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Topic No. 1

Group Theory

1

Properties of Real 
Numbers

Group Theory

2

Number Systems

ℕ ={ 1, 2, 3, … }

ℤ={…, -2, -1, 0, 1, 2, … }

ℚ={p/q | p, q ∊ ℤ and q≠0}

ℚˊ= Set of Irrational 
Numbers

ℝ=ℚ ∪ ℚˊ

Properties of Real Numbers

3

0.131313…=0.13+ 
0.0013+0.000013+…

=13/100+13/10000+

13/1000000+…

=(13/100)(1+1/100+

1/10000+…)

=(13/100)(100/99)

=13/99

Properties of Real Numbers

4

 e=2.718281828459045… ∊ ℚˊ

 √2=1.414213562373095… ∊ ℚˊ

 √5=2.23606797749978… ∊ ℚˊ

 ∀ a, b ∊ ℝ, a.b ∊ ℝ

 ∀ a, b ∊ ℝ, a+b ∊ ℝ

 ∀ a, b, c ∊ ℝ, (a+b)+c=a+(b+c)

 For example, (1/4+3)+ √7=(13+4 √7)/4=1/4+(3+ √7)

Properties of Real Numbers

5

 ∀ a, b, c ∊ ℝ, (ab)c=a(bc)

 For instance, ((-2/3)4)√2=(-8/3) √2 =(-2/3)(4 √2)

 For every a ∊ ℝ and 0 ∊ ℝ, a+0=a=0+a

 For every a ∊ ℝ and 1 ∊ ℝ, a.1=a=1.a

 For every a ∊ ℝ there exists -a ∊ ℝ such that 

a+(-a)=0=(-a)+a

 For every a ∊ ℝ\{0} there exists 1/a ∊ ℝ\{0} such that 

a(1/a)=1=(1/a)a

 ∀ a, b ∊ ℝ, a+b=b+a

 ∀ a, b ∊ ℝ, a.b=b.a

Properties of Real Numbers

6
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Topic No. 2

Group Theory

7

Properties of Complex 
Numbers

Group Theory

8

 ℂ={a+bi | a, b ∊ ℝ}

 ∀ a+bi, c+di ∊ ℂ, (a+bi)+(c+di)=(a+c)+(b+d)i ∊ ℂ

 ∀ a+bi, c+di ∊ ℂ, (a+bi).(c+di)=(ac-bd)+(ad+bc)i ∊ ℂ

 ∀ a+bi, c+di, e+fi ∊ ℂ, [(a+bi)+(c+di)]+(e+fi)=

[(a+c)+(b+d)i]+(e+fi)=[(a+c)+e]+[(b+d)+f]i

=[a+(c+e)]+[b+(d+f)]i=(a+bi)+[(c+e)+(d+f)i]=

(a+bi)+[(c+di)+(e+fi)]

Properties of Complex Numbers

9

 ∀ a+bi, c+di, e+fi ∊ ℂ, [(a+bi).(c+di)].(e+fi)

=[(ac-bd)+(bc+ad)i].(e+fi)

=[(ac-bd)e-(bc+ad)f]+[(bc+ad)e+(ac-bd)f]i

=[a(ce-df)-b(de+cf)]+[a(de+cf)]+b(ce-df)]i

=(a+bi).[(ce-df)+(de+cf)i]=(a+bi).[(c+di).(e+fi)]

 For every a+bi ∊ ℂ and 0=0+0i ∊ ℂ, (a+bi)+0= 

(a+bi)+(0+0i)=(a+0)+(b+0)i=a+bi=0+(a+bi)

 For every a+bi ∊ ℂ and 1=1+0i ∊ ℂ, (a+bi).1= 

(a+bi).(1+0i)=(a.1-0b)+(b.1+0.a)i=a+bi=1.(a+bi)

Properties of Complex Numbers

10

 For every a+bi ∊ ℂ there exists -a-bi ∊ ℂ such that 

(a+bi)+(-a-bi)=(a+(-a))+(b+(-b))i=0+0i=0=(-a-bi)+(a+bi)

 For every a+bi ∊ ℂ\{0} there exists  

1/(a+bi)=a/(a2+b2)-(b/(a2+b2))i ∊ ℂ\{0} 

such that (a+bi).(a/(a2+b2)-(b/(a2+b2))i )

= (a2+b2)/(a2+b2)+((ab-ab)/(a2+b2))i=1+0i=1

=(a/(a2+b2)-(b/(a2+b2))i )(a+bi) 

Properties of Complex Numbers

11

 ∀ a+bi, c+di ∊ ℂ, 
(a+bi)+(c+di)=(a+c)+(b+d)i

=(c+a)+(d+b)i=(c+di)+(a+bi)

 ∀ a+bi, c+di ∊ ℂ,    

(a+bi).(c+di)

=(ac-bd)+ (ad+bc)i

=(ca-db)+(cb+da)i    

=(c+di).(a+bi) 

Properties of Complex Numbers

12
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Topic No. 3

Group Theory

13

Binary Operations

Group Theory

14

Definition

A binary operation ∗ on a 
set S is a function 
mapping S x S into S. 

For each (a, b) ∈ S x S, we 
will denote the element 
∗((a, b)) of S by a∗b.

Binary Operations

15

 Usual addition ‘+’ is a 
binary operation on the 
sets ℝ, ℂ, ℚ, ℤ, ℝ+, ℚ+, 
ℤ+

 Usual multiplication ‘.’ is 
a binary operation on 
the sets ℝ, ℂ, ℚ, ℤ, ℝ+, 
ℚ+, ℤ+

 Usual multiplication ‘.’ is 
a binary operation on 
the sets ℝ\{0}, ℂ\{0}, 
ℚ\{0}, ℤ\{0}

Binary Operations

16

Let M(ℝ) be the set of all 
matrices with real entries.

The usual matrix addition 
is not a binary operation 
on this set since A+B is 
not defined for an 
ordered pair (A, B) of 
matrices having different 
numbers of rows or of 
columns. 

Binary Operations

17

Usual addition ‘+’ is not a 
binary operation on the 
sets ℝ\{0}, ℂ\{0}, ℚ\{0}, 
ℤ\{0} since

2+(-2)=0 ∉ ℤ\{0}⊂ℚ\{0} 

⊂ ℝ\{0} ⊂ ℂ\{0}.

Binary Operations

18
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Binary Operations

Definition

Let ∗ be a binary 
operation on S and let H 
be a subset of S. 

The subset H is closed 
under ∗ if for all a, b ∈ H 
we also have a∗b ∈ H. 

In this case, the binary 
operation on H given by 
restricting ∗ to H is the 
induced operation of ∗ 
on H. 

19

Usual addition ‘+’ on the 
set ℝ of real numbers 
does not induce a binary 
operation on the set 
ℝ\{0} of nonzero real 
numbers because 
2∈ℝ\{0} and -2∈ℝ\{0},

but 2+(-2)=0 ∉ ℝ\{0}.

Thus ℝ\{0} is not    

closed under +.

