
<

2

x
< ε if x >

2

ε
.

However, limx→∞ h(x) does not exist, since h assumes all values between −1
and 1 in any semi-in�nite interval (τ,∞). Discuss the limits at x→ −∞.

f(x) =
1

x
, g(x) =

1

x2
,
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and

p(x) = sin
1

x
,

q(x) =
1

x2
sin

1

x

3.4 In�nite Limits

In�nite limits: We say that f(x) approaches ∞ as x approaches x0 from the left ,

and write

lim
x→x0−

f(x) =∞.

If f is de�ned on an interval (a, x0) and, for each real number M , there is a

δ > 0 such that

f(x) > M if x0 − δ < x < x0.

Similarly, we can de�ne the following limits

lim
x→x0−

f(x) = −∞, lim
x→x0+

f(x) =∞, lim
x→x0+

f(x) = −∞.

lim
x→0−

1

x
= −∞,

lim
x→0+

1

x
= ∞;

lim
x→0−

1

x2
= lim

x→0+

1

x2
=∞

lim
x→0

1

x2
= ∞;

lim
x→∞

x2 = lim
x→−∞

x2 =∞;

Example: If

f(x) = e2x − ex.

we cannot obtain limx→∞ f(x) by writing

lim
x→∞

f(x) = lim
x→∞

e2x − lim
x→∞

ex,

because this produces the indeterminate form ∞−∞.

However, by writing

f(x) = e2x(1− e−x),

we �nd that

lim
x→∞

f(x) =
(
lim
x→∞

e2x
)(

lim
x→∞

1− lim
x→∞

e−x
)
=∞(1− 0) =∞.
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Example: Find

lim
x→∞

2x2 − x+ 1

3x2 + 2x− 1
.

Example: Find

lim
x→1

x8 − 1

x4 − 1
.

f(x) =


1

x+2 , x < −2,

x2 − 5, −2 < x ≤ 3,√
x+ 13, x > 3.

3.5 Continuity

Continuity (Informal):

• We say that f is continuous at x0 if f is de�ned on an open interval (a, b)

containing x0 and

lim
x→x0

f(x) = f(x0).

• We say that f is continuous from the left at x0 if f is de�ned on an open

interval (a, x0) and

lim
x→x0−

f(x) = f(x0).

• We say that f is continuous from the right at x0 if f is de�ned on an open

interval (x0, b) and

lim
x→x0+

f(x) = f(x0).

Continuity (Formal):

• A function f is continuous at x0 if and only if f is de�ned on an open interval

(a, b) containing x0 and for each ε > 0 there is a δ > 0 such that

|f(x)− f(x0)| < ε whenever |x− x0| < δ.

• A function f is continuous from the right at x0 if and only if f is de�ned on

an interval [x0, b) and for each ε > 0 there is a δ > 0 such that

|f(x)− f(x0)| < ε whenever x0 ≤ x < x0 + δ.
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• A function f is continuous from the left at x0 if and only if f is de�ned on an

interval (a, x0] and for each ε > 0 there is a δ > 0 such that

|f(x)− f(x0)| < ε whenever x0 − δ < x ≤ x0.

Example: Discuss the continuity of f de�ned on [0, 2] by

f(x) =

{
x2, 0 ≤ x < 1,

x+ 1, 1 ≤ x ≤ 2

Solution:

lim
x→0+

f(x) = 0 = f(0),

lim
x→1−

f(x) = 1 ̸= f(1) = 2,

lim
x→1+

f(x) = 2 = f(1),

lim
x→2−

f(x) = 3 = f(2).

Therefore, f is continuous from the right at 0 and 1 and continuous from the left at

2, but not at 1.

Example: Discuss the continuity of f de�ned on [0, 2] by

f(x) =

{
x2, 0 ≤ x < 1,

x+ 1, 1 ≤ x ≤ 2

Solution: If 0 < x, x0 < 1, then

|f(x)− f(x0)| = |x2 − x20| = |x− x0| |x+ x0|
≤ 2|x− x0| < ε if |x− x0| < ε/2.

Hence, f is continuous at each x0 in (0, 1). If 1 < x, x0 < 2, then

|f(x)− f(x0)| = |(x+ 1)− (x0 + 1) = |x− x0|
< ε if |x− x0| < ε.

Hence, f is continuous at each x0 in (1, 2).

A function f is continuous on an open interval (a, b) if it is continuous at every

point in (a, b).

If, in addition,

lim
x→b−

f(x) = f(b)
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and

lim
x→a+

= f(a)

Example: Discuss the continuity of f(x) =
√
x, 0 ≤ x <∞.

Solution: Consider

|f(x)− f(0)| =
√
x < ε if 0 ≤ x < ε2,

so limx→0+ f(x) = f(0).

If x0 > 0 and x ≥ 0, then

|f(x)− f(x0)| = |
√
x−
√
x0| =

|x− x0|√
x+
√
x0

≤ |x− x0|√
x0

< ε if |x− x0| < ε
√
x0,

so limx→x0 f(x) = f(x0). Hence, f is continuous on [0,∞).

Example: Discuss the continuity of g(x) = 1
sinπx

Solution: The function is continuous on

S =
∞∪

n=−∞
(n, n+ 1).

The function g is discontinuous on at any x0 = n (integer), since it is not de�ned

at such points.

3.6 Piecewise Continuous Functions

Piecewise continuous function: A function f is piecewise continuous on [a, b] if

• limx→x0+
f(x) exists for all x0 in [a, b);

• limx→x0−
f(x) exists for all x0 in (a, b];

• limx→x0+
f(x) = limx→x0−

f(x) = f(x0) for all but �nitely many points x0 in

(a, b).
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Example: Discuss the following function

f(x) =



1, x = 0,

x, 0 < x < 1,

2, x = 1,

x, 1 < x ≤ 2,

−1, 2 < x < 3,

0, x = 3.

Solution See lecture for explanation.

2

3

2 31

1

−1

y

x

Figure 3.8: Graph of the function

Example: Discuss the following function

f(x) =


sin 1

x , x ̸= 0,

0, x = 0,

Solution: The function is continuous at all x0 except x0 = 0.

As x approaches 0 from either side, f(x) oscillates between −1 and 1 with ever-

increasing frequency, so neither limx→0+ f(x) nor limx→0− f(x) exists.

Therefore, the discontinuity of f at 0 is not a jump discontinuity, and if ρ > 0,

then f is not piecewise continuous on any interval of the form [−ρ, 0], [−ρ, ρ], or
[0, ρ].

Theorem: If f and g are continuous on a set S, then so are f + g, f − g, and fg.

In addition, f/g is continuous at each x0 in S such that g(x0) ̸= 0.

Proof : See Lecture.
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Example: Discuss the continuity of the following function

r(x) =
9− x2

x+ 1
.

Solution: See Lecture.

3.7 Removable Discontinuity

It can be shown that if f1, f2, . . . , fn are continuous on a set S, then so are

f1 + f2 + · · ·+ fn and f1f2 · · · fn.
Therefore, any rational function

r(x) =
a0 + a1x+ · · ·+ anx

n

b0 + b1x+ · · ·+ bmxm

is continuous for all values of x except those for which its denominator vanishes.

Removable discontinuity: Let f be de�ned on a deleted neighborhood of x0
and discontinuous (perhaps even unde�ned) at x0. We say that f has a removable

discontinuity at x0 if limx→x0 f(x) exists.

In this case, the function

g(x) =

{
f(x) if x ∈ Df and x ̸= x0,

limx→x0 f(x) if x = x0,

is continuous at x0.

Example: Consider the function

f(x) = x sin
1

x
.

Solution: The function is not de�ned at x0 = 0, and therefore certainly not

continuous there, but limx→0 f(x) = 0.

g(x) =

{
f(x) if x ∈ Df and x ̸= x0,

limx→x0 f(x) if x = x0,

The function

f1(x) = sin
1

x

is unde�ned at 0 and its discontinuity there is not removable, since limx→0 f1(x)

does not exist.

Composition of functions: Suppose that f and g are functions with domains Df

and Dg.
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If Dg has a nonempty subset T such that g(x) ∈ Df whenever x ∈ T , then the

composite function f ◦ g is de�ned on T by

(f ◦ g)(x) = f(g(x)).

Example: If

f(x) = log x and g(x) =
1

1− x2
,

Can we de�ne f ◦ g?

Solution: The domain of the given functions are

Df = (0,∞) and Dg = x ∈ R/ x ̸= ±1.

Since g(x) > 0 if x ∈ T = (−1, 1), the composite function f ◦ g is de�ned on

(−1, 1) by
(f ◦ g)(x) = log

1

1− x2
.

Can we de�ne g ◦ f?

The function g ◦ f is de�ned on (0, 1/e) ∪ (1/e, e) ∪ (e,∞) by

(g ◦ f)(x) = 1

1− (log x)2
.

Theorem: Suppose that g is continuous at x0, g(x0) is an interior point of Df , and

f is continuous at g(x0). Then f ◦ g is continuous at x0.

Proof : Since g(x0) is an interior point of Df and f is continuous at g(x0), for every

ε > 0 there is a δ1 > 0 such that f(t) is de�ned and

|f(t)− f(g(x0))| < ε if |t− g(x0)| < δ1.

Since g is continuous at x0, there is a δ > 0 such that g(x) is de�ned and

|g(x)− g(x0)| < δ1 if |x− x0| < δ.

We can imply that

|f(g(x))− f(g(x0))| < ε if |x− x0| < δ.

Therefore, f ◦ g is continuous at x0.

Example: For the functions

f(x) =
√
x, g(x) =

9− x2

x+ 1
.
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Check the continuity of f ◦ g.

Solution: The function f is continuous for x > 0, and the function g is continuous

for x ̸= −1.
Since g(x) > 0 if x < −3 or −1 < x < 3, the composite function

(f ◦ g)(x) =
√

9− x2

x+ 1

is continuous on (−∞,−3) ∪ (−1, 3).

It is also continuous from the left at −3 and 3.

3.8 Bounded Functions

Bounded below function: A function f is bounded below on a set S if there is a

real number m such that

f(x) ≥ m for all x ∈ S.

In this case, the set

V = {f(x) : x ∈ S}

has an in�mum α, and we write

α = inf
x∈S

f(x).

If there is a point x1 in S such that f(x1) = α, we say that α is the minimum

of f on S, and write

α = min
x∈S

f(x).

Bounded above function: A function f is bounded above on S if there is a real

number M such that f(x) ≤M for all x in S.

In this case, V has a supremum β, and we write

β = sup
x∈S

f(x).

If there is a point x2 in S such that f(x2) = β, we say that β is the maximum

of f on S, and write

β = max
x∈S

f(x).

If f is bounded above and below on a set S, we say that f is bounded on S.

Example: The function

g(x) =

{
1
2 , x = 0 or x = 1,

1− x, 0 < x < 1,
+
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is bounded on [0, 1], and

sup
0≤x≤1

g(x) = 1, inf
0≤x≤1

g(x) = 0.

Therefore, g has no maximum or minimum on [0, 1], since it does not assume either

of the values 0 and 1.

Example: The function

h(x) = 1− x, 0 ≤ x ≤ 1,

which di�ers from g only at 0 and 1, has the same supremum and in�mum as g, but

it attains these values at x = 0 and x = 1, respectively.

Therefore,

max
0≤x≤1

h(x) = 1 and min
0≤x≤1

h(x) = 0.

Example: The function

f(x) = ex(x−1) sin
1

x(x− 1)
, 0 < x < 1,

oscillates between ±ex(x−1) in�nitely often in every interval of the form (0, ρ) or

(1− ρ, 1), where 0 < ρ < 1.

Furthermore, we have

sup
0<x<1

f(x) = 1, inf
0<x<1

f(x) = −1.

However, f does not assume these values, so f has no maximum or minimum on

(0, 1).

Theorem: If f is continuous on a �nite closed interval [a, b], then f is bounded on

[a, b].

Proof : Suppose that t ∈ [a, b]. Since f is continuous at t, there is an open interval

It containing t such that

|f(x)− f(t)| < 1 if x ∈ It ∩ [a, b].

The collection H = {It : a ≤ t ≤ b} is an open covering of [a, b].

Since [a, b] is compact, the Heine-Borel theorem implies that there are �nitely

many points t1, t2, . . . , tn such that the intervals It1 , It2 , . . . , Itn cover [a, b].

According to continuity of the function and with t = ti,

|f(x)− f(ti)| < 1 if x ∈ Iti ∩ [a, b].
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Therefore,

|f(x)| = |(f(x)− f(ti)) + f(ti)| ≤ |f(x)− f(ti)|+ |f(ti)|

≤ 1 + |f(ti)| if x ∈ Iti ∩ [a, b].

Let

M = 1 + max
1≤i≤n

|f(ti)|.

Since [a, b] ⊂
∪n

i=1 (Iti ∩ [a, b]), and we have |f(x)| ≤M if x ∈ [a, b].

Theorem: Suppose that f is continuous on a �nite closed interval [a, b]. Let

α = inf
a≤x≤b

f(x) and β = sup
a≤x≤b

f(x).

Then α and β are respectively the minimum and maximum of f on [a, b]; that is,

there are points x1 and x2 in [a, b] such that

f(x1) = α and f(x2) = β.