Binary Operations

20

Usual multiplication ‘.’ on 
the sets ℝ and ℚ induces 
a binary operation on the 
sets ℝ\{0}, ℝ+ and ℚ\{0},

ℚ+, respectively.

Binary Operations

21

Binary Operations

Group Theory

22

 Let      be a set and       

Binary Operations

S
, .a b S

23

 Let      be a set and       

 A binary operation     
on      is a rule which 
assigns to any ordered 
pair             an element                                 

.

Binary Operations

S
, .a b S

S


( , )a b

a b S 

24
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Examples

 For

Binary Operations

, , , , ,S 

a b a b  

25

Examples

 For

 For



Binary Operations

, , , , ,S 

a b a b  

, , , , ,S 

a b ab 

26

Examples

 For

 For

 For

Binary Operations

, , , , ,S 
a b a b  

, , , , ,S 

a b ab 

, , , ,S 
a b a b  

27

Examples

 For

 For

 For

 For   

Binary Operations

, , , , ,S 

a b a b  

, , , , ,S 

a b ab 

, , , ,S 
a b a b  

, , , ,S 

min( , )a b a b 

28

Examples

 For

Binary Operations

 1,2,3S 

a b b 

29

Examples

 For

 For example

Binary Operations

 1,2,3S 

a b b 

1 2 2,

1 1 1,

2 3 3.

 

 

 

30
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Examples

 For                                         is not everywhere 
defined  since no rational number is assigned by          
this rule to the pair                                                    

Binary Operations

,S  /a b a b 

(3,0).

31

Examples

 For                                         is not everywhere 
defined  since no rational number is assigned by          
this rule to the pair 

 For                                       is not a binary operation 
on        since        is not closed under 

Binary Operations

,S  /a b a b 

(3,0).

,S  /a b a b 
  .

32

Definition

 A binary operation     
on a set      is 
commutative if and 
only if

for all  

Binary Operations

S


a b b a  

, .a b S

33

Definition

 A binary operation     
on a set      is 
associative if

for all

Binary Operations

S


, , .a b c S

( ) ( )a b c a b c    

34

Examples

 The binary operation     defined by

is commutative and associative in    

Binary Operations

a b a b  



.

35

Examples

 The binary operation     defined by

is commutative and associative in   

 The binary operation     defined by 

is commutative and associative in 

Binary Operations

a b a b  



.



a b ab 

.

36
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 The binary operation defined by

is not commutative in  

Binary Operations

a b a b  

.

37

 The binary operation defined by

is not commutative in  

 The binary operation given by                         is

not associative in

Binary Operations

a b a b  

.

a b a b  

.

38

 The binary operation defined by

is not commutative in  

 The binary operation given by                         is

not associative in

 For instance, 

but

Binary Operations

a b a b  

.

a b a b  

.

( ) (4 7) 2 5a b c      

( ) 4 (7 2) 1.a b c      

39

Bijective Maps

Group Theory

40

Definition

 A function                       is

called injective or one-to-

one if 

.

Bijective Maps

:f X Y

   1 2 1 2f x f x x x  

41

Definition

 A function                       is

called injective or one-to-

one if 

.

or

.

Bijective Maps

:f X Y

   1 2 1 2f x f x x x  

   1 2 1 2x x f x f x  

42
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Definition

 A function                       is

called surjective or onto if 

for any            , there exists

with                   .

Bijective Maps

:f X Y

y Y

x X ( )y f x

43

Definition

 A function                       is

called surjective or onto if 

for any            , there exists

with                   .

i.e.  if the image            is       

the whole set     .

Bijective Maps

:f X Y

y Y

x X ( )y f x

( )f x

Y

44

Definition

 A bijective function or one-
to-one correspondence is a

function that is both

injective and surjective.

Bijective Maps

45

Example

Bijective Maps

: , ( ) 10xf f x 

46

Example

Therefore,      is one-to-one.

Bijective Maps

: , ( ) 10xf f x 

( ) ( ) 10 10x yf x f y x y    

f

47

Example

Therefore,      is one-to-one.

If              ,   then                        such that 

.

Bijective Maps

: , ( ) 10xf f x 

( ) ( ) 10 10x yf x f y x y    

r  10log r
10log

10(log ) 10
r

f r r 

f

48
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Example

Therefore,      is one-to-one.

If              ,   then                        such that 

.

It implies that      is onto.

Bijective Maps

: , ( ) 10xf f x 

( ) ( ) 10 10x yf x f y x y    

r  10log r
10log

10(log ) 10
r

f r r 

f

f

49

Example

Therefore,      is one-to-one.

If              ,   then                        such that 

.

It implies that      is onto.

Hence      is bijective.  

Bijective Maps

: , ( ) 10xf f x 

( ) ( ) 10 10x yf x f y x y    

r  10log r
10log

10(log ) 10
r

f r r 

f

f

f

50

Example

Bijective Maps

: , ( ) 3f f m m 

51

Example

Therefore,      is one-to-one.

Bijective Maps

: , ( ) 3f f m m 

( ) ( ) 3 3f m f n m n m n    

f

52

Example

Therefore,      is one-to-one.

We assume that              is the pre-image of             ,  

then                                                             .

It implies that      is not onto.

Bijective Maps

: , ( ) 3f f m m 

( ) ( ) 3 3f m f n m n m n    

4m

( ) 3 4 4 / 3f m m m    

f

f

53

Example

.

Bijective Maps

2: , ( )f f x x 

54
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Example

.

but              .

Therefore,      is not one-to-one.

Bijective Maps

2: , ( )f f x x 

( 3) (3) 9f f  

f

3 3 

55

Example

.

but              .

Therefore,      is not one-to-one.

We assume that              is the pre-image of               ,  

then                                                             .

It implies that      is not onto.

Bijective Maps

2: , ( )f f x x 

( 3) (3) 9f f  

5 x
2( ) 5 5f x x x      

f

f

3 3 

56

Definition

 Let                       be a 
function and let       be a 
subset of      . The image of 

under       is given by                   

.

Bijective Maps

:f X Y
H

   { | }f H f h h H 

X

H f

57

Definition

 A function                       is

called surjective or onto if 

.

Bijective Maps

:f X Y

 f X Y

58

Example

Bijective Maps

: , ( ) 10xf f x 

59

Example

Therefore,       is onto.

Bijective Maps

: , ( ) 10xf f x 

 f 

f

60
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Example

Bijective Maps

: , ( ) 3f f m m 

61

Example

It implies that      is not onto.

Bijective Maps

: , ( ) 3f f m m 

  3f  

f

62

Example

Bijective Maps

2: , ( )f f x x 

63

Example

So,        is not onto.                                               

Bijective Maps

2: , ( )f f x x 

  {0}f  

f

64

Inversion Theorem

Group Theory

65

Lemma

If                       and                      are two functions, then:

(i)   If        and      are injective,            is injective.

Inversion Theorem

f

:f X Y :g Y Z

g g f

66
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Lemma

If                       and                      are two functions, then:

(i)   If        and      are injective,            is injective.