Proof : Suppose that there is no x1 in [a, b] such that f(x1) = α. Then f(x) > α

for all x ∈ [a, b]. We will show that this leads to a contradiction.

Suppose that t ∈ [a, b]. Then f(t) > α, so

f(t) >
f(t) + α

2
> α.

Since f is continuous at t, there is an open interval It about t such that

f(x) >
f(t) + α

2
if x ∈ It ∩ [a, b]. (3.6)

The collection H = {It : a ≤ t ≤ b} is an open covering of [a, b].

Since [a, b] is compact, the Heine�Borel theorem implies that there are �nitely

many points t1, t2, . . . , tn such that the intervals It1 , It2 , . . . , Itn cover [a, b].

De�ne

α1 = min
1≤i≤n

f(ti) + α

2
.

Then, since [a, b] ⊂
∪n

i=1(Iti ∩ [a, b]), (3.6) implies that

f(t) > α1, a ≤ t ≤ b.

But α1 > α, so this contradicts the de�nition of α. Therefore, f(x1) = α for some

x1 in [a, b].

Consider the function

g(x) = 1− (1− x) sin
1

x
, (0, 1].
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The function g(x) is continuous and has supremum 2 on the noncompact interval

(0, 1].

Since

g(x) ≤ 1 + (1− x)

∣∣∣∣sin 1

x

∣∣∣∣
≤ 1 + (1− x) < 2 if 0 < x ≤ 1.

But does not assume its supremum on (0, 1].

Consider the function

f(x) = e−x.

The function f(x) is continuous and has in�mum 0, which it does not attain, on

the noncompact interval (0,∞).

3.9 The Intermediate Value Theorem

Theorem: Suppose that f is continuous on [a, b], f(a) ̸= f(b), and µ is between

f(a) and f(b). Then f(c) = µ for some c in (a, b).

Proof : Suppose that f(a) < µ < f(b). The set

S = x : a ≤ x ≤ b and f(x) ≤ µ

is bounded and nonempty.

Let c = supS. We will show that f(c) = µ.

If f(c) > µ, then c > a and, since f is continuous at c, there is an ε > 0 such

that f(x) > µ if c− ε < x ≤ c.

Therefore, c − ε is an upper bound for S, which contradicts the de�nition of c

as the supremum of S.

If f(c) < µ, then c < b and there is an ε > 0 such that f(x) < µ for c ≤ x < c+ε,

so c is not an upper bound for S.

This is also a contradiction. Therefore, f(c) = µ.

3.10 Uniform Continuity

A function f is continuous on a subset S of its domain if for each ε > 0 and each

x0 in S, there is a δ > 0, which may depend upon x0 as well as ε, such that

|f(x)− f(x0)| < ε if |x− x0| < δ and x ∈ Df .

A function f is uniformly continuous on a subset S of its domain if, for every ε > 0,

there is a δ > 0 such that

|f(x)− f(x′)| < ε whenever |x− x′| < δ and x, x′ ∈ S.
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Example: Check the uniform continuity of the function

f(x) = 2x.

Solution: For the function f(x), we have

|f(x)− f(x′)| = 2|x− x′| < ε if |x− x′| < ε/2.

The function f(x) is uniformly continuous on (−∞,∞),

Remark: A function f is not uniformly continuous on S if there is an ε0 > 0 such

that if δ is any positive number, there are points x and x′ in S such that

|x− x′| < δ

but

|f(x)− f(x′)| ≥ ε0.

Example: Show that the function g(x) = x2 is uniformly continuous on [−r, r] for
any �nite r.

Solution: To see this, note that

|g(x)− g(x′) = |x2 − (x′)2| = |x− x′| |x+ x′| ≤ 2r|x− x′|,

so

|g(x)− g(x′)| < ε if |x− x′| < δ =
ε

2r
and − r ≤ x, x′ ≤ r.

Example: The function g(x) = x2 is not uniformly continuous on (−∞,∞).

Solution: To see this, we will show that if δ > 0 there are real numbers x and x′

such that

|x− x′| = δ/2 and |g(x)− g(x′)| ≥ 1.

To this end, we write

|g(x)− g(x′)| = |x2 − (x′)2| = |x− x′| |x+ x′|.

If |x− x′| = δ/2 and x, x′ > 1/δ, then

|x− x′| |x+ x′| > δ

2

(
1

δ
+

1

δ

)
= 1.
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Example: The function

f(x) = cos
1

x

is continuous on (0, 1]

However, f is not uniformly continuous on (0, 1], since∣∣∣∣f ( 1

nπ

)
− f

(
1

(n+ 1)π

)∣∣∣∣ = 2, n = 1, 2, . . . .

Theorem: If f is continuous on a closed and bounded interval [a, b], then f is

uniformly continuous on [a, b].

Proof : Suppose that ε > 0. Since f is continuous on [a, b], for each t in [a, b] there

is a positive number δt such that

|f(x)− f(t)| < ε

2
if |x− t| < 2δt and x ∈ [a, b].

If It = (t− δt, t+ δt), the collection

H = {It : t ∈ [a, b]}

is an open covering of [a, b].

Since [a, b] is compact, the Heine�Borel theorem implies that there are �nitely

many points t1, t2, . . . , tn in [a, b] such that It1 , It2 , . . . , Itn cover [a, b].

Now de�ne

δ = min{δt1 , δt2 , . . . , δtn}. (3.7)

We will show that if

|x− x′| < δ and x, x′ ∈ [a, b], (3.8)

then |f(x)− f(x′)| < ε.

From the triangle inequality,

|f(x)− f(x′)| = | (f(x)− f(tr)) + (f(tr)− f(x′)) |
≤ |f(x)− f(tr)|+ |f(tr)− f(x′)|. (3.9)

Since It1 , It2 , . . . , Itn cover [a, b], x must be in one of these intervals. Suppose

that x ∈ Itr ; that is,

|x− tr| < δtr . (3.10)

From continuity condition with t = tr,

|f(x)− f(tr)| <
ε

2
. (3.11)
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From (3.8), (3.10), and the triangle inequality,

|x′ − tr| = |(x′ − x) + (x− tr)| ≤ |x′ − x|+ |x− tr| < δ + δtr ≤ 2δtr .

Therefore, from continuity condition with t = tr and x replaced by x′ implies that

|f(x′)− f(tr)| <
ε

2
.

This, (3.9), and (3.11) imply that |f(x)− f(x′)| < ε.

3.11 Monotonic Functions

Monotonic functions: A function f is nondecreasing on an interval I if

f(x1) ≤ f(x2) whenever x1, x2 ∈ I, x1 < x2. (3.12)

or nonincreasing on I if

f(x1) ≥ f(x2) whenever x1 and x2 are in I and x1 < x2. (3.13)

In either case, f is on I.

If ≤ can be replaced by < in (3.12), f is increasing on I. If ≥ can be replaced by

> in (3.13), f is decreasing on I. In either of these two cases, f is strictly monotonic

on I.

Example: The function

f(x) =

{
x, 0 ≤ x < 1,

2, 1 ≤ x ≤ 2,

is nondecreasing on I = [0, 2].

Example: The function g(x) = x2 is increasing on [0,∞). The function h(x) = −x3
is decreasing on (−∞,∞).

Theorem: Suppose that f is monotonic on (a, b) and de�ne

α = inf
a<x<b

f(x) and β = sup
a<x<b

f(x).

1. If f is nondecreasing, then limx→a+ f(x) = α and limx→b− f(x) = β.

2. If f is nonincreasing, then limx→a+ f(x) = β and limx→b− f(x) = α. (Here

a+ = −∞ if a = −∞ and b− =∞ if b =∞.)
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3. If a < x0 < b, then limx→x0+
f(x) and limx→x0−

f(x) exist and are �nite ;

moreover,

lim
x→x0−

f(x) ≤ f(x0) ≤ lim
x→x0+

f(x)

if f is nondecreasing, and

lim
x→x0−

f(x) ≥ f(x0) ≥ lim
x→x0+

f(x)

if f is nonincreasing.

Proof : We �rst show that limx→a+ f(x) = α.

If M > α, there is an x0 in (a, b) such that f(x0) < M . Since f is nondecreasing,

f(x) < M if a < x < x0. Therefore, if α = −∞, then limx→a+ f(x) = −∞.

If α > −∞, let M = α+ ε, where ε > 0.

Then α ≤ f(x) < α+ ε, so

|f(x)− α| < ε if a < x < x0. (3.14)

If a = −∞, this implies that f(−∞) = α. If a > −∞, let δ = x0 − a. Then

(3.14) is equivalent to

|f(x)− α| < ε if a < x < a+ δ,

which implies that f(a+) = α.

We now show that limx→b− f(x) = β.

If M < β, there is an x0 in (a, b) such that f(x0) > M .

Since f is nondecreasing, f(x) > M if x0 < x < b. Therefore, if β = ∞, then

limx→b− f(x) =∞.

If β <∞, let M = β − ε, where ε > 0. Then β − ε < f(x) ≤ β, so

|f(x)− β| < ε if x0 < x < b. (3.15)

If b =∞, this implies that f(∞) = β. If b <∞, let δ = b− x0.

Then (3.15) is equivalent to

|f(x)− β| < ε if b− δ < x < b,

which implies that f(b−) = β.

3.12 Limits Inferior and Superior

Suppose that f is bounded on [a, x0), where x0 may be �nite or ∞.

For a ≤ x < x0, de�ne

Sf (x;x0) = sup
x≤t<x0

f(t)

If (x;x0) = inf
x≤t<x0

f(t).
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Then the left limit superior of f at x0 is de�ned to be

lim sup
x→x0−

f(x) = lim
x→x0−

Sf (x;x0).

The left limit inferior of f at x0 is de�ned to be

lim inf
x→x0−

f(x) = lim
x→x0−

If (x;x0).

(If x0 =∞, we de�ne x0− =∞.)

Theorem: If f is bounded on [a, x0), then β = lim supx→x0− f(x) exists and is the

unique real number with the following properties :

1. If ε > 0, there is an a1 in [a, x0) such that

f(x) < β + ε if a1 ≤ x < x0.

2. If ε > 0 and a1 is in [a, x0), then

f(x) > β − ε for some x ∈ [a1, x0).

Theorem: If f is bounded on [a, x0), then α = lim infx→x0−
f(x) exists and is the

unique real number with the following properties:

1. If ε > 0, there is an a1 in [a, x0) such that

f(x) > α− ε if a1 ≤ x < x0.

2. If ε > 0 and a1 is in [a, x0), then

f(x) < α+ ε for some x ∈ [a1, x0).

Theorem: Suppose that f is monotonic on (a, b) and de�ne

α = inf
a<x<b

f(x), β = sup
a<x<b

f(x).

1. If f is nondecreasing, then limx→a+ f(x) = α and limx→b− f(x) = β.

2. If a < x0 < b, then limx→x0+
f(x) and limx→x0−

f(x) exist and are �nite ;

moreover,

lim
x→x0−

f(x) ≤ f(x0) ≤ lim
x→x0+

f(x).
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Theorem: If f is monotonic and nonconstant on [a, b], then f is continuous on [a, b]

if and only if its range Rf = {f(x) : x ∈ [a, b]} is the closed interval with endpoints

f(a) and f(b).

Proof : We assume that f is nondecreasing. The theorem implies that the set R̃f =

{f(x) : x ∈ (a, b)} is a subset of the open interval (limx→a+ f(x), limx→b− f(x)).

Therefore,

Rf = {f(a)} ∪ R̃f ∪ {f(b)} ⊂ {f(a)} ∪ ( lim
x→a+

f(x), lim
x→b−

f(x)) ∪ {f(b)}. (3.16)

Now suppose that f is continuous on [a, b]. Then f(a) = limx→a+ f(x),

limx→b− f(x) = f(b). So (3.16) implies that Rf ⊂ [f(a), f(b)].

If f(a) < µ < f(b), then by Intermediate Value Theorem implies that µ = f(x)

for some x in (a, b). Hence, Rf = [f(a), f(b)].

For the converse, suppose that Rf = [f(a), f(b)]. Since f(a) ≤ limx→a+ f(x) and

limx→b− f(x) ≤ f(b), (3.16) implies that f(a) = limx→a+ f(x) and limx→b− f(x) =

f(b).

We know that if f is nondecreasing and a < x0 < b, then

lim
x→x0−

f(x) ≤ f(x0) ≤ lim
x→0+

f(x).

If either of these inequalities is strict, Rf cannot be an interval. Since this

contradicts our assumption, limx→x0−
f(x) = f(x0) = limx→x0+

f(x).

Therefore, f is continuous at x0. We can now conclude that f is continuous on

[a, b].

Theorem: Suppose that f is increasing and continuous on [a, b], and let f(a) = c

and f(b) = d.

Then there is a unique function g de�ned on [c, d] such that

g(f(x)) = x, a ≤ x ≤ b,

and

f(g(y)) = y, c ≤ y ≤ d.

Moreover, g is continuous and increasing on [c, d].

Proof : Step I There is a function g satisfying the above two equations.

Step II: Uniqueness of the function g.

Step II: g is increasing and continuous.

Since f is continuous, then for each y0 in [c, d] there is an x0 in [a, b] such that

f(x0) = y0,

and, since f is increasing, there is only one such x0.