(ii)  If       and      are surjective,            is surjective.

Inversion Theorem

f

:f X Y :g Y Z

g g f
f g g f

67

Lemma

If                       and                      are two functions, then:

(i)   If        and      are injective,            is injective.

(ii)  If       and      are surjective,            is surjective.

(iii) If      and      are bijective,             is bijective.

Inversion Theorem

f

:f X Y :g Y Z

g g f
f g g f

f g g f

68

Proof

(i)   Suppose that                                                  .   Then,

.

Inversion Theorem

     1 2g f x g f x

         1 2 1 2 1 2g f x g f x f x f x x x    

69

Proof

(i)   Suppose that                                                   .   Then,

.

(ii)   Let             . Since      is surjective, there exists              
with                   . 

Inversion Theorem

     1 2g f x g f x

y Yz Z g

( )g y z

         1 2 1 2 1 2g f x g f x f x f x x x    

70

Proof

(i)   Suppose that                                                  .   Then,

.

(ii)   Let             . Since      is surjective, there exists              
with                   . Since      is also surjective, there exists

with                   .

Inversion Theorem

     1 2g f x g f x

y Yz Z g

( )g y z f

         1 2 1 2 1 2g f x g f x f x f x x x    

x X ( )f x y

71

Proof

(i)   Suppose that                                                  .   Then,

.

(ii)   Let             . Since      is surjective, there exists              
with                   . Since      is also surjective, there exists

with                   . Hence,

.

So,             is surjective.

Inversion Theorem

     1 2g f x g f x

y Yz Z g

( )g y z f

         1 2 1 2 1 2g f x g f x f x f x x x    

x X ( )f x y

       g f x g f x g y z  

g f

72
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Proof

(i)   Suppose that                                                  .   Then,

.

(ii)   Let             . Since      is surjective, there exists              
with                   . Since      is also surjective, there exists

with                   . Hence,

.

So,             is surjective.

(iii)   This follows from parts (i) and (ii).

Inversion Theorem

     1 2g f x g f x

y Yz Z g

( )g y z f

         1 2 1 2 1 2g f x g f x f x f x x x    

x X ( )f x y

       g f x g f x g y z  

g f

73

Theorem

The function                        has 
an inverse if and only if       is 
bijective.

Inversion Theorem

:f X Y
f

74

Proof

Suppose that                      is an inverse of     . 

Inversion Theorem

f:h Y X

75

Proof

Suppose that                      is an inverse of     . 

The function      is injective because

.

Inversion Theorem

         1 2 1 2 1 2f x f x h f x h f x x x    

f:h Y X

f

76

Proof

Suppose that                      is an inverse of     . 

The function      is injective because

.

The function      is surjective because if for any             
with                   , it follows that                                          . 

Inversion Theorem

         1 2 1 2 1 2f x f x h f x h f x x x    

f

y Y

 x h y

:h Y X

f

f

    f x f h y y 

77

Proof

Suppose that                      is an inverse of     . 

The function      is injective because

.

The function      is surjective because if for any             
with                   , it follows that                                          . 

Therefore,       is bijective.

Inversion Theorem

         1 2 1 2 1 2f x f x h f x h f x x x    

f

y Y

 x h y

:h Y X

f

f

    f x f h y y 

f

78
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Proof

Conversely, suppose that      is bijective.  We define the 
function                       as follows.                                                                                   

Inversion Theorem

f

:h Y X

79

Proof

Conversely, suppose that      is bijective.  We define the 
function                       as follows. For any             , there 
exists              with                   .

Since      is injective, there is only one such element    .

Inversion Theorem

y Y

x

f

f

:h Y X
x X  y f x

80

Proof

Conversely, suppose that      is bijective.  We define the 
function                       as follows. For any             , there 
exists              with                   .

Since      is injective, there is only one such element    .

Define                   . This function     is an inverse of      
because

and                                         .   

Inversion Theorem

y Y

x

f

f

    f h y f x y 

 h y x

:h Y X
x X  y f x

h f

    h f x h y x 

81

 Isomorphic Binary 
Structures

Group Theory

82

 Let us consider a binary algebraic structure             to 
be a set      together with a binary operation     on

Isomorphic Binary Structures

,S 

S  .S

83

 Let us consider a binary algebraic structure             to 
be a set      together with a binary operation     on

 Two binary structures             and               are said to 
be isomorphic if there is a one-to-one 
correspondence between the elements     of      and 
the elements      of       such that

and                  

Isomorphic Binary Structures

,S 

S  .S

,S  ,S 

x S
S x

x x y y .x y x y     

84
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 Let us consider a binary algebraic structure             to 
be a set      together with a binary operation     on

 Two binary structures             and               are said to 
be isomorphic if there is a one-to-one 
correspondence between the elements     of      and 
the elements      of       such that

and                  

 A one-to-one correspondence exists if the sets     
and       have the same number of elements.

Isomorphic Binary Structures

( , )S 

S  .S

( , )S  ( , )S 

x S

S x

x x y y .x y x y     

S
S 

85

Definition

 Let             and               be binary algebraic 
structures. An isomorphism of      with       is a one-
to-one function     mapping       onto       such that  

Isomorphic Binary Structures

,S 



,S 

S S 

S S 

( ) ( ) ( ) , .x y x y x y S      

86

How to show binary structures are isomorphic

 Step 1. Define the function      that gives the 
isomorphism of        and

Isomorphic Binary Structures


S .S 

87

How to show binary structures are isomorphic

 Step 1. Define the function      that gives the 
isomorphism of        and

 Step 2. Show that      is one-to-one.

Isomorphic Binary Structures




S .S 

88

How to show binary structures are isomorphic

 Step 1. Define the function      that gives the 
isomorphism of        and

 Step 2. Show that      is one-to-one.

 Step3. Show that      is onto 

Isomorphic Binary Structures




S .S 

 .S 

89

How to show binary structures are isomorphic

 Step 1. Define the function      that gives the 
isomorphism of        and

 Step 2. Show that      is one-to-one.

 Step3. Show that      is onto 

 Step 4. Show that 

Isomorphic Binary Structures




S .S 

 .S 

( ) ( ) ( ) , .x y x y x y S      

90
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Example

 We show that the binary structure               is 
isomorphic to the structure

Isomorphic Binary Structures

,
,. .

91

Example

 We show that the binary structure               is 
isomorphic to the structure

 Step 1. 

Isomorphic Binary Structures

: , ( ) xx e  

,
,. .

92

Example

 We show that the binary structure               is 
isomorphic to the structure

 Step 1. 

 Step 2.

Isomorphic Binary Structures

: , ( ) xx e  

,
,. .

( ) ( ) .x yx y e e x y     

93

Example

 We show that the binary structure               is 
isomorphic to the structure

 Step 1. 

 Step 2.

 Step3. If               , then                    and 

Isomorphic Binary Structures

: , ( ) xx e  

,
,. .

( ) ( ) .x yx y e e x y     

r  ln( )r 
ln(ln ) .rr e r  
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Example

 We show that the binary structure               is 
isomorphic to the structure

 Step 1. 

 Step 2.

 Step3. If               ,   then                    and 

 Step 4. 

Isomorphic Binary Structures

: , ( ) xx e  

( ) ( ) ( ) , .x y x yx y e e e x y x y       

,

,. .

( ) ( ) .x yx y e e x y     

r  ln r
ln(ln ) .rr e r  
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 Isomorphic Binary 
Structures

Group Theory

96
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Example

 We show that the binary structure               is 
isomorphic to the structure               .

Isomorphic Binary Structures

,

2 ,
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Example

 We show that the binary structure               is 
isomorphic to the structure               .

 Step 1. 

Isomorphic Binary Structures

: 2 , ( ) 2m m  

,

2 ,
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Example

 We show that the binary structure               is 
isomorphic to the structure               .

 Step 1. 

 Step 2.                                                                       .

Isomorphic Binary Structures

: 2 , ( ) 2m m  

,

2 ,

( ) ( ) 2 2m n m n m n     
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Example

 We show that the binary structure               is 
isomorphic to the structure               .

 Step 1. 

 Step 2.                                                                       .

 Step3. If               ,   then                            and 

. 

Isomorphic Binary Structures

: 2 , ( ) 2m m  

,

2 ,

( ) ( ) 2 2m n m n m n     

2n / 2m n 

 ( ) 2 / 2m n n  
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Example

 We show that the binary structure               is 
isomorphic to the structure               .

 Step 1. 

 Step 2.                                                                       .

 Step3. If               ,   then                            and 

.

 Step 4.     

.                           

Isomorphic Binary Structures

: 2 , ( ) 2m m  

 ( ) 2 2 2 ( ) ( ) ,m n m n m n m n m n          

,

2 ,

( ) ( ) 2 2m n m n m n     

2n / 2m n 

 ( ) 2 / 2m n n  
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How to show binary structures are not isomorphic

 How do we demonstrate that two binary structures

and                are not isomorphic?

Isomorphic Binary Structures

,S  ,S 

102
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How to show binary structures are not isomorphic

 How do we demonstrate that two binary structures

and                are not isomorphic?

 There is no one-to-one function     from      onto       

with the property

Isomorphic Binary Structures

 S S 

( ) ( ) ( ) , .x y x y x y S      

,S  ,S 

103

How to show binary structures are not isomorphic

 How do we demonstrate that two binary structures

and                are not isomorphic?

 There is no one-to-one function     from      onto       

with the property

 In general, it is not feasible to try every possible 
one-to-one function mapping      onto       and test 
whether it has homomorphism property.

Isomorphic Binary Structures

 S S 

( ) ( ) ( ) , .x y x y x y S      

,S  ,S 

S S 

104

How to show binary structures are not isomorphic

 A structural property of a binary structure is one 
that must be shared by any isomorphic structure.

Isomorphic Binary Structures

105

How to show binary structures are not isomorphic

 A structural property of a binary structure is one 
that must be shared by any isomorphic structure.

 It is not concerned with names or some other 
nonstructural characteristics of the elements.

Isomorphic Binary Structures

106

How to show binary structures are not isomorphic

 A structural property of a binary structure is one 
that must be shared by any isomorphic structure.

 It is not concerned with names or some other 
nonstructural characteristics of the elements.

 A structural property is not concerned with what we 
consider to be the name of the binary operation.

Isomorphic Binary Structures

107

How to show binary structures are not isomorphic

 A structural property of a binary structure is one 
that must be shared by any isomorphic structure.

 It is not concerned with names or some other 
nonstructural characteristics of the elements.

 A structural property is not concerned with what we 
consider to be the name of the binary operation.

 The number of elements in the set      is a structural 
property of             . 

Isomorphic Binary Structures

,S 
S

108
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How to show binary structures are not isomorphic

 In the event that there are one-to-one mappings of

onto      ,  we usually show that              is not

isomorphic to               by showing that one has

some structural property that the other does not

possess. 

Isomorphic Binary Structures

S S  ,S 

,S 

109

Possible Structural 
Properties

 The set has four elements.

Isomorphic Binary Structures

110

Possible Structural 
Properties

 The set has four elements.

 The operation is 
commutative.

Isomorphic Binary Structures

111

Possible Structural 
Properties

 The set has four elements.

 The operation is 
commutative.

 for all            .

Isomorphic Binary Structures

x x x  x S

112

Possible Structural 
Properties

 The set has four elements.

 The operation is 
commutative.

 for all            .

 The  equation 

has a solution     in     

for all               .

Isomorphic Binary Structures

x x x  x S

a x b 

x S

,a b S

113

Possible Nonstructural 
Properties

 The number 4 is an 
element.

Isomorphic Binary Structures

114
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Possible Nonstructural 
Properties

 The number 4 is an 
element.

 The operation is called 
“addition”.

Isomorphic Binary Structures

115

Possible Nonstructural 
Properties

 The number 4 is an 
element.

 The operation is called 
“addition”.

 The elements of      are 
matrices.

Isomorphic Binary Structures

S

116

Possible Nonstructural 
Properties

 The number 4 is an 
element.

 The operation is called 
“addition”.

 The elements of      are 
matrices.

 is a subset of      .

Isomorphic Binary Structures

S

S

117

Example

 The binary structures               

and               are 

not isomorphic because 

has cardinality         

(aleph-null) while  

.                                    

Isomorphic Binary Structures

0

, ,

0 

118

Example

 We prove that the binary structures               and                           

under the usual addition are not isomorphic.  

Isomorphic Binary Structures

,

,

119

Example

 We prove that the binary structures               and                           

under the usual addition are not isomorphic.  

 Both       and       have cardinality       , so there are 
lots of one-to-one functions mapping      onto     .

Isomorphic Binary Structures

0

,

,

120
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Example

 We prove that the binary structures               and                           

under the usual addition are not isomorphic.  

 Both       and       have cardinality       , so there are 
lots of one-to-one functions mapping      onto     .

 The equation                   has a solution     for all 

but this is not the case in     .

Isomorphic Binary Structures

0

,

,

x x c  x

c
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Example

 We prove that the binary structures               and                           

under the usual addition are not isomorphic.  

 Both       and       have cardinality       , so there are 
lots of one-to-one functions mapping      onto     .

 The equation                   has a solution     for all 

but this is not the case in     .

 For example, the equation                   has no solution 
in     .

Isomorphic Binary Structures

0

,

,

x x c  x

c

3x x 

122

Example

 The binary structures               

and               

under usual     

multiplication are 

not isomorphic because 

the equation               

has solution     for all 

but                 has 

no solution in     . 

Isomorphic Binary Structures

,. ,.

.x x c

x

c . 1x x  

123

Example

 The binary structures                        and               

under usual matrix multiplication and number    

multiplication, respectively because multiplication 

of numbers is commutative, but multiplication of 

matrices is not.

Isomorphic Binary Structures

 2 ,.M ,.

124

 Isomorphic Binary 
Structures

Group Theory

125

Example

 Is                                          for             an isomorphism? 