3.12. Limits Inferior and Superior 101

De�ne

g(y0) = x0, (3.17)

we have

f(g(y0)) = y0, g(f(x0)) = x0.

Since this is true for all x0 and y0, so

g(f(x)) = x, a ≤ x ≤ b, f(g(y)) = y, c ≤ y ≤ d.

The uniqueness of g follows from our assumption that f is increasing, and there-

fore only one value of x0 can satisfy f(x0) = y0, for each y0.

To see that g is increasing, suppose that y1 < y2 and let x1 and x2 be the points

in [a, b] such that f(x1) = y1 and f(x2) = y2.

Since f is increasing, x1 < x2. Therefore,

g(y1) = x1 < x2 = g(y2),

so g is increasing.

Since Rg = {g(y) : y ∈ [c, d]} is the interval [g(c), g(d)] = [a, b], therefore from

theorem, we have proved with f and [a, b] replaced by g and [c, d] implies that g is

continuous on [c, d].

Example: If

f(x) = x2, 0 ≤ x ≤ R.

Solution: The inverse of the given function is

f−1(y) = g(y) =
√
y, 0 ≤ y ≤ R2.

Example: If

f(x) = 2x+ 4, 0 ≤ x ≤ 2,

Solution: The inverse of the given function is

f−1(y) = g(y) =
y − 4

2
, 4 ≤ y ≤ 8.



Chapter 4

Di�erentiability

4.1 Derivative

Derivative: A function f is di�erentiable at an interior point x0 of its domain if

the di�erence quotient
f(x)− f(x0)

x− x0
, x ≠ x0,

approaches a limit as x approaches x0, in which case the limit is called the derivative

of f at x0, and is denoted by f ′(x0).

Thus,

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0
.

If we take x = x0 + h then

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
.

• If f is de�ned on an open set S, we say that f is di�erentiable on S if f is

di�erentiable at every point of S.

• If f is di�erentiable on S, then f ′ is a function on S. We say that f is

continuously di�erentiable on S if f ′ is continuous on S.

• If f is di�erentiable on a neighborhood of x0, it is reasonable to ask if f ′ is

di�erentiable at x0. If so, we denote the derivative of f
′ at x0 by f ′′(x0).

• This is the second derivative of f at x0, and it is also denoted by f (2)(x0).

Continuing inductively, if f (n−1) is de�ned on a neighborhood of x0, then the

nth derivative of f at x0, denoted by f (n)(x0), is the derivative of f (n−1) at

x0.

• This is the second derivative of f at x0, and it is also denoted by f (2)(x0).

• Continuing inductively, if f (n−1) is de�ned on a neighborhood of x0, then the

nth derivative of f at x0, denoted by f (n)(x0), is the derivative of f (n−1) at

x0.

• For convenience we de�ne the zeroth derivative of f to be f itself; thus

f (0) = f.
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We assume that you are familiar with the other standard notations for deriva-

tives; for example,

f (2) = f ′′, f (3) = f ′′′,

dnf

dxn
= f (n).

Example: If n is a positive integer, �nd the derivative of the function

f(x) = xn.

Solution: We have

f(x)− f(x0)

x− x0
=

xn − xn0
x− x0

=
x− x0
x− x0

n−1∑
k=0

xn−k−1xk0,

f ′(x0) = lim
x→x0

n−1∑
k=0

xn−k−1xk0 = nxn−1
0 .

Since this holds for every x0, we drop the subscript and write

f ′(x) = nxn−1 or
d

dx
(xn) = nxn−1.

Example: Find the derivative of the line y = mx+ c.

Solution:

f(x)− f(x0)

x− x0

=
mx+ c− (mx0 + c)

x− x0

=
m(x− x0)

x− x0
= m

Consequently

f ′(x0) = lim
x→x0

m = m.

Geometrical interpretation of derivative: The equation of the line through

two points (x0, f(x0)) and (x1, f(x1)) on the curve y = f(x) is

y = f(x0) +
f(x1)− f(x0)

x1 − x0
(x− x0).
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Varying x1 generates lines through (x0, f(x0)) that rotate into the line

y = f(x0) + f ′(x0)(x− x0)

as x1 approaches x0. This is the tangent to the curve y = f(x) at the point

(x0, f(x0)).

Figure 4.1: The tangent lines

Lemma: If f is di�erentiable at x0, then

f(x) = f(x0) + [f ′(x0) + E(x)](x− x0),

where E is de�ned on a neighborhood of x0 and

lim
x→x0

E(x) = E(x0) = 0.

Proof : De�ne

E(x) =

{
f(x)−f(x0)

x−x0
− f ′(x0), x ∈ Df and x ̸= x0,

0, x = x0.

Apply that lemma to f(x) = x2 at x0 = 3.

4.1.1 Di�erentiability Implies Continuity

Theorem: If f is di�erentiable at x0, then f is continuous at x0.

Proof :

f(x) = f(x0) + [f ′(x0) + E(x)](x− x0),

where E is de�ned on a neighborhood of x0 and

lim
x→x0

E(x) = E(x0) = 0.
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where

E(x) =

{
f(x)−f(x0)

x−x0
− f ′(x0), x ∈ Df and x ̸= x0,

0, x = x0.

Examples:

• f(x) = x2 has derivative f ′(x) = 4x.

• f(x) = 1
x has derivative f ′(x) = −1

x2 .

• f(x) = sinx has derivative f ′(x) = cosx.

Is continuity implies di�erentiability?

Counter example: Consider the function

f(x) = |x|.

The functions can be written as

f(x) =

{
x, x > 0,

−x, x ≤ 0,
⇒ f ′(x) =

{
1, x > 0,

−1, x ≤ 0,

lim
x→0+

f(x)− f(0)

x− 0
= lim

x→0+

x

x
(4.1)

lim
x→0−

f(x)− f(0)

x− 0
= lim

x→0−

−x
x

= −1 (4.2)

are di�erent,

lim
x→0

f(x)− f(0)

x− 0

does not exist (Theorem ??); thus, f is not di�erentiable at 0, even though it is

continuous at 0.

Theorem: If f and g are di�erentiable at x0, then so are f + g, f − g, and fg, with

1. (f + g)′(x0) = f ′(x0) + g′(x0);

2. (f − g)′(x0) = f ′(x0)− g(x0);

3. (fg)′(x0) = f ′(x0)g(x0) + f(x0)g
′(x0).

The quotient f/g is di�erentiable at x0 if g(x0) ̸= 0, with

•
(
f
g

)′
(x0) =

f ′(x0)g(x0)−f(x0)g′(x0)

[g(x0)]
2 .
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Proof : The trick is to add and subtract the right quantity in the numerator of the

di�erence quotient for (fg)′(x0); thus,

f(x)g(x)− f(x0)g(x0)

x− x0

=
f(x)g(x)− f(x0)g(x) + f(x0)g(x)− f(x0)g(x0)

x− x0

=
f(x)− f(x0)

x− x0
g(x) + f(x0)

g(x)− g(x0)

x− x0
.

The di�erence quotients on the right approach f ′(x0) and g′(x0) as x approaches

x0, and limx→x0 g(x) = g(x0).

Example: Find ds
dt where

s(t) = (5− t2)t3/2.

Example: Find dy
dx where

y(x) = x4−5x2

x−5 .

Lemma: If f is di�erentiable at x0, then

f(x) = f(x0) + [f ′(x0) + E(x)](x− x0),

where E is de�ned on a neighborhood of x0 and

lim
x→x0

E(x) = E(x0) = 0.

Theorem (The chain rule): Suppose that g is di�erentiable at x0 and f is di�eren-

tiable at g(x0).

Then the composite function h = f ◦ g, de�ned by

h(x) = f(g(x)),

is di�erentiable at x0, with

h′(x0) = f ′(g(x0))g
′(x0).

Proof : Since f is di�erentiable at g(x0), we can write

f(t)− f(g(x0)) = [f ′(g(x0)) + E(t)][t− g(x0)],

where

lim
t→g(x0)

E(t) = E(g(x0)) = 0. (4.3)
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Letting t = g(x) yields

f(g(x))− f(g(x0)) = [f ′(g(x0)) + E(g(x))][g(x)− g(x0)].

Since h(x) = f(g(x)), this implies that

h(x)− h(x0)

x− x0
= [f ′(g(x0)) + E(g(x))]

g(x)− g(x0)

x− x0
. (4.4)

Since g is continuous at x0 we have

lim
x→x0

E(g(x)) = E(g(x0)) = 0.

Therefore, (4.4) implies that

h′(x0) = lim
x→x0

h(x)− h(x0)

x− x0
= f ′(g(x0))g

′(x0),

as stated.

Example: Calculate the derivative of

h(x) = sin
1

x
, x ̸= 0.

If

f(x) = sinx and g(x) =
1

x
, x ̸= 0,

then

h(x) = f(g(x)) = sin
1

x
, x ̸= 0,

and

h′(x) = f ′(g(x))g(x) =

(
cos

1

x

)(
− 1

x2

)
, x ̸= 0.

Example: What is wrong in the following justi�cation?

h(x)− h(x0)

x− x0
=

f(g(x))− f(g(x0))

x− x0

=
f(g(x))− f(g(x0))

g(x)− g(x0)

g(x)− g(x0)

x− x0

and arguing that

lim
x→x0

f(g(x))− f(g(x0))

g(x)− g(x0)
= f ′(g(x0))

(because limx→x0 g(x) = g(x0)) and

lim
x→x0

g(x)− g(x0)

x− x0
= g′(x0).

Is it a valid proof?
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4.2 One Sided Derivative

One sided derivatives: If f is de�ned on [x0, b), the right-hand derivative of f at

x0 is de�ned to be

f ′
+(x0) = lim

x→x0+

f(x)− f(x0)

x− x0
.

if the limit exists.

If f is de�ned on (a, x0], the left-hand derivative of f at x0 is de�ned to be

f ′
−(x0) = lim

x→x0−

f(x)− f(x0)

x− x0

if the limit exists.

The de�nition of limit implies that f is di�erentiable at x0 if and only if f ′
+(x0)

and f ′
−(x0) exist and are equal, in which case

f ′(x0) = f ′
+(x0) = f ′

−(x0).

The functions de�ned by f(x) = |x| and f(x) = |x|
x have one sided derivatives.

Example: For the piecewise de�ned function

f(x) =

{
x3, x ≤ 0,

x2 sin 1
x , x > 0,

Investigate the one sided derivatives.

Solution: For the given function, we have

f ′(x) =

{
3x2, x < 0,

2x sin 1
x − cos 1

x , x > 0.

Since neither formula in f(x) holds for all x in any neighborhood of 0, we cannot

simply di�erentiate either to obtain f ′(0).

We will calculate the one sided derivatives

lim
x→0+

f(x) = lim
x→0+

x2 sin 1
x − 0

x− 0
= lim

x→0+
x sin

1

x
= 0,

f ′
−(0) = lim

x→0−

x3 − 0

x− 0
= lim

x→0−
x2 = 0;

hence, f ′(0) = f ′
+(0) = f ′

−(0) = 0.

Remark: There is a di�erence between one sided derivatives and one sided limit of

derivative
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4.3 Di�erentiable Function

Di�erentiable function: A function f is di�erentiable on the closed interval [a, b]

if f is di�erentiable on the open interval (a, b) and f ′
+(a) and f ′

−(b) both exist.

Continuously di�erentiable We say that f is continuously di�erentiable on [a, b]

if f is di�erentiable on [a, b], f ′ is continuous on (a, b),

f ′
+(a) = lim

x→a+
f ′(x)

, and

f ′
−(b) = lim

x→b−
f ′(x).

4.4 Extreme Values of a Function

We say that f(x0) is a local extreme value of f if there is a δ > 0 such that f(x)−
f(x0) does not change sign on

(x0 − δ, x0 + δ) ∩Df .

More speci�cally, f(x0) is a local maximum value of f if

f(x) ≤ f(x0)

or a local minimum value of f if

f(x) ≥ f(x0)

for all x in the set (x0 − δ, x0 + δ) ∩Df .

The point x0 is called a local extreme point of f , or, more speci�cally, a local

maximum or local minimum point of f .

Example: For the function

f(x) =


1, −1 < x ≤ −1

2

|x|, −1
2 < x ≤ 1

2 ,

1√
2
sin πx

2 , 1
2 < x ≤ 4
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Figure 4.2: Extreme values of a function

Recall the Lemma: If f is di�erentiable at x0, then

f(x) = f(x0) + [f ′(x0) + E(x)](x− x0),

where E is de�ned on a neighborhood of x0 and

lim
x→x0

E(x) = E(x0) = 0.

Theorem: If f is di�erentiable at a local extreme point x0 ∈ D0
f , then f ′(x0) = 0.

Proof : We will show that x0 is not a local extreme point of f if f ′(x0) ̸= 0.

From Lemma, we have

f(x)− f(x0)

x− x0
= f ′(x0) + E(x),

where limx→x0 E(x) = 0.

Therefore, if f ′(x0) ̸= 0, there is a δ > 0 such that

|E(x)| < |f ′(x0)| if |x− x0| < δ, (∗)

and the right side of (*) must have the same sign as f ′(x0) for |x−x0| < δ. Since the

same is true of the left side, f(x) − f(x0) must change sign in every neighborhood

of x0 (since x− x0 does).