Isomorphic Binary Structures

: ,  ( ) 3n n  n

126
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Example

 Is                                          for             an isomorphism? 



Isomorphic Binary Structures

: , ( ) 3n n  

: ,  ( ) 3n n  n

127

Example

 Is                                          for             an isomorphism? 





Isomorphic Binary Structures

: , ( ) 3n n  

: , 

( ) ( ) 3 3m n m n m n     

( ) 3n n  n

128

Example

 Is                                          for             an isomorphism? 





 Choose              ,                               but                                                                 

Isomorphic Binary Structures

: , ( ) 3n n  

: , 

( ) ( ) 3 3m n m n m n     

5 ( ) 3 5m m  

( ) 3n n  n

5 / 3m  
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Example

 Is                                          for             an isomorphism? 





 Choose              ,                               but                                                                 

 Is                                            homomorphism?    

Isomorphic Binary Structures

: , ( ) 3n n  

 ( ) 3 3 3 ( ) ( ) ,m n m n m n m n m n          

: , 

( ) ( ) 3 3m n m n m n     

5 ( ) 3 5m m  

( ) 3n n  n

5 / 3m  

: , ( ) 3n n  

130

Example

 Is                                          for             an isomorphism? 





 Choose              ,                               but                                                                 

 Is                                            homomorphism?    



Isomorphic Binary Structures

: , ( ) 3n n  

 ( ) 3 3 3 ( ) ( ) ,m n m n m n m n m n          

: , 

( ) ( ) 3 3m n m n m n     

5 ( ) 3 5m m  

( ) 3n n  n

5 / 3m  

: , ( ) 3n n  

, 3 ,  

131

Example

 Is                                            for             an isomorphism? 

Isomorphic Binary Structures

: ,  ( ) 1n n   n

132
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Example

 Is                                            for             an isomorphism? 



Isomorphic Binary Structures

: , ( ) 1n n   

: ,  ( ) 1n n   n

133

Example

 Is                                            for             an isomorphism? 





Isomorphic Binary Structures

: , ( ) 1n n   

: , 

( ) ( ) 1 1m n m n m n       

( ) 1n n   n
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Example

 Is                                            for             an isomorphism? 





 For every             ,  there exists                   such that                                                            

.

Isomorphic Binary Structures

: , ( ) 1n n   

: , 

( ) ( ) 1 1m n m n m n       

n

( 1) 1 1n n n     

( ) 1n n   n

1n 
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Example

 Is                                            for             an isomorphism? 





 For every             ,  there exists                   such that                                                            

.



Isomorphic Binary Structures

: , ( ) 1n n   

( ) 1 ( ) ( ) 2m n m n m n m n          

: , 

( ) ( ) 1 1m n m n m n       

n

( 1) 1 1n n n     

( ) 1n n   n

1n 
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Example

 Is                                             for            isomorphism? 

Isomorphic Binary Structures

: ,  ( ) / 2x x  x
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Example

 Is                                             for            isomorphism? 



Isomorphic Binary Structures

: , ( ) / 2x x  

: ,  ( ) / 2x x  x

138
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Example

 Is                                             for            isomorphism? 





Isomorphic Binary Structures

: , ( ) / 2x x  

: , 

( ) ( ) / 2 / 2x y x y x y     

( ) / 2x x  x
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Example

 Is                                             for            isomorphism? 





 For every             ,  there exists                   such that                                                            

.

Isomorphic Binary Structures

: , ( ) / 2x x  

: , 

( ) ( ) / 2 / 2x y x y x y     

y

(2 ) 2 / 2y y y  

( ) / 2x x  x

2y
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Example

 Is                                             for            isomorphism? 





 For every             ,  there exists                   such that                                                            

.



Isomorphic Binary Structures

: , ( ) / 2x x  

( ) ( ) ( )
2 2 2

x y x y
x y x y  


     

: , 

( ) ( ) / 2 / 2x y x y x y     

y

(2 ) 2 / 2y y y  

( ) / 2x x  x

2y
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Example

 We prove that the binary structures               and                           

under the usual multiplication are not  

isomorphic.  

Isomorphic Binary Structures

,.

,.
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Example

 We prove that the binary structures               and                           

under the usual multiplication are not  

isomorphic.  

 Both       and       have cardinality       , so there are 
lots of one-to-one functions mapping      onto      .

Isomorphic Binary Structures

0

,.

,.





143

Example

 We prove that the binary structures               and                           

under the usual multiplication are not  

isomorphic.  

 Both       and       have cardinality       , so there are 
lots of one-to-one functions mapping      onto      .

 In           there are two elements    such that              , 

namely, 0 and 1. 

Isomorphic Binary Structures

0

,.

,.

.x x x



x



,.
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Example

 We prove that the binary structures               and                           

under the usual multiplication are not  

isomorphic.  

 Both       and       have cardinality       , so there are 
lots of one-to-one functions mapping      onto      .

 In           there are two elements    such that              , 

namely, 0 and 1. 

 However, in             , there is only the single element 
1.

Isomorphic Binary Structures

0

,.

,.

.x x x



x



,.

,.
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 Isomorphic Binary 
Structures

Group Theory

146

Groups

Group Theory

147

Associative Binary 
Operation

 A binary operation     
is called associative if

( ) ( ).a b c a b c    



Group Theory

148

Example

 Can we solve

in       ?

 The equation is 
unsolvable in      since 

3 2x 

3 . 

Group Theory

149

Example

 Can we solve

in      ?

3 2x 

Group Theory

150
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Example

 Can we solve

in      ?

 add       on both sides

3 2x 

3

3 (3 ) 3 2x     

Group Theory
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Example

 Can we solve

in      ?

 add       on both sides

3 2x 

3

3 (3 ) 3 2x     

( 3 3) 3 2x     

Group Theory
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Example

 Can we solve

in      ?

 add       on both sides

 Thus 

3 2x 

3

3 (3 ) 3 2x     

( 3 3) 3 2x     

0 3 2x   

Group Theory
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Example

 Can we solve

in      ?

 add       on both sides

 Thus 

3 2x 

3

3 (3 ) 3 2x     

( 3 3) 3 2x     

0 3 2

1.

x

x

   

  

Group Theory
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Example

 Can we solve

in      ?

 add       on both sides

 Thus 

3 2x 

3

3 (3 ) 3 2x     

( 3 3) 3 2x     

0 3 2

1.

x

x

   

  

1. We use associative 
property

2. Existence of           
with

3. Existence of           
with 

0

3 3 0  

0 x x 

3

Group Theory
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Group(Definition) 

A group              is a set       with binary operation     

satisfying the following axioms  for all                     :

,G  G 
, ,a b c G

Group Theory

156
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Group(Definition) 

A group              is a set       with binary operation     

satisfying the following axioms  for all                     :

1. For                 ,                                                (closure)

( , )G  G 
, ,a b c G

,a b G a b G 

Group Theory

157

Group(Definition) 

A group              is a set       with binary operation     

satisfying the following axioms  for all                     :

1. For                 ,                                                (closure)

2. (associative)

( , )G  G 
, ,a b c G

,a b G a b G 

( ) ( )a b c a b c    

Group Theory
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Group(Definition) 

A group              is a set       with binary operation     

satisfying the following axioms  for all                     :

1. For                 ,                                                (closure)

2. (associative)

3. There exists              such that                    (identity)

,G  G 
, ,a b c G

,a b G a b G 

( ) ( )a b c a b c    

e G

e a a e a   

Group Theory
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Group(Definition) 

A group              is a set       with binary operation     

satisfying the following axioms  for all                     :

1. For                 ,                                                (closure)

2. (associative)

3. There exists              such that                    (identity)

4. For every              ,  there exists                 such that

(inverse) 

( , )G  G 
, ,a b c G

,a b G a b G 

( ) ( )a b c a b c    

e G

e a a e a   

a G
1 1a a a a e    

1a G 

Group Theory
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Example

 Can we solve equations of the form

in a group              ?a x b  ,G 

Group Theory

161

Example

 Can we solve equations of the form

in a group              ?a x b 

( )a a x a b    

,G 

Group Theory

162
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Example

 Can we solve equations of the form

in a group              ?a x b 

( )a a x a b    

( )a a x a b    

,G 

Group Theory

163

Example

 Can we solve equations of the form

in a group              ?a x b 

( )a a x a b    

( )a a x a b    

e x a b  

,G 

Group Theory

164

Example

 Can we solve equations of the form

in a group              ?a x b 

( )a a x a b    

( )a a x a b    

e x a b  

,G 

x a b 

Group Theory

165

Examples of Groups

Group Theory

166

Example  

Group Theory

,

167

Example  

 Closure

Group Theory

,

, ,m n m n   

168
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Example  

 Closure

 Associative

Group Theory

,

, ,m n m n   

, , , ( ) ( )m n p m n p m n p      

169

Example  

 Closure

 Associative

 Identity

For every                          ,   

Group Theory

,

, ,m n m n   

, , , ( ) ( )m n p m n p m n p      

, 0m  0 0.m m m   

170

Example  

 Closure

 Associative

 Identity

For every                          ,   

 inverse 

For every                                   such that

Group Theory

,

, ,m n m n   

, , , ( ) ( )m n p m n p m n p      

, 0m 

m m   

0 0.m m m   

( ) 0 ( ) .m m m m     

171

Example  

Group Theory

,

172

Example  

 closure

Group Theory

,

, ,m n m n   

173

Example  

 closure

 associative

Group Theory

,

, ,m n m n   

(2 3) 4 5 3 2 (3 4)       

174
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Example  

Group Theory

,.

175

Example  

 closure

Group Theory

,.

, , .m n m n  

176

Example  

 closure

 associative

Group Theory

,.

, , .m n m n  

, , , ( . ). .( . )m n p m n p m n p  

177

Example  

 closure

 associative

 identity

For every                         , 

Group Theory

,.

, , .m n m n  

, , , ( . ). .( . )m n p m n p m n p  

, 1m  1. .1.m m m 

178

Example  

 closure

 associative

 identity

For every                         , 

 Inverse

but  

Group Theory

,.

, , .m n m n  

, , , ( . ). .( . )m n p m n p m n p  

, 1m  1. .1.m m m 

2
1

2


179

Example  

Group Theory

,

180
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Example  

 Closure

Group Theory

,

, ,r s r s   

181

Example  

 Closure

 Associative

Group Theory

,

, ,r s r s   

, , , ( ) ( )r s t r s t r s t      

182

Example  

 Closure

 Associative

 Identity

For every              ,   

Group Theory

,

, ,r s r s   

, , , ( ) ( )r s t r s t r s t      

r 0 0, 0 .r r r    

183

Example  

 Closure

 Associative

 Identity

For every              ,   

 inverse 

For every                                   such that

Group Theory

,

, ,r s r s   

, , , ( ) ( )r s t r s t r s t      

r

r r   

0 0, 0 .r r r    

( ) 0 ( ) .r r r r     

184

Example  

Group Theory

,.

185

Example  

 closure

Group Theory

,.

, , .r s r s  

186
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Example  

 closure

 associative

Group Theory

,.

, , .r s r s  

, , , ( . ). .( . )r s t r s t r s t  

187

Example  

 closure

 associative

 identity

For every             , 

Group Theory

,.

, , .r s r s  

, , , ( . ). .( . )r s t r s t r s t  

r 1. .1, 1 .r r r  

188

Example  

 closure

 associative

 identity

For every             , 

 Inverse

Inverse of              does not exist             

Group Theory

,.

, , .r s r s  

, , , ( . ). .( . )r s t r s t r s t  

r

0

1. .1, 1 .r r r  

189

Examples  

 is a   group.

Group Theory

{0},.

190

Examples  

 is a   group.

 is a group. 

Group Theory

{0},.

{0},.

191

Examples  

 is a   group.

 is a group. 

 is a group.

Group Theory

{0},.

{0},.

{0},.

192
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Uniqueness of Identity 
and Inverse

Group Theory

193

Proposition

 Let               be a 
group. Then

Group Theory

,G 

194

Proposition

 Let               be a 
group. Then

1) has exactly one 
identity element

Group Theory

,G 

G

195

Proposition

 Let               be a 
group. Then

1) has exactly one 
identity element

2) Each element of       
has exactly one 
inverse.

Group Theory

,G 

G

G

196

Proof

1)    Suppose            are 
identity elements. 

Group Theory

,e e

197

Proof

1)    Suppose            are 
identity elements. So

Group Theory

,e e

e x x e x   

198
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Proof

1)    Suppose            are 
identity elements. So

Group Theory

,e e

e x x e x   

e x x e x    

199

Proof

1)    Suppose            are 
identity elements. So

holds for all 

Group Theory

,e e

e x x e x   

x G
e x x e x    

200

Proof

1)    Suppose            are 
identity elements. So

holds for all 

 In particular

Group Theory

,e e

e x x e x   

x G
e x x e x    

.e e e e   

201

Proof

2)    Let             and 
suppose             are 
inverses of

Group Theory

x G

.x

,x x 

202

Proof

2)    Let             and 
suppose             are 
inverses of         So

Group Theory

x x x x e    

x G

.x

,x x 

203

Proof

2)    Let             and 
suppose             are 
inverses of         So

Group Theory

x x x x e    

x G

.x

,x x 

x x x x e    

204
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Proof

2)    Let             and 
suppose             are 
inverses of         So

 Then

Group Theory

x x x x e    

x G

.x

x x e  

,x x 

x x x x e    

205

Proof

2)    Let             and 
suppose             are 
inverses of         So

 Then

Group Theory

x x x x e    

x G

.x

x x e  

,x x 

x x x x e    

( )x x x   

206

Proof

2)    Let             and 
suppose             are 
inverses of         So

 Then

Group Theory

x x x x e    

x G

.x

x x e  

,x x 

x x x x e    

( )x x x   

( )x x x   

207

Proof

2)    Let             and 
suppose             are 
inverses of         So

 Then

Group Theory

x x x x e    

x G

.x

x x e  

,x x 

x x x x e    

( )x x x   

( )x x x   

.e x x   

208

An Interesting 
Example of Group

Group Theory

209

Example

Let G = {x ∊ ℝ| x ≠ 1}

and define 

x *y = xy – x – y + 2.