• If f ′(x0) = 0 then x0 is said to be a critical point.

Recall the following: If a function f is continuous on the closed interval then f

attains its extreme values in the closed interval.

Theorem: If f is di�erentiable at a local extreme point x0, then f ′(x0) = 0.
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4.5 Rolle's Theorem

Theorem: Suppose that f is continuous on the closed interval [a, b] and di�eren-

tiable on the open interval (a, b), and f(a) = f(b). Then f ′(c) = 0 for some c in the

open interval (a, b).

Proof : Since f is continuous on [a, b], f attains a maximum and a minimum value

on [a, b]. If these two extreme values are the same, then f is constant on (a, b), so

f ′(x) = 0 for all x in (a, b).

If the extreme values di�er, then at least one must be attained at some point c

in the open interval (a, b), and f ′(c) = 0.

4.6 The Mean Value Theorem

Theorem: Suppose that f is di�erentiable on [a, b], f ′(a) ̸= f ′(b), and µ is between

f ′(a) and f ′(b). Then f ′(c) = µ for some c in (a, b).

Proof : Suppose �rst that

f ′(a) < µ < f ′(b)

and de�ne

g(x) = f(x)− µx.

Then

g′(x) = f ′(x)− µ, a ≤ x ≤ b,

and by our supposition f ′(a) < µ < f ′(b), we have

g′(a) < 0 and g′(b) > 0.

Since g is continuous on [a, b], g attains a minimum at some point c in [a, b].

Due to Lemma and g′(a) < 0 and g′(b) > 0, imply that there is a δ > 0 such

that

g(x) < g(a), a < x < a+ δ, and g(x) < g(b), b− δ < x < b.

Therefore c ̸= a and c ̸= b. Hence, a < c < b, and therefore g′(c) = 0, by the

fact that if f is di�erentiable at a local extreme point x0 then f ′(x0) = 0. From

, f ′(c) = µ. The proof for the case where f ′(b) < µ < f ′(a) can be obtained by

applying this result to −f .

Theorem: If f is continuous on the closed interval [a, b] and di�erentiable on the

open interval (a, b), then

f ′(c) =
f(b)− f(a)

b− a

for some c in (a, b).



4.7. Generalized Mean Value Theorem 112

Proof : The function

h(x) = [b− a]f(x)− [f(b)− f(a)]x

is continuous on [a, b] and di�erentiable on (a, b).

Furthermore

h(a) = h(b) = bf(a)− f(b)a.

Therefore, Rolle's theorem implies that h′(c) = 0 for some c in (a, b).

Since h′(c) = [b− a]f ′(c)− [f(b)− f(a)].

4.7 Generalized Mean Value Theorem

Theorem: If f and g are continuous on the closed interval [a, b] and di�erentiable

on the open interval (a, b), then

[g(b)− g(a)]f ′(c) = [f(b)− f(a)]g′(c)

for some c in (a, b).

Proof : The function

h(x) = [g(b)− g(a)]f(x)− [f(b)− f(a)]g(x)

is continuous on [a, b] and di�erentiable on (a, b).

Furthermore

h(a) = h(b) = g(b)f(a)− f(b)g(a).

Therefore, Rolle's theorem implies that h′(c) = 0 for some c in (a, b).

Since h′(c) = [g(b)− g(a)]f ′(c)− [f(b)− f(a)]g′(c).

Theorem: If f ′(x) = 0 for all x in (a, b), then f is constant on (a, b).

Proof : See Lecture.

Theorem: If f ′ exists and does not change sign on (a, b), then f is monotonic on

(a, b) : increasing, nondecreasing, decreasing, or nonincreasing as

f ′(x) > 0, f ′(x) ≥ 0, f ′(x) < 0, or f ′(x) ≤ 0,

respectively, for all x in (a, b).

Proof : See Lecture.

Theorem: If f and g are di�erentiable on an interval, and if f ′(x) = g′(x) for all x

in that interval, then f − g is a constant function on the interval.

Proof : See Lecture.
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4.8 Lipschitz Continuity

A function that satis�es inequality

|f(x)− f(x′)| ≤M |x− x′|, x, x′ ∈ (a, b),

for all x and x′ in an interval, where M > 0 is some real number is said to satisfy a

Lipschitz condition on the interval.

Remark: A di�erentiable real valued function is Lipschitz continuous, indeed we

have

di�erentiability at x ⇒ Lipschits continuity at x ⇒ Continuity at x

Lipschitz continuity: Continuity at x ; Lipschits continuity at x ; di�er-

entiability at x

Example: The function f(x) =
√
|x| is continuous at x = 0, but not Lipschits

continuous at x = 0.

The function f(x) = |x| is Lipschits continuous at x = 0 but not di�erentiable

at x = 0.

Theorem: If f and g are continuous on the closed interval [a, b] and di�erentiable

on the open interval (a, b), then

[g(b)− g(a)]f ′(c)

= [f(b)− f(a)]g′(c)

for some c in (a, b).

Theorem: Suppose that f and g are di�erentiable and g′ has no zeros on (a, b).

Let

lim
x→b−

f(x) = lim
x→b−

g(x) = 0

or

lim
x→b−

f(x) = ±∞ and lim
x→b−

g(x) = ±∞,

and suppose that

lim
x→b−

f ′(x)

g′(x)
= L (�nite or±∞).

Then

lim
x→b−

f(x)

g(x)
= L.
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Proof : For ε > 0, due to de�nition of limit, there is an x0 in (a, b) such that∣∣∣∣f ′(c)

g′(c)
− L

∣∣∣∣ < ε if x0 < c < b.

Generalized mean value theorem implies that if x and t are in [x0, b), then there

is a c between them, and therefore in (x0, b), such that

[g(x)− g(t)]f ′(c) = [f(x)− f(t)]g′(c).

Since g′ has no zeros in (a, b), mean value theorem implies that

g(x)− g(t) ̸= 0 if x, t ∈ (a, b).

This means that g cannot have more than one zero in (a, b).

Therefore, we can choose x0 so that, in addition to satisfy∣∣∣∣f ′(c)

g′(c)
− L

∣∣∣∣ < ε if x0 < c < b.

g has no zeros in [x0, b).

Then we can write
f(x)− f(t)

g(x)− g(t)
=

f ′(c)

g′(c)
,

so ∣∣∣∣f ′(c)

g′(c)
− L

∣∣∣∣ < ε if x0 < c < b.

implies that ∣∣∣∣f(x)− f(t)

g(x)− g(t)
− L

∣∣∣∣ < ε if x, t ∈ [x0, b). (4.5)

If limx→b− f(x) = limx→b− g(x) = 0 holds, let x be �xed in [x0, b), and consider

the function

G(t) =
f(x)− f(t)

g(x)− g(t)
− L.

so

lim
t→b−

G(t) =
f(x)

g(x)
− L.

Since

|G(t)| < ε if x0 < t < b,

we have ∣∣∣∣f(x)g(x)
− L

∣∣∣∣ ≤ ε.

This holds for all x in (x0, b), which is the required result.

• For the proof limx→b− f(x) = ±∞ limx→b− g(x) = ±∞

• and when L = ±∞, try yourself.
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4.9 Indeterminate Forms

The quotient function f/g is of the form 0/0 as x→ b− if

lim
x→b−

f(x) = lim
x→b−

g(x) = 0,

or of the form ∞/∞ as x→ b− if

lim
x→b−

f(x) = ±∞

and

lim
x→b−

g(x) = ±∞.

The corresponding de�nitions for x→ b+ and x→ ±∞ are similar.

If f/g is of one of these forms as x→ b− and as x→ b+, then we say that it is

of that form as x→ b.

Example: Evaluate the following limit

lim
x→0

sinx/x.

Solution: The given limit limit limx→0 sinx/x. is of the form 0/0 as x → 0, and

L'Hospital's rule yields

lim
x→0

sinx

x
= lim

x→0

cosx

1
= 1.

Example: Evaluate the limit

lim
x→−∞

e−x

x
.

Solution: See Lecture.

Example: Evaluate the limit

lim
x→+∞

x−4/3

sin(1/x)
.

Solution: See Lecture.

Example: Using L'Hospital's rule may lead to another indeterminate form; thus,

lim
x→∞

ex

x2
= lim

x→∞

ex

2x
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if the limit on the right exists in the extended reals. Applying L'Hospital's rule

again yields

lim
x→∞

ex

2x
= lim

x→∞

ex

2
=∞.

Therefore,

lim
x→∞

ex

x2
=∞.

More generally,

lim
x→∞

ex

xα
=∞

for any real number α

Example: Evaluate limx→0
4−4 cosx−2 sin2 x

x4 .

Solution:

lim
x→0

4− 4 cosx− 2 sin2 x

x4
= lim

x→0

4 sinx− 4 sinx cosx

4x3

=

(
lim
x→0

sinx

x

)(
lim
x→0

1− cosx

x2

)
=

(
lim
x→0

sinx

x

)(
lim
x→0

sinx

2x

)
=

1

2

(
lim
x→0

sinx

x

)2

=
1

2
(1)2 =

1

2
.

Example: If

f(x) = x− x2 sin
1

x
and g(x) = sinx,

then

f ′(x) = 1− 2x sin
1

x
+ cos

1

x
and g′(x) = cosx.

Therefore, limx→0 f
′(x)/g′(x) does not exist. However,

lim
x→0

f(x)

g(x)
= lim

x→0

1− x sin(1/x)

(sinx)/x
=

1

1
= 1.
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4.10 Indeterminate forms (0)(∞)

A product of functions fg is said to have the indeterminate form 0 · ∞ as x→ b−
if one of the factors approaches 0 and the other approaches ±∞ as x→ b−.

In this case, it may be useful to apply L'Hospital's rule after writing

f(x)g(x) =
f(x)

1/g(x)
or f(x)g(x) =

g(x)

1/f(x)
,

since one of these ratios is of the form 0/0 and the other is of the form ∞/∞ as

x→ b−. Similar statements apply to limits as x→ b+, x→ b, and x→ ±∞.

Example: Evaluate the limit

lim
x→0+

x log x.

Solution: The product x log x is of the form 0 · ∞ as x→ 0+. Converting it to an

∞/∞ form yields

lim
x→0+

x log x = lim
x→0+

log x

1/x

= lim
x→0+

1/x

−1/x2

= − lim
x→0+

x = 0.

Example: Evaluate the limit

lim
x→∞

x log 1 + 1/x.

Solution: Converting it to a 0/0 form yields

lim
x→∞

x log(1 + 1/x) = lim
x→∞

log(1 + 1/x)

1/x

= lim
x→∞

[1/(1 + 1/x)] (−1/x2)
−1/x2

= lim
x→∞

1

1 + 1/x
= 1.

In this case, converting to an ∞/∞ form complicates the problem:

lim
x→∞

x log(1 + 1/x) = lim
x→∞

x

1/ log(1 + 1/x)

= lim
x→∞

1(
−1

[log(1+1/x)]2

)(
−1/x2

1+1/x

)
= lim

x→∞
x(x+ 1)[log(1 + 1/x)]2 =?
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4.10.1 Indeterminate form ∞−∞

A di�erence f − g is of the form ∞−∞ as x→ b− if

lim
x→b−

f(x) = lim
x→b−

g(x) = ±∞.

In this case, it may be possible to manipulate f − g into an expression that is

no longer indeterminate, or is of the form 0/0 or ∞/∞ as x→ b−.

Similar remarks apply to limits as x→ b+, x→ b, or x→ ±∞.

Example: Evaluate the limit

lim
x→0

sinx

x2
− 1

x
.

Solution: See Lecture.

Example: Evaluate the limit

lim
x→∞

x2 − x.

Solution: See Lecture.

4.10.2 Indeterminate forms 00, 1∞,∞0

The function fg is de�ned by

f(x)g(x) = eg(x) log f(x) = exp(g(x) log f(x))

for all x such that f(x) > 0.

Therefore, if f and g are de�ned and f(x) > 0 on an interval (a, b), implies that

lim
x→b−

[f(x)]g(x) = exp

(
lim

x→b−
g(x) log f(x)

)
(4.6)

if limx→b− g(x) log f(x) exists in the extended real number system.

If this limit is ±∞ then (4.6) is valid if we de�ne e−∞ = 0 and e∞ =∞.

Indeterminate forms 00, 1∞,∞0: The product g log f can be of the form 0 ·∞
in three ways as x→ b−:

1. If limx→b− g(x) = 0 and limx→b− f(x) = 0.

2. If limx→b− g(x) = ±∞ and limx→b− f(x) = 1.

3. If limx→b− g(x) = 0 and limx→b− f(x) =∞.
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In these three cases, we say that fg is of the form 00, 1∞, and ∞0, respectively, as

x→ b−.

Similar de�nitions apply to limits as x→ b+, x→ b, and x→ ±∞.

Example: Evaluate the following limit

lim
x→0+

xx.

Solution: See Lecture.

Example: Evaluate the following limit

lim
x→1

x1/(x−1).

Solution:

Since

x1/(x−1) = exp

(
log x

x− 1

)
and

lim
x→1

log x

x− 1
= lim

x→1

1/x

1
= 1,

it follows that

lim
x→1

x1/(x−1) = e1 = e.

Example: Evaluate the following limit

lim
x→∞

x1/x.

Solution:

Since

x1/x = exp

(
log x

x

)
and

lim
x→∞

log x

x
= lim

x→∞

1/x

1
= 0,
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4.11 Taylor's Theorem

Recall the following lemma: If f is di�erentiable at x0, then

f(x) = f(x0) + [f ′(x0) + E(x)](x− x0),

where E is de�ned on a neighborhood of x0 and

lim
x→x0

E(x) = E(x0) = 0.

To generalize this result, we �rst restate it: the polynomial

T1(x) = f(x0) + f ′(x0)(x− x0),

which is of degree ≤ 1 and satis�es

T1(x0) = f(x0), T ′
1(x0) = f ′(x0).

T1(x) approximates f so well near x0 that

lim
x→x0

f(x)− T1(x)

x− x0
= 0.

Taylor polynomial: Suppose that f has n derivatives at x0 and Tn is the polyno-

mial of degree ≤ n such that

T (r)
n (x0) = f (r)(x0), 0 ≤ r ≤ n.

How well does Tn approximate f near x0?

Since Tn is a polynomial of degree ≤ n, it can be written as

Tn(x) = a0 + a1(x− x0) + · · ·+ an(x− x0)
n,

where a0, . . . , an are constants.

Di�erentiating yields

T (r)
n (x0) = r!ar, 0 ≤ r ≤ n,

We obtained ar uniquely as

ar =
f (r)(x0)

r!
, 0 ≤ r ≤ n.

Therefore,

Tn(x) = f(x0) +
f ′(x0)

1!
(x− x0) + · · ·+

f (n)(x0)

n!
(x− x0)

n

=
n∑

r=0

f (r)(x0)

r!
(x− x0)

r.
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We call Tn the nthTaylor polynomial of f about x0.

Theorem: If f (n)(x0) exists for some integer n ≥ 1 and Tn is the nth Taylor

polynomial of f about x0, then

lim
x→x0

f(x)− Tn(x)

(x− x0)n
= 0.

Proof : The proof is by induction. Let Pn be the assertion of the theorem. If n = 1;

that is, P1 is true. Suppose that Pn is true for some integer n ≥ 1, and f (n+1) exists.

Since the ratio
f(x)− Tn+1(x)

(x− x0)n+1

is indeterminate of the form 0/0 as x→ x0, L'Hospital's rule implies that

lim
x→x0

f(x)− Tn+1(x)

(x− x0)n+1
=

1

n+ 1
lim
x→x0

f ′(x)− T ′
n+1(x)

(x− x0)n
(4.7)

if the limit on the right exists.

But f ′ has an nth derivative at x0, and

T ′
n+1(x) =

n∑
r=0

f (r+1)(x0)

r!
(x− x0)

r

is the nth Taylor polynomial of f ′ about x0.

Therefore, the induction assumption, applied to f ′, implies that

lim
x→x0

f ′(x)− T ′
n+1(x)

(x− x0)n
= 0.

This and (4.7) imply that

lim
x→x0

f(x)− Tn+1(x)

(x− x0)n+1
= 0,

which completes the induction.

Lemma: If f (n)(x0) exists, then

f(x) =
n∑

r=0

f (r)(x0)

r!
(x− x0)

r + En(x)(x− x0)
n, (4.8)

where

lim
x→x0

En(x) = En(x0) = 0.
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Proof : De�ne

En(x) =

{
f(x)−Tn(x)
(x−x0)n

, x ∈ Df − {x0},
0, x = x0.

Then we know that limx→x0 En(x) = En(x0) = 0, and it is straightforward to verify

(4.8).

Example: If f(x) = ex, then f (n)(x) = ex.

Therefore, f (n)(0) = 1 for n ≥ 0, so the nth Taylor polynomial of f about x0 = 0

is

Tn(x) =

n∑
r=0

xr

r!
= 1 +

x

1!
+

x2

2!
+ · · ·+ xn

n!
.

According to approximation Theorem we have

lim
x→0

ex −
∑n

r=0
xr

r!

xn
= 0.

Example: If f(x) = log x, then f(1) = 0 and

f (r)(x) = (−1)(r−1) (r − 1)!

xr
, r ≥ 1.

so the nth Taylor polynomial of f about x0 = 1 is

Tn(x) =

n∑
r=1

(−1)r−1

r
(x− 1)r

if n ≥ 1. (T0 = 0.)

According to approximation Theorem we have

lim
x→1

log x−
∑n

r=1 (−1)r−1r(x− 1)r

(x− 1)n
= 0, n ≥ 1.

Example: If f(x) = (1 + x)q, then

f ′(x) = q(1 + x)q−1, f ′′(x) = q(q − 1)(1 + x)q−2

...

f (n)(x) = q(q − 1) · · · (q − n+ 1)(1 + x)q−n.

If we de�ne(
q

0

)
= 1 and

(
q

n

)
=

q(q − 1) · · · (q − n+ 1)

n!
, n ≥ 1,
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then
f (n)(0)

n!
=

(
q

n

)
,

and the nth Taylor polynomial of f about 0 can be written as

Tn(x) =
n∑

r=0

(
q

r

)
xr.

According to approximation Theorem we have

lim
x→0

(1 + x)q −
∑n

r=0

(
q
r

)
xr

xn
= 0,

for n ≥ 0.

Theorem: Suppose that f has n derivatives at x0 and n is the smallest positive

integer such that f (n)(x0) ̸= 0.

1. If n is odd, x0 is not a local extreme point of f.

2. If n is even, x0 is a local maximum of f if f (n)(x0) < 0, or a local mininum of

f if f (n)(x0) > 0.

Proof : Since f (r)(x0) = 0 for 1 ≤ r ≤ n− 1, we have

f(x)− f(x0) =

[
f (n)(x0)

n!
+ En(x)

]
(x− x0)

n,

in some interval containing x0.

Since limx→x0 En(x) = 0 and f (n)(x0) ̸= 0, there is a δ > 0 such that

|En(x)| <

∣∣∣∣∣f (n)(x0)

n!

∣∣∣∣∣ if |x− x0| < δ.

We can conclude that
f(x)− f(x0)

(x− x0)n

has the same sign as f (n)(x0) if 0 < |x− x0| < δ.

If n is odd the denominator changes sign in every neighborhood of x0, and

therefore so must the numerator (since the ratio has constant sign for 0 < |x−x0| <
δ).

Consequently, f(x0) cannot be a local extreme value of f . This proves (1).

If n is even, the denominator is positive for x ̸= x0, so f(x) − f(x0) must have

the same sign as f (n)(x0) for 0 < |x− x0| < δ. This proves part (2).

Example: Investigate the local extrema for the function f(x) = ex
3
.
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Solution: For the given function we have f ′(x) = 3x2ex
3
, and 0 is the only critical

point of f .

Since

f ′′(x) = (6x+ 9x4)ex
3

and

f ′′′(x) = (6 + 54x3 + 27x6)ex
3
,

f ′′(0) = 0 and f ′′′(0) ̸= 0.

Therefore, 0 is not a local extreme point of f . Since f is di�erentiable every-

where, it has no local maxima or minima.

Example: Investigate the local extrema for the function f(x) = sinx2.

Solution: For the given function we have f ′(x) = 2x cosx2, so the critical points

of f are 0 and ±
√

(k + 1/2)π, k = 0, 1, 2, . . . .

Since

f ′′(x) = 2 cosx2 − 4x2 sinx2,

f ′′(0) = 2 and f ′′
(
±
√

(k + 1/2)π)
)
= (−1)k+1(4k + 2)π.

Therefore, f attains local minima at 0 and ±
√

(k + 1/2)π for odd integers k,

and local maxima at ±
√

(k + 1/2)π for even integers k.

Taylor's Theorem: Suppose that f (n+1) exists on an open interval I about x0,

and let x be in I.

Then the remainder

Rn(x) = f(x)− Tn(x)

can be written as

Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− x0)

n+1,

where c depends upon x and is between x and x0.

Example: If f(x) = ex, then f ′′′(x) = ex, and Taylor's theorem with n = 2 implies

that

ex = 1 + x+
x2

2!
+

ecx3

3!
,

where c is between 0 and x. We have

e0.1 ≈ T2(0.1) = 1 +
0.1

1!
+

(0.1)2

2!
= 1.105

hence

e0.1 = 1.105 +
ec(0.1)3

6
,
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where 0 < c < 0.1.

Since 0 < ec < e0.1, we know from this that

1.105 < e0.1 < 1.105 +
e0.1(0.1)3

6
.

Example: Since 0 < ec < e0.1, we know from this that

1.105 < e0.1 < 1.105 +
e0.1(0.1)3

6
.

The second inequality implies that

e0.1
[
1− (0.1)3

6

]
< 1.105,

so

e0.1 < 1.1052.

Therefore,

1.105 < e0.1 < 1.1052,

and the error in approximation is less than 0.0002.



Chapter 5

Riemann Integration

5.1 Riemann Sums

Figure 5.1: Area under the curve

Partition of an interval: Let f be a real valued function de�ned on a �nite

interval [a, b].

A partition of [a, b] is a set of subintervals

[x0, x1], [x1, x2], . . . , [xn−1, xn],

where

a = x0 < x1 · · · < xn = b.

Thus, any set of n + 1 points satisfying a = x0 < x1 · · · < xn = b. de�nes a

partition P of [a, b], which we denote by

P = {x0, x1, . . . , xn}.

The points x0, x1, . . . , xn are the partition points of P .

The largest of the lengths of the subintervals [x0, x1], [x1, x2], . . . , [xn−1, xn], is

the norm of P , written as ∥P∥; thus,

∥P∥ = max
1≤i≤n

(xi − xi−1).

Re�nement of a partition: If P and P ′ are partitions of [a, b], then P ′ is a

re�nement of P if every partition point of P is also a partition point of P ′; that is,

if P ′ is obtained by inserting additional points between those of P .
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Riemann sums: If f is de�ned on [a, b], then a sum

σ =

n∑
j=1

f(cj)(xj − xj−1),

where

xj−1 ≤ cj ≤ xj , 1 ≤ j ≤ n,

is a Riemann sum of f over the partition P = {x0, x1, . . . , xn}. (Occasionally we

will say more simply that σ is a Riemann sum of f over [a, b].)

Since cj can be chosen arbitrarily in [xj , xj−1], there are in�nitely many Riemann

sums for a given function f over a given partition P .

5.2 Riemann Integral

Let f be de�ned on [a, b]. We say that f is Riemann integrable on [a, b] if there is

a number L with the following property:

For every ε > 0, there is a δ > 0 such that

|σ − L| < ε.

If σ is any Riemann sum of f over a partition P of [a, b] such that ∥P∥ < δ. In this

case, we say that L is the Riemann integral of f over [a, b], and write∫ b

a
f(x) dx = L.

Theorem: Prove that the Riemann integral
∫ b
a f(x)dx, if it exists, is unique.

Proof : See Lecture.

• Prove: If
∫ b
a f(x) dx exists, then for every ε > 0, there is a δ > 0 such that

|σ1−σ2| < ε if σ1 and σ2 are Riemann sums of f over partitions P1 and P2 of

[a, b] with norms less than δ.

Example: Determine f is Riemann integrable over the given interval or not? Find∫ b
a f(x)dx, where

f(x) = 1, a ≤ x ≤ b.

Solution: For the given function, we have

n∑
j=1

f(cj)(xj − xj−1) =

n∑
j=1

(xj − xj−1).
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Most of the terms in the sum on the right cancel in pairs; that is,

n∑
j=1

(xj − xj−1) = (x1 − x0) + (x2 − x1) + · · ·+ (xn − xn−1)

= −x0 + (x1 − x1) + (x2 − x2) + · · ·+ (xn−1 − xn−1) + xn

= xn − x0 = b− a.

Thus, every Riemann sum of f over any partition of [a, b] equals b− a, so∫ b

a
dx = b− a.

Example: For the function

f(x) = x, a ≤ x ≤ b,

Riemann sums are of the form

σ =
n∑

j=1

cj(xj − xj−1). (5.1)

Since xj−1 ≤ cj ≤ xj and (xj + xj−1)/2 is the midpoint of [xj−1, xj ], we can write

cj =
xj + xj−1

2
+ dj , (5.2)

where

|dj | ≤
xj − xj−1

2
≤ ∥P∥

2
. (5.3)

Example: Substituting (5.2) into (5.1) yields

σ =
∑n

j=1
xj+xj−1

2 (xj − xj−1) +
∑n

j=1 dj(xj − xj−1)

= 1
2

∑n
j=1(x

2
j − x2j−1) +

∑n
j=1 dj(xj − xj−1).

(5.4)

Because of cancelations, we have

n∑
j=1

(x2j − x2j−1) = b2 − a2,

so (5.4) can be rewritten as

σ =
b2 − a2

2
+

n∑
j=1

dj(xj − xj−1).
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Hence, ∣∣∣∣σ − b2 − a2

2

∣∣∣∣ ≤ n∑
j=1

|dj |(xj − xj−1) ≤
∥P∥
2

n∑
j=1

(xj − xj−1)

=
∥P∥
2

(b− a).