Prove that (G, *) is a 

group.

An Interesting Example of Group

210
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Solution
Closure:

Let a, b∊ G, so a ≠ 1

and b ≠ 1. 

Suppose a * b = 1.

Then ab – a – b + 2 = 1 

and so (a – 1)(b – 1) = 0

which implies that a =  1

or b = 1, a contradiction.

An Interesting Example of Group

211

Associative:

(a * b) * c 
=(a * b)c – (a* b) – c + 2
= (ab – a – b + 2)c –
(ab – a – b + 2) – c + 2
= abc – ac – bc + 2c – ab
+ a + b – 2 – c + 2
= abc – ab – ac – bc + a +
b + c

Similarly a * (b * c) has 
the same value.

An Interesting Example of Group

212

Identity: 

An identity, e, would 

have to satisfy: 

e * x = x = x * e for all x 

∊ G, 

that is,

ex – e –x + 2 = x, 

or 

(e – 2)(x – 1) = 0 for all x.

Clearly e = 2 works.

An Interesting Example of Group

213

Inverses:  

If x * y = 2, then 

xy – x – y + 2 = 2.  

So 

y(x – 1) = x and 

hence
y =x/(x – 1).  

An Interesting Example of Group

214

This exists for all x ≠ 1, 

i.e. for all x ∊ G.  But we 

must also check that it is 

itself an element of G.  

This is so because

x/(x – 1) ≠ 1

for all x≠1.

An Interesting Example of Group

215

Topic No. 14

Group Theory

216
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Elementary Properties 
of Groups

Group Theory

217

Theorem

If G is a group with binary

operation * then the left

and right cancellation

laws hold in G, that is,

a * b = a * c implies b = c,

and b * a = c * a implies

b = c for all a, b, c ∊ G.

Elementary Properties of Groups

218

Proof
Suppose a * b = a * c.

Then, there exists a'∊ G, and

a'* (a* b) =a'*(a*c).

(a'* a)* b =(a'* a)* c.

So, e * b = e *c implies b = c.

Similarly, from b * a = c * a
one can deduce that b = c
upon multiplication by a'∊ G
on the right.

Elementary Properties of Groups

219

Theorem

If G is a group  with binary 

operation *, and if a and b 

are any elements of G, then 

the linear equations a * x=b

and y * a=b have unique 

solutions x and y in G.

Elementary Properties of Groups

220

Proof

First we show the existence of at least one solution by just 

computing that a' * b is a solution of a* x = b.

Note that
a* (a'* b) =(a* a')* b= e * b= b.

Thus x = a' *b is a solution of a * x = b.

In a similar fashion, y = b * a' is a

solution of y *a = b.

Elementary Properties of Groups

221

Topic No. 15

Group Theory

222
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Theorem

Let G be a group. For all
a, b∊ G, we have

(a*b)' = b' *a'.

Elementary Properties of Groups

223

Proof

Note that in a group G,
we have

(a* b) * (b' *a')

= a* (b * b') *a'

= (a* e) *a‘

= a* a'= e.

Elementary Properties of Groups

224

It shows that b' * a' is

the unique inverse of

a* b.

That is,

(a * b )' = b' * a'.

Elementary Properties of Groups

225

Theorem

For any n ∈ ℕ, (an )−1  = (a−1 )n.

Elementary Properties of Groups

226

Proof
By definition, (an)-1 is the unique element of G whose product
with an in any order is e.
But by associativity,

an  ∗ (a−1 )n = (an−1  ∗ a) ∗ (a−1 ∗(a−1)n−1)

= a
n−1  

∗ (a ∗ (a−1  
∗ (a−1 

)
n−1 

))

= a
n−1  

∗ ((a ∗ a−1 
) ∗ (a−1 

)
n−1 

)

= a
n−1  

∗ (e ∗ (a−1 
)
n−1 

))

= a
n−1  

∗ (a−1 
)
n−1 

,

Elementary Properties of Groups

227

which by induction on n equals e (the cases n = 0
and n = 1 are trivial).

Similarly, the product of an and (a−1 )n in the other
order is e.

This proves that (a−1 )n is the inverse of an.

Elementary Properties of Groups

228
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Groups of Matrices

Group Theory

229

Groups of Matrices

Is ⟨ Mmn(ℝ), + ⟩ group?

 ∀ [aij], [bij] ∊ Mmn(ℝ), [aij] + [bij]=[aij + bij] ∊ Mmn(ℝ) 

 ∀ [aij], [bij], [cij] ∊ Mmn(ℝ), 

([aij] + [bij])+ [cij] =[aij + bij]+ [cij]

=[(aij + bij)+ cij] 

=[aij +( bij+ cij)] 

= [aij]+[bij+ cij]

= [aij] + ([bij]+ [cij]) 

230

Groups of Matrices

 For every [aij] ∊ Mmn(ℝ) and [0] ∊ Mmn(ℝ), 

[aij] + [0]=[aij+0]=[aij]=[0]+[aij]

 For every [aij] ∊ Mmn(ℝ) there exists [-aij] ∊ Mmn(ℝ) such 
that [aij] + [-aij]=[aij+(- aij)]= [0]= [-aij]+[aij]

231

Groups of Matrices

Group Theory

232

Groups of Matrices

 ∀ [aij], [bij] ∊ Mmn(ℝ), 

[aij] + [bij]=[aij + bij]

=[bij+ aij]= [bij] + [aij] 

Therefore, ⟨ Mmn(ℝ), + ⟩ is 
abelian group.

 Similarly, ⟨ Mmn(ℤ), + ⟩,

⟨ Mmn(ℚ), + ⟩ and 

⟨ Mmn(ℂ), + ⟩ are also 
abelian groups.

233

Groups of Matrices

Is ⟨ Mnn(ℝ), . ⟩ group?

 ∀ A, B ∊ Mnn(ℝ), 

AB ∊ Mnn(ℝ) 

 ∀ A, B, C ∊ Mnn(ℝ), 
(AB)C=A(BC)

 For every A ∊ Mnn(ℝ) 
and In ∊ Mnn(ℝ), 
AIn=A=InA

 A-1 does not exist for all 
those A ∊ Mnn(ℝ) having 
det(A)=0 

234
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Groups of Matrices

Field

(F,+,.)

 ⟨F,+⟩ is abelian group

 ⟨F\{0},.⟩ is abelian
group

∀ a, b, c ∊ F, 

 a(b+c)=ab+ac

 (a+b)c=ac+bc

235

{0},.

{0},.

{0},.

,

,

,

,

Groups of Matrices

236

Abelian Groups

Group Theory

237

 Let                or      .        

Group Theory

F 

238

 Let                or      .        