Therefore, every Riemann sum of f over a partition P of [a, b] satis�es∣∣∣∣σ − b2 − a2

2

∣∣∣∣ < ε if ∥P∥ < δ =
2ε

b− a
.

Hence, ∫ b

a
x dx =

b2 − a2

2
.

Theorem: If f is unbounded on [a, b], then f is not integrable on [a, b].

Proof : We will show that if f is unbounded on [a, b], P is any partition of [a, b],

and M > 0, then there are Riemann sums σ and σ′ of f over P such that

|σ − σ′| ≥M. (5.5)

Let

σ =

n∑
j=1

f(cj)(xj − xj−1)

be a Riemann sum of f over a partition P of [a, b].

There must be an integer i in {1, 2, . . . , n} such that

|f(c)− f(ci)| ≥
M

xi − xi−1

for some c in [xi−1xi].

Because if there were not so, we would have

|f(x)− f(cj)| <
M

xj − xj−1
, xj−1 ≤ x ≤ xj , 1 ≤ j ≤ n.

Then

|f(x)| = |f(cj) + f(x)− f(cj)| ≤ |f(cj)|+ |f(x)− f(cj)|

≤ |f(cj)|+
M

xj − xj−1
, xj−1 ≤ x ≤ xj , 1 ≤ j ≤ n.

which implies that

|f(x)| ≤ max
1≤j≤n

|f(cj)|+
M

xj − xj−1
, a ≤ x ≤ b,
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contradicting the assumption that f is unbounded on [a, b].

Consider the Riemann sum

σ′ =
n∑

j=1

f(c′j)(xj − xj−1)

over the same partition P , where

c′j =

{
cj , j ̸= i,

c, j = i.

Since

|σ − σ′| = |f(c)− f(ci)|(xi − xi−1),

hence due to

|f(c)− f(ci)| ≥
M

xi − xi−1

implies (5.5).

5.3 Upper and Lower Integrals

Upper and lower integrals: If f is bounded on [a, b] and P = {x0, x1, . . . , xn} is
a partition of [a, b], let

Mj = sup
xj−1≤x≤xj

f(x) and mj = inf
xj−1≤x≤xj

f(x).

The upper sum of f over P is

S(P ) =

n∑
j=1

Mj(xj − xj−1),

and the upper integral of f over , [a, b], denoted by∫ b

a
f(x) dx,

is the in�mum of all upper sums.

Lower integrals: The lower sum of f over P is

s(P ) =

n∑
j=1

mj(xj − xj−1),

and the lower integral of f over [a, b], denoted by∫ b

a
f(x) dx,
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is the supremum of all lower sums.

Remark: If m ≤ f(x) ≤M for all x in [a, b], then

m(b− a) ≤ s(P ) ≤ S(P ) ≤M(b− a)

for every partition P . Thus, the set of upper sums of f over all partitions P of [a, b]

is bounded, as is the set of lower sums.

Therefore, de�nition of in�mum and supremum imply that
∫ b
a f(x) dx and∫ b

a f(x) dx exist, are unique, and satisfy the inequalities

m(b− a) ≤
∫ b

a
f(x) dx ≤M(b− a)

and

m(b− a) ≤
∫ b

a
f(x) dx ≤M(b− a).

Theorem: Let f be bounded on [a, b], and let P be a partition of [a, b]. Then

1. The upper sum S(P ) of f over P is the supremum of the set of all Riemann

sums of f over P.

2. The lower sum s(P ) of f over P is the in�mum of the set of all Riemann sums

of f over P.

Proof : If P = {x0, x1, . . . , xn}, then

S(P ) =

n∑
j=1

Mj(xj − xj−1),

where

Mj = sup
xj−1≤x≤xj

f(x).

An arbitrary Riemann sum of f over P is of the form

σ =

n∑
j=1

f(cj)(xj − xj−1),

where xj−1 ≤ cj ≤ xj .

Since f(cj) ≤ Mj , it follows that σ ≤ S(P ). Now let ε > 0 and choose cj in

[xj−1, xj ] so that

f(cj) > Mj −
ε

n(xj − xj−1)
, 1 ≤ j ≤ n.
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The Riemann sum produced in this way is

σ =
n∑

j=1

f(cj)(xj − xj−1) >
n∑

j=1

[
Mj −

ε

n(xj − xj−1)
)

]
(xj − xj−1)

= S(P )− ε.

Now from de�nition S(P ) is the supremum of the set of Riemann sums of f over

P .

Example: Let

f(x) =

{
0 if x is irrational,

1 if x is rational,

Let P = {x0, x1, . . . , xn} be a partition of [a, b]. Since every interval contains

both rational and irrational numbers

mj = 0 and Mj = 1, 1 ≤ j ≤ n.

Hence,

S(P ) =

n∑
j=1

1 · (xj − xj−1) = b− a

s(P ) =
n∑

j=1

0 · (xj − xj−1) = 0.

Since all upper sums equal b− a and all lower sums equal 0, from de�nition we

have ∫ b

a
f(x) dx = b− a and

∫ b

a
f(x) dx = 0.

Example: Let f be de�ned on [1, 2] by f(x) = 0 if x is irrational and f(p/q) = 1/q

if p and q are positive integers with no common factors.

If P = {x0, x1, . . . , xn} is any partition of [1, 2], then mj = 0, 1 ≤ j ≤ n, so

s(P ) = 0; hence, ∫ 2

1
f(x) dx = 0.

We now show that ∫ 2

1
f(x) dx = 0 (5.6)

also.
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Example: Since S(P ) > 0 for every P , from de�nition we have∫ 2

1
f(x) dx ≥ 0.

We need only show that ∫ 2

1
f(x) dx ≤ 0,

which will follow if we show that no positive number is less than every upper sum.

To this end, we observe that if 0 < ε < 2, then f(x) ≥ ε/2 for only �nitely many

values of x in [1, 2].

Let k be the number of such points and let P0 be a partition of [1, 2] such that

∥P0∥ <
ε

2k
. (5.7)

Example: Consider the upper sum

S(P0) =

n∑
j=1

Mj(xj − xj−1).

There are at most k values of j in this sum for which Mj ≥ ε/2, and Mj ≤ 1 even

for these. The contribution of these terms to the sum is less than k(ε/2k) = ε/2,

because of (5.7).

Since Mj < ε/2 for all other values of j, the sum of the other terms is less than

ε

2

n∑
j=1

(xj − xj−1) =
ε

2
(xn − x0) =

ε

2
(2− 1) =

ε

2
.

Therefore, S(P0) < ε and, since ε can be chosen as small as we wish, no positive

number is less than all upper sums.

Lemma: Suppose that

|f(x)| ≤M, a ≤ x ≤ b,

and let P ′ be a partition of [a, b] obtained by adding r points to a partition P =

{x0, x1, . . . , xn} of [a, b].
Then

S(P ) ≥ S(P ′) ≥ S(P )− 2Mr∥P∥
and

s(P ) ≤ s(P ′) ≤ s(P ) + 2Mr∥P∥.
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Proof : First suppose that r = 1, so P ′ is obtained by adding one point c to the

partition P = {x0, x1, . . . , xn}; then xi−1 < c < xi for some i in {1, 2, . . . , n}.
If j ̸= i, the product Mj(xj−xj−1) appears in both S(P ) and S(P ′) and cancels

out of the di�erence S(P )− S(P ′).

Therefore, if

Mi1 = sup
xi−1≤x≤c

f(x) and Mi2 = sup
c≤x≤xi

f(x),

then

S(P )− S(P ′) = Mi(xi − xi−1)−Mi1(c− xi−1)−Mi2(xi − c)

= (Mi −Mi1)(c− xi−1) + (Mi −Mi2)(xi − c).
(5.8)

Since f is bounded implies that

0 ≤Mi −Mir ≤ 2M, r = 1, 2,

(5.8) implies that

0 ≤ S(P )− S(P ′) ≤ 2M(xi − xi−1) ≤ 2M∥P∥.

This proves (5.11) for r = 1.

Now suppose that r > 1 and P ′ is obtained by adding points c1, c2, . . . , cr to

P .

Let P (0) = P and, for j ≥ 1, let P (j) be the partition of [a, b] obtained by adding

cj to P (j−1). Then the result just proved implies that

0 ≤ S(P (j−1))− S(P (j)) ≤ 2M∥P (j−1)∥, 1 ≤ j ≤ r.

Adding these inequalities and taking account of cancellations yields

0 ≤ S(P (0))− S(P (r)) ≤ 2M(∥P (0)∥+ ∥P (1)∥+ · · ·+ ∥P (r−1)∥). (5.9)

Since P (0) = P , P (r) = P ′, and ∥P (k)∥ ≤ ∥P (k−1)∥ for 1 ≤ k ≤ r − 1, (5.9)

implies that

0 ≤ S(P )− S(P ′) ≤ 2Mr∥P∥,

which is equivalent to (5.11).

Theorem: If f is bounded on [a, b], then∫ b

a
f(x) dx ≤

∫ b

a
f(x) dx. (5.10)

Proof : Suppose that P1 and P2 are partitions of [a, b] and P ′ is a re�nement of

both.
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We have proved

S(P ) ≥ S(P ′) ≥ S(P )− 2Mr∥P∥ (∗)
and

s(P ) ≤ s(P ′) ≤ s(P ) + 2Mr∥P∥ (∗∗).

Letting P = P1 in (**) and P = P2 in (*) shows that

s(P1) ≤ s(P ′) and S(P ′) ≤ S(P2).

Since s(P ′) ≤ S(P ′), this implies that s(P1) ≤ S(P2). Thus, every lower sum is

a lower bound for the set of all upper sums.

Since
∫ b
a f(x) dx is the in�mum of this set, it follows that

s(P1) ≤
∫ b

a
f(x) dx

for every partition P1 of [a, b].

This means that
∫ b
a f(x) dx is an upper bound for the set of all lower sums.

Since
∫ b
a f(x) dx is the supremum of this set, this implies (5.10).

Theorem: If f is integrable on [a, b], then∫ b

a
f(x) dx =

∫ b

a
f(x) dx =

∫ b

a
f(x) dx.

Proof : Suppose that P is a partition of [a, b] and σ is a Riemann sum of f over P .

Since ∫ b

a
f(x) dx−

∫ b

a
f(x) dx =

(∫ b

a
f(x) dx− S(P )

)
+ (S(P )− σ)

+

(
σ −

∫ b

a
f(x) dx

)
.

The triangle inequality implies that∣∣∣∫ b
a f(x) dx−

∫ b
a f(x) dx

∣∣∣ ≤ ∣∣∣∫ b
a f(x) dx− S(P )

∣∣∣+ |S(P )− σ|

+
∣∣∣σ − ∫ b

a f(x) dx
∣∣∣ . (5.11)

Now suppose that ε > 0. From de�nition of Riemann upper sum, there is a

partition P0 of [a, b] such that∫ b

a
f(x) dx ≤ S(P0) <

∫ b

a
f(x) dx+

ε

3
. (5.12)
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From de�nition of Riemann integral, there is a δ > 0 such that∣∣∣∣σ − ∫ b

a
f(x) dx

∣∣∣∣ < ε

3
. (5.13)

If ∥P∥ < δ and P is a re�nement of P0.

Since S(P ) ≤ S(P0) by Lemma we have proved, (5.12) implies that∫ b

a
f(x) dx ≤ S(P ) <

∫ b

a
f(x) dx+

ε

3
,

so ∣∣∣∣∣S(P )−
∫ b

a
f(x) dx

∣∣∣∣∣ < ε

3
(5.14)

in addition to (5.13). Now (5.11), (5.13), and (5.14) imply that∣∣∣∣∣
∫ b

a
f(x) dx−

∫ b

a
f(x) dx

∣∣∣∣∣ < 2ε

3
+ |S(P )− σ| (5.15)

for every Riemann sum σ of f over P .

Since S(P ) is the supremum of these Riemann sums, we may choose σ so that

|S(P )− σ| < ε

3
.

Now (5.15) implies that ∣∣∣∣∣
∫ b

a
f(x) dx−

∫ b

a
f(x) dx

∣∣∣∣∣ < ε.

Since ε is an arbitrary positive number, it follows that∫ b

a
f(x) dx =

∫ b

a
f(x) dx.

Lemma: If f is bounded on [a, b] and ε > 0, there is a δ > 0 such that∫ b

a
f(x) dx ≤ S(P ) <

∫ b

a
f(x) dx+ ε (5.16)

and ∫ b

a
f(x) dx ≥ s(P ) >

∫ b

a
f(x) dx− ε

if ∥P∥ < δ.

Proof : The �rst inequality follows immediately from de�nition of Riemann upper

integral.
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To establish the second inequality, suppose that |f(x)| ≤ K if a ≤ x ≤ b. From

de�nition of the Riemann upper integral, there is a partition P0 = {x0, x1, . . . , xr+1}
of [a, b] such that

S(P0) <

∫ b

a
f(x) dx+

ε

2
. (5.17)

If P is any partition of [a, b], let P ′ be constructed from the partition points of

P0 and P . Then we know that

S(P ′) ≤ S(P0). (5.18)

Since P ′ is obtained by adding at most r points to P , we have

S(P ′) ≥ S(P )− 2Kr∥P∥. (5.19)

Now (5.17), (5.18), and (5.19) imply that

S(P ) ≤ S(P ′) + 2Kr∥P∥
≤ S(P0) + 2Kr∥P∥

<

∫ b

a
f(x) dx+

ε

2
+ 2Kr∥P∥.

Therefore, (5.16) holds if

∥P∥ < δ =
ε

4Kr
.

Theorem: If f is bounded on [a, b] and∫ b

a
f(x) dx =

∫ b

a
f(x) dx = L,

then f is integrable on [a, b] and ∫ b

a
f(x) dx = L.

Proof : If ε > 0, there is a δ > 0 such that∫ b

a
f(x) dx− ε < s(P ) ≤ S(P ) <

∫ b

a
f(x) dx+ ε, (5.20)

If ∥P∥ < δ.

If σ is a Riemann sum of f over P , then

s(P ) ≤ σ ≤ S(P ).
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So (5.21) and (5.20) imply that

L− ε < σ < L+ ε

if ∥P∥ < δ.

Recall the following theorems:

Theorem: If f is integrable on [a, b], then∫ b

a
f(x) dx =

∫ b

a
f(x) dx =

∫ b

a
f(x) dx.

Theorem: If f is bounded on [a, b] and∫ b

a
f(x) dx =

∫ b

a
f(x) dx = L, (5.21)

then f is integrable on [a, b] and ∫ b

a
f(x) dx = L. (5.22)

Theorem: A bounded function f is integrable on [a, b] if and only if∫ b

a
f(x) dx =

∫ b

a
f(x) dx.

Theorem: If f is bounded on [a, b], then f is integrable on [a, b] if and only if for

each ε > 0 there is a partition P of [a, b] for which

S(P )− s(P ) < ε.

Proof : Since

s(P ) ≤
∫ b

a
f(x) dx ≤

∫ b

a
f(x) dx ≤ S(P )

for all P .

The inequality S(P )− s(P ) < ε, implies that

0 ≤
∫ b

a
f(x) dx−

∫ b

a
f(x) dx < ε.
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Since ε can be any positive number, this implies that∫ b

a
f(x) dx =

∫ b

a
f(x) dx.

Therefore,
∫ b
a f(x) dx exists.

Since ε can be any positive number, this implies that∫ b

a
f(x) dx =

∫ b

a
f(x) dx.

For the converse of the theorem try yourself

Theorem: If f is bounded on [a, b], then f is integrable on [a, b] if and only if for

each ε > 0 there is a partition P of [a, b] for which

S(P )− s(P ) < ε.

Theorem: If f is continuous on [a, b], then f is integrable on [a, b].

Proof : Let P = {x0, x1, . . . , xn} be a partition of [a, b].

Since f is continuous on [a, b], there are points cj and c′j in [xj−1, xj ] such that

f(cj) = Mj = sup
xj−1≤x≤xj

f(x)

and

f(c′j) = mj = inf
xj−1≤x≤xj

f(x).

Therefore,

S(P )− s(P ) =

n∑
j=1

[
f(cj)− f(c′j)

]
(xj − xj−1). (5.23)

Since f is uniformly continuous on [a, b], there is for each ε > 0 a δ > 0 such

that

|f(x′)− f(x)| < ε

b− a
.

If x and x′ are in [a, b] and |x− x′| < δ. If ∥P∥ < δ, then |cj − c′j | < δ and, from

(5.23),

S(P )− s(P ) <
ε

b− a

n∑
j=1

(xj − xj−1) = ε.

Hence, f is integrable on [a, b].
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Theorem: If f is bounded on [a, b], then f is integrable on [a, b] if and only if for

each ε > 0 there is a partition P of [a, b] for which

S(P )− s(P ) < ε.

Theorem: If f is monotonic on [a, b], then f is integrable on [a, b].

Proof : Let P = {x0, x1, . . . , xn} be a partition of [a, b]. Since f is nondecreasing,

f(xj) = Mj = sup
xj−1≤x≤xj

f(x)

f(xj−1) = mj = inf
xj−1≤x≤xj

f(x).

Hence,

S(P )− s(P ) =

n∑
j=1

(f(xj)− f(xj−1))(xj − xj−1).

Since 0 < xj − xj−1 ≤ ∥P∥ and f(xj)− f(xj−1) ≥ 0,

S(P )− s(P ) ≤ ∥P∥
n∑

j=1

(f(xj)− f(xj−1))

= ∥P∥(f(b)− f(a)).

Therefore,

S(P )− s(P ) < ε if ∥P∥(f(b)− f(a)) < ε,

so f is integrable on [a, b].

Theorem: If f and g are integrable on [a, b], then so is f + g, and∫ b

a
(f + g)(x) dx =

∫ b

a
f(x) dx+

∫ b

a
g(x) dx.

Proof : Any Riemann sum of f + g over a partition P = {x0, x1, . . . , xn} of [a, b]
can be written as

σf+g =
∑n

j=1 [f(cj) + g(cj)](xj − xj−1)

=
∑n

j=1 f(cj)(xj − xj−1) +
∑n

j=1 g(cj)(xj − xj−1)

= σf + σg,

where σf and σg are Riemann sums for f and g.
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De�nition of Riemann integral implies that if ε > 0 there are positive numbers

δ1 and δ2 such that ∣∣∣∣σf − ∫ b

a
f(x) dx

∣∣∣∣ <
ε

2
if ∥P∥ < δ1

and∣∣∣∣σg − ∫ b

a
g(x) dx

∣∣∣∣ <
ε

2
if ∥P∥ < δ2.

If ∥P∥ < δ = min(δ1, δ2), then∣∣∣∣σf+g −
∫ b

a
f(x) dx−

∫ b

a
g(x) dx

∣∣∣∣ =

∣∣∣∣(σf − ∫ b

a
f(x) dx

)
+

(
σg −

∫ b

a
g(x) dx

)∣∣∣∣
≤

∣∣∣∣σf − ∫ b

a
f(x) dx

∣∣∣∣+ ∣∣∣∣σg − ∫ b

a
g(x) dx

∣∣∣∣
<

ε

2
+

ε

2
= ε,

so the conclusion follows from De�nition.

Example: Determine whether the function f(x) = 1 + x is integrable on [a, b]?

Solution: If

f(x) = sinx and g(x) =
1

x
, x ̸= 0,

then

h(x) = f(g(x)) = sin
1

x
, x ̸= 0,

and

h′(x) = f ′(g(x))g(x) =

(
cos

1

x

)(
− 1

x2

)
, x ̸= 0.

Theorem: If f is integrable on [a, b] and c is a constant, then cf is integrable on

[a, b] and ∫ b

a
cf(x) dx = c

∫ b

a
f(x) dx.

Proof : See Lecture.

Theorem: If f1, f2, . . . , fn are integrable on [a, b] and c1, c2, . . . , cn are constants,

then c1f1 + c2f2 + · · ·+ cnfn is integrable on [a, b] and∫ b

a
(c1f1 + c2f2 + · · ·+ cnfn)(x) dx = c1

∫ b

a
f1(x) dx

+ · · ·+ cn

∫ b

a
fn(x) dx.
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Proof : See Lecture.

Theorem: If f and g are integrable on [a, b] and f(x) ≤ g(x) for a ≤ x ≤ b, then∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx.

Proof : Since g(x)− f(x) ≥ 0, every lower sum of g − f over any partition of [a, b]

is nonnegative.

Therefore, ∫ b

a
(g(x)− f(x)) dx ≥ 0.

Hence, ∫ b
a g(x) dx−

∫ b
a f(x) dx =

∫ b
a (g(x)− f(x)) dx

=
∫ b
a (g(x)− f(x)) dx ≥ 0.

(5.24)

which yields . (The �rst equality in (5.24) follows from Theorems ?? and ??; the

second, from Theorem ??.)

Theorem: If f is integrable on [a, b], then so is |f |, and∣∣∣∣∫ b

a
f(x) dx

∣∣∣∣ ≤ ∫ b

a
|f(x)| dx.

Proof : Let P be a partition of [a, b] and de�ne

Mj = sup{f(x) : xj−1 ≤ x ≤ xj},
mj = inf{f(x) : xj−1 ≤ x ≤ xj},
M j = sup{|f(x)| : xj−1 ≤ x ≤ xj},
mj = inf{|f(x)| : xj−1 ≤ x ≤ xj}.

Then

M j −mj = sup{|f(x)| − |f(x′)| : xj−1 ≤ x, x′ ≤ xj}
≤ sup{|f(x)− f(x′)| : xj−1 ≤ x, x′ ≤ xj}
= Mj −mj .

(5.25)

Therefore,

S(P )− s(P ) ≤ S(P )− s(P ),

where the upper and lower sums on the left are associated with |f | and those on the

right are associated with f .



5.3. Upper and Lower Integrals 143

Suppose that ε > 0. Since f is integrable on [a, b], there is a partition P of [a, b]

such that S(P )− s(P ) < ε.

This inequality and (5.25) imply that S(P ) − s(P ) < ε. Therefore, |f | is inte-
grable on [a, b].

Since

f(x) ≤ |f(x)| and − f(x) ≤ |f(x)|, a ≤ x ≤ b,

We have∫ b

a
f(x) dx ≤

∫ b

a
|f(x)| dx and −

∫ b

a
f(x) dx ≤

∫ b

a
|f(x)| dx,

hence the result.

Theorem: If f and g are integrable on [a, b], then so is the product fg.

Proof : We consider the case where f and g are nonnegative, and leave the rest of

the proof to you. The subscripts f , g, and fg in the following argument identify the

functions with which the various quantities are associated. We assume that neither

f nor g is identically zero on [a, b], since the conclusion is obvious if one of them is.

If P = {x0, x1, . . . , xn} is a partition of [a, b], then

Sfg(P )− sfg(p) =
n∑

j=1

(Mfg,j −mfg,j)(xj − xj−1). (5.26)

Since f and g are nonnegative, Mfg,j ≤Mf,jMg,j and mfg,j ≥ mf,jmg,j . Hence,

Mfg,j −mfg,j ≤ Mf,jMg,j −mf,jmg,j

= (Mf,j −mf,j)Mg,j +mf,j(Mg,j −mg,j)

≤ Mg(Mf,j −mf,j) +Mf (Mg,j −mg,j),

where Mf and Mg are upper bounds for f and g on [a, b].

From (5.26) and the last inequality,

Sfg(P )− sfg(P ) ≤Mg[Sf (P )− sf (P )] +Mf [Sg(P )− sg(P )]. (5.27)

Now suppose that ε > 0. There are partitions P1 and P2 of [a, b] such that

Sf (P1)− sf (P1) <
ε

2Mg
and Sg(P2)− sg(P2) <

ε

2Mf
. (5.28)

If P is a re�nement of both P1 and P2, then (5.28) and we can write

Sf (P )− sf (P ) <
ε

2Mg
and Sg(P )− sg(P ) <

ε

2Mf
.
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This and (5.27) yield

Sfg(P )− sfg(P ) <
ε

2
+

ε

2
= ε.

Therefore, fg is integrable on [a, b], by Theorem ??.

Theorem: Suppose that u is continuous and v is integrable and nonnegative on

[a, b]. Then ∫ b

a
u(x)v(x) dx = u(c)

∫ b

a
v(x) dx (5.29)

for some c in [a, b].

Proof : Since u is continuous implies u is integrable on [a, b]. The function uv is

integrable on [a, b].

If m = min{u(x) : a ≤ x ≤ b} and M = max{u(x) : a ≤ x ≤ b}, then

m ≤ u(x) ≤M

and, since v(x) ≥ 0,

mv(x) ≤ u(x)v(x) ≤Mv(x).

Therefore, we can write

m

∫ b

a
v(x) dx ≤

∫ b

a
u(x)v(x) dx ≤M

∫ b

a
v(x) dx. (5.30)

This implies that (5.32) holds for any c in [a, b] if
∫ b
a v(x) dx = 0.

If
∫ b
a v(x) dx ̸= 0, let

u =

∫ b
a u(x)v(x) dx∫ b

a v(x) dx
(5.31)

Since
∫ b
a v(x) dx > 0 in this case (why?), (5.33) implies that m ≤ u ≤ M . The

intermediate value theorem implies that u = u(c) for some c in [a, b]. This implies

(5.32).

Theorem: Suppose that u is continuous and v is integrable and nonnegative on

[a, b]. Then ∫ b

a
u(x)v(x) dx = u(c)

∫ b

a
v(x) dx (5.32)

for some c in [a, b].

Proof : Since u is continuous implies u is integrable on [a, b]. The function uv is

integrable on [a, b].

If m = min{u(x) : a ≤ x ≤ b} and M = max{u(x) : a ≤ x ≤ b}, then

m ≤ u(x) ≤M



5.3. Upper and Lower Integrals 145

and, since v(x) ≥ 0,

mv(x) ≤ u(x)v(x) ≤Mv(x).

Proof : Therefore, we can write

m

∫ b

a
v(x) dx ≤

∫ b

a
u(x)v(x) dx ≤M

∫ b

a
v(x) dx. (5.33)

This implies that (5.32) holds for any c in [a, b] if
∫ b
a v(x) dx = 0.

If
∫ b
a v(x) dx ̸= 0, let

u =

∫ b
a u(x)v(x) dx∫ b

a v(x) dx
(5.34)

Since
∫ b
a v(x) dx > 0 in this case (why?), (5.33) implies that m ≤ u ≤ M . The

intermediate value theorem implies that u = u(c) for some c in [a, b]. This implies

(5.32).

Average of u(x) on [a, b] and weighted average : Recall the following

u =

∫ b
a u(x)v(x) dx∫ b

a v(x)dx

If v(x) = 1, we have

u =
1

b− a

∫ b

a
u(x)dx,

is known as average of u(x) over [a, b].

Theorem: If f is integrable on [a, b] and a ≤ a1 < b1 ≤ b, then f is integrable on

[a1, b1].

Proof : Suppose that ε > 0, there is a partition P = {x0, x1, . . . , xn} of [a, b] such
that

S(P )− s(P ) =

n∑
j=1

(Mj −mj)(xj − xj−1) < ε. (5.35)

We may assume that a1 and b1 are partition points of P , because if not they can

be inserted to obtain a re�nement P ′ such that S(P ′)− s(P ′) ≤ S(P )− s(P ).

Let a1 = xr and b1 = xs. Since every term in (5.35) is nonnegative,

s∑
j=r+1

(Mj −mj)(xj − xj−1) < ε.

Theorem: If f is integrable on [a, b] and a ≤ a1 < b1 ≤ b, then f is integrable on

[a1, b1].
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Proof : Thus, P = {xr, xr+1, . . . , xs} is a partition of [a1, b1] over which the upper

and lower sums of f satisfy

S(P )− s(P ) < ε.

Therefore, f is integrable on [a1, b1].

If f is integrable on [a, b] and a ≤ a1 < b1 ≤ b, then f is integrable on [a1, b1].

Theorem: If f is integrable on [a, b] and [b, c], then f is integrable on [a, c].∫ c

a
f(x) dx =

∫ b

a
f(x) dx+

∫ c

b
f(x) dx. (5.36)

So far we have de�ned
∫ β
α f(x) dx only for the case where α < β.

If α < β, we de�ne ∫ α

β
f(x) dx = −

∫ β

α
f(x) dx.

∫ α

α
f(x) dx = 0.

Theorem: If f is integrable on [a, b] and [b, c], then f is integrable on [a, c].∫ c

a
f(x) dx =

∫ b

a
f(x) dx+

∫ c

b
f(x) dx. (5.37)

Proof : See Lecture.

5.4 Fundamental Theorem of Calculus

Theorem: If f is integrable on [a, b] and a ≤ c ≤ b, then the function F de�ned by

F (x) =

∫ x

c
f(t) dt

satis�es a Lipschitz condition on [a, b], and is therefore continuous on [a, b].

Proof : If x and x′ are in [a, b], then

F (x)− F (x′) =

∫ x

c
f(t) dt−

∫ x′

c
f(t) dt =

∫ x

x′
f(t) dt.

Since |f(t)| ≤ K (a ≤ t ≤ b) for some constant K,∣∣∣∣∫ x

x′
f(t) dt

∣∣∣∣ ≤ K|x− x′|, a ≤ x, x′ ≤ b.
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Theorem: If f is integrable on [a, b] and a ≤ c ≤ b, then the function F de�ned by

F (x) =

∫ x

c
f(t) dt

satis�es a Lipschitz condition on [a, b], and is therefore continuous on [a, b].

Proof : Consequently,

|F (x)− F (x′)| ≤ K|x− x′|, a ≤ x, x′ ≤ b.

Theorem: If f is integrable on [a, b] and a ≤ c ≤ b, then F (x) =
∫ x
c f(t) dt is

di�erentiable at any point x0 in (a, b) where f is continuous, with F ′(x0) = f(x0).

If f is continuous from the right at a, then F ′
+(a) = f(a). If f is continuous

from the left at b, then F ′
−(b) = f(b).

Proof : Since
1

x− x0

∫ x

x0

f(x0) dt = f(x0).

We can write

F (x)− F (x0)

x− x0
− f(x0) =

1

x− x0

∫ x

x0

[f(t)− f(x0)] dt.

From this∣∣∣∣F (x)− F (x0)

x− x0
− f(x0)

∣∣∣∣ ≤ 1

|x− x0|

∣∣∣∣∫ x

x0

|f(t)− f(x0)| dt
∣∣∣∣ .

Since f is continuous at x0, there is for each ε > 0 a δ > 0 such that

|f(t)− f(x0)| < ε if |x− x0| < δ

and t is between x and x0.

Therefore, we have∣∣∣∣F (x)− F (x0)

x− x0
− f(x0)

∣∣∣∣ < ε
|x− x0|
|x− x0|

= ε if 0 < |x− x0| < δ.

Hence, F ′(x0) = f(x0).

Theorem: If f is integrable on [a, b] and a ≤ c ≤ b, then F (x) =
∫ x
c f(t) dt is

di�erentiable at any point x0 in (a, b) where f is continuous, with F ′(x0) = f(x0).

If f is continuous from the right at a, then F ′
+(a) = f(a). If f is continuous

from the left at b, then F ′
−(b) = f(b).
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Example: If

f(x) =

{
x, 0 ≤ x ≤ 1,

x+ 1, 1 < x ≤ 2.

Then the function

F (x) =

∫ x

0
f(t) dt =


x2

2 , 0 < x ≤ 1,

x2

2 + x− 1, 1 < x ≤ 2,

is continuous on [0, 2].

We can conclude

F ′(x) =

 x = f(x), 0 < x < 1,

x+ 1 = f(x), 1 < x < 2.

F ′
+(0) = lim

x→0+

F (x)− F (0)

x
= lim

x→0+

(x2/2)− 0

x
= 0 = f(0),

F ′
−(2) = lim

x→2−

F (x)− F (2)

x− 2
= lim

x→2−

(x2/2) + x− 1− 3

x− 2

= lim
x→2−

x+ 4

2
= 3 = f(2).

F does not have a derivative at x = 1, where f is discontinuous, since

F ′
−(1) = 1 and F ′

+(1) = 2.

Theorem: Suppose that F is continuous on the closed interval [a, b] and di�eren-

tiable on the open interval (a, b), and f is integrable on [a, b].

Suppose also that

F ′(x) = f(x), a < x < b.

Then ∫ b

a
f(x) dx = F (b)− F (a). (5.38)

Proof : If P = {x0, x1, . . . , xn} is a partition of [a, b], then

F (b)− F (a) =

n∑
j=1

(F (xj)− F (xj−1)). (5.39)

From mean value theorem, there is in each open interval (xj−1, xj) a point cj such

that

F (xj)− F (xj−1) = f(cj)(xj − xj−1).
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Hence, (5.39) can be written as

F (b)− F (a) =
n∑

j=1

f(cj)(xj − xj−1) = σ,

where σ is a Riemann sum for f over P .

Since f is integrable on [a, b], there is for each ε > 0 a δ > 0 such that∣∣∣∣σ − ∫ b

a
f(x) dx

∣∣∣∣ < ε if ∥P∥ < δ.

Therefore, ∣∣∣∣F (b)− F (a)−
∫ b

a
f(x) dx

∣∣∣∣ < ε

for every ε > 0.

Lemma: If f ′ is integrable on [a, b], then∫ b

a
f ′(x) dx = f(b)− f(a).

Proof : See Lecture.

5.4.1 Anti-derivative of a Function

Anti-derivative of a function: A function F is an antiderivative of f on [a, b] if

F is continuous on [a, b] and di�erentiable on (a, b), with

F ′(x) = f(x), a < x < b.

If F is an antiderivative of f on [a, b], then so is F + c for any constant c.

Conversely, if F1 and F2 are antiderivatives of f on [a, b], then F1 − F2 is constant

on [a, b].

Theorem: If f is continuous on [a, b], then f has an antiderivative on [a, b].

Moreover, if F is any antiderivative of f on [a, b], then∫ b

a
f(x) dx = F (b)− F (a).

Proof : The function F0(x) =
∫ x
a f(t) dt is continuous on [a, b].

Furthermore, F ′
0(x) = f(x) on (a, b) by previous theorem.

Therefore, F0 is an antiderivative of f on [a, b].
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Now let F = F0 + c (c = constant) be an arbitrary antiderivative of f on [a, b].

Then

F (b)− F (a) =

∫ b

a
f(x) dx+ c−

∫ a

a
f(x) dx− c =

∫ b

a
f(x) dx.

When applying this theorem, we will use the familiar notation

F (b)− F (a) = F (x)

∣∣∣∣b
a

.

5.5 Integration by Parts

Theorem: If u′ and v′ are integrable on [a, b], then∫ b

a
u(x)v′(x) dx = u(x)v(x)

∣∣∣∣b
a

−
∫ b

a
v(x)u′(x) dx. (5.40)

Proof : Since u and v are continuous on [a, b], they are integrable on [a, b].

Therefore, using the product of two integrable function is integrable and sum of

two integrable functions is integrable imply

(uv)′ = u′v + uv′

is integrable on [a, b].

We have ∫ b

a
[u(x)v′(x) + u′(x)v(x)] dx = u(x)v(x)

∣∣∣∣b
a

,

Theorem: Suppose that f ′ is nonnegative and integrable and g is continuous on

[a, b]. Then ∫ b

a
f(x)g(x) dx = f(a)

∫ c

a
g(x) dx+ f(b)

∫ b

c
g(x) dx (5.41)

for some c in [a, b].

Proof : Since f is di�erentiable on [a, b], it is continuous on [a, b]. Since g is contin-

uous on [a, b], so is fg.

Since we know if f is continuous then f is integrable, thus the integrals in (5.41)

exist. If

G(x) =

∫ x

a
g(t) dt, (5.42)

then G′(x) = g(x), a < x < b.

Therefore, by using integration by parts with u = f and v = G yields∫ b

a
f(x)g(x) dx = f(x)G(x)

∣∣∣∣b
a

−
∫ b

a
f ′(x)G(x) dx. (5.43)
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Since f ′ is nonnegative and G is continuous, the �rst mean value theorem of

integral implies that ∫ b

a
f ′(x)G(x) dx = G(c)

∫ b

a
f ′(x) dx (5.44)

for some c in [a, b].

But we know that ∫ b

a
f ′(x) dx = f(b)− f(a).

From this and (5.42), (5.44) can be rewritten as∫ b

a
f ′(x)G(x) dx = (f(b)− f(a))

∫ c

a
g(x) dx.

Substituting this into (5.43) and noting that G(a) = 0 yields∫ b

a
f(x)g(x) dx = f(b)

∫ b

a
g(x) dx− (f(b)− f(a))

∫ c

a
g(x) dx,

= f(a)

∫ c

a
g(x) dx+ f(b)

(∫ b

a
g(x) dx

−
∫ a

c
g(x) dx

)
= f(a)

∫ c

a
g(x) dx+ f(b)

∫ b

c
g(x) dx.

5.6 Integration by Substitution

Theorem: Suppose that the transformation x = ϕ(t) maps the interval c ≤ t ≤ d

into the interval a ≤ x ≤ b, with ϕ(c) = α and ϕ(d) = β, and let f be continuous

on [a, b].

Let ϕ′ be integrable on [c, d]. Then∫ β

α
f(x) dx =

∫ d

c
f(ϕ(t))ϕ′(t) dt. (5.45)

Proof : Both integrals in (5.45) exist: the one on the left by the fact that if f

is continuous on [a, b], then f is integrable on [a, b], the one on the right by the

continuity of f(ϕ(t)).

The function

F (x) =

∫ x

a
f(y) dy

is an antiderivative of f on [a, b] and, therefore, also on the closed interval with

endpoints α and β.
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Hence, by fundamental theorem of calculus,∫ β

α
f(x) dx = F (β)− F (α). (5.46)

By the chain rule, the function

G(t) = F (ϕ(t))

is an antiderivative of f(ϕ(t))ϕ′(t) on [c, d]. Therefore, we have∫ d

c
f(ϕ(t))ϕ′(t) dt = G(d)−G(c) = F (ϕ(d))− F (ϕ(c))

= F (β)− F (α).

Comparing this with (5.46) yields (5.45).

Example: Evaluate the integral

I =

1/
√
2∫

−1/
√
2

(1− 2x2)(1− x2)−1/2dx.

Solution: We let

f(x) = (1− 2x2)(1− x2)−1/2, −1/
√
2 ≤ x ≤ 1/

√
2,

and

x = ϕ(t) = sin t, −π/4 ≤ t ≤ π/4.

Then ϕ′(t) = cos t and

I =
1/

√
2∫

−1/
√
2

f(x) dx =
π/4∫

−π/4

f(sin t) cos t dt

=
π/4∫

−π/4

(1− 2 sin2 t)(1− sin2 t)−1/2 cos t dt.

(5.47)

(1− sin2 t)−1/2 = (cos t)−1,−π/4 ≤ t ≤ π/4

and

1− 2 sin2 t = cos 2t,

(5.47) yields

I =

π/4∫
−π/4

cos 2t dt =
sin 2t

2

∣∣∣∣π/4
−π/4

= 1.

Example: Evaluate the integral

I =

∫ 5π

0

sin t

2 + cos t
dt.
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