 Let           be a matrix 
over       i.e.  all

Group Theory

F 

[ ]ija

F

ija F

239

 Let                or      .        

 Let           be a matrix 
over       i.e.  all

 Let                    denotes 
the set of all 

invertible matrices 
over     .

Group Theory

F 

[ ]ija

F

ija F

F

( , )GL n F
n n

240
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 In general set of all  

matrices is not 
a group under matrix 
multiplication.

Group Theory

n n

241

 In general set of all  

matrices is not 
a group under matrix 
multiplication.

 But                    is a 
group under matrix 
multiplication.

Group Theory

( , )GL n F

n n

242

Axioms

 Let                            .  

Group Theory

( , )G GL n F

243

Axioms

 Let                            .  

 Closure:  For all                   ,                 .

Group Theory

( , )G GL n F

,A B G AB G

244

Axioms

 Let                            .  

 Closure:  For all                   ,                 .

 Associative property also holds in     .

Group Theory

( , )G GL n F

G

,A B G AB G

245

Axioms

 Let                            .  

 Closure:  For all                   ,                 .

 Associative property also holds in     .

 is the identity matrix.

Group Theory

( , )G GL n F

nI

G

,A B G AB G

246
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Axioms

 Let                            .  

 Closure:  For all                   ,                 .

 Associative property also holds in     .

 is the identity matrix.

 Since both        and

are invertible so inverse exists. 

Group Theory

( , )G GL n F

nI

G

A 1A

,A B G AB G

247

Example

 Let                              and                      such that

Group Theory

(2, )G GL

1 1 0 1
,

0 2 1 0
A B

   
    
   

,A B G
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Example

 Let                              and                      such that

 then

Group Theory

(2, )G GL

1 1 0 1
,

0 2 1 0
A B

   
    
   

,A B G

1 1 0 1 1 1

0 2 1 0 2 0
AB

     
     
    

249

Example

 Let                              and                      such that

 then

Group Theory

(2, )G GL

1 1 0 1
,

0 2 1 0
A B

   
    
   

,A B G

1 1 0 1 1 1

0 2 1 0 2 0
AB

     
     
    

0 1 1 1 0 2

1 0 0 2 1 1
BA

    
     

    
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Definition

 Let              be a group. 
If for all

We call        an abelian
group.

Group Theory

,G 
, ,a b G

a b b a  

G

251

Definition

 Let              be a group. 
If for all

We call        an abelian
group.

 Examples

Group Theory

,G 
, ,a b G

a b b a  

G

,n 

252
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Definition

 Let              be a group. 
If for all

We call        an abelian
group.

 Examples

Group Theory

,G 
, ,a b G

a b b a  

G

,n 

{0},.

253

Examples

Group Theory

,

254

Examples

Group Theory

,

,

255

Examples

Group Theory

,

,

{0},.

256

Examples

Group Theory

,

{0},.

,

{0},.

257

Examples

Group Theory

( , )GL n

258
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Examples

Group Theory

( , )GL n

1 1

0 2
A

 
  
 
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Examples

Group Theory

( , )GL n

1 1

0 2
A

 
  
 

1
2 11

0 12
A  

  
 
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Examples

Group Theory

( , )GL n

( , )GL n

1 1

0 2
A

 
  
 

1
2 11

0 12
A  

  
 
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Abelian Groups

Group Theory

262

Theorem

If a ∗ b = b ∗ a, then for all/any 

one n ∈ ℤ, (a ∗ b)n  = an  ∗ bn . 

Abelian Groups

263

Proof

If n  = 0  or  n  = 1,  this  holds  trivially.    Now let  n  > 1.   

By  commutativity, b
m  

∗ a = a ∗ b
m  

for all m ≥ 0.  

Then  by induction on n, 

(a ∗b)n = (a ∗ b)n−1 ∗(a ∗b)= (an−1  ∗ bn−1) ∗(a ∗b)

= ((an−1  ∗ bn−1 ) ∗ a) ∗ b = (an−1  ∗ (bn−1  ∗ a)) ∗ b

= (an−1  ∗ (a ∗ bn−1 )) ∗ b = (an−1  ∗ a) ∗ bn−1 ) ∗ b

= an  ∗ (bn−1  ∗ b) = an  ∗ bn.

Thus the result holds for all n∊ℕ.

Abelian Groups

264
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If n<0, then by the positive case 

and commutativity,

(a ∗b)n

= (b ∗a)n

= ((b ∗a)-n)-1

=(b-n ∗ a-n)-1

=(a-n)-1 ∗ (b-n)-1

= an  ∗ bn

Abelian Groups

265

Modular Arithmetic

Group Theory

266

Definition 

Let n be a fixed positive integer 

and a and b any two integers. 

We say that a is congruent to b 

modulo n if n divides a−b. 

We denote this by a ≡ b mod n.

Modular Arithmetic

267

Theorem  

Show that the congruence 

relation modulo n is an

equivalence relation on ℤ. 

Modular Arithmetic

268

Proof

Write “n|m” for “ n divides m,” 

which means that there is

some integer k such that m = 
nk. 

Hence a ≡ b mod n if and

only if n|(a−b). 

(i) For all a ∈ ℤ, n |(a−a), so 

a ≡ a mod n and the relation is

reflexive.

Modular Arithmetic

269

(ii) If a ≡ b mod n, then n|(a−b), 
so n|−(a −b). 

Hence n|(b−a) and b ≡ a mod n.

(iii) If a ≡ b mod n and b ≡ c 
mod n, then n|(a−b) and 
n|(b−c), so n |(a−b)+(b−c). 

Therefore, n|(a−c) and a ≡ c 
mod n. 

Hence congruence modulo n is 

an equivalence relation on ℤ.

Modular Arithmetic

270
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The set of equivalence

classes is called the set of

integers modulo n and is

denoted by ℤ𝑛.

Modular Arithmetic

271

In  the congruence relation modulo 3, we have the following 
equivalence classes: 

[0]={...,−3,0,3,6,9,...}        [1]={...,−2,1,4,7,10,...} [2]={...,−1,2,5,8,11,...} 

[3]={...,0,3,6,9,12,...}=[0] 

Any equivalence class must be one of [0], [1], or [2], so 

ℤ3 ={[0],[1],[2]}. 

In general, ℤ𝑛 ={[0],[1],[2],...,[n−1]}, since any integer is congruent 

modulo n to its remainder when divided by n. 

Modular Arithmetic

272

Order of a Group

Group Theory

273

Definition

The number of elements of a
group G is called the order of
G.  

We denote it as |G|.

We call G finite if it has only
finitely many elements;

otherwise we call G infinite.

Order of a Group

274

Definition

Let G be a group and a
∈ G. 
If there is a positive
integer n such that an 

= e, then we call the
smallest such positive
integer the order of a.
If no such n exists, 
we say that a has
infinite order.
The order of a is 
denoted by |a|.

Order of a Group

275

In  the congruence relation modulo 4, we have 
the following equivalence classes: 

[0]={...,−4,0,4,8,12,...}        [1]={...,−3,1,5,9,13,...} 

[2]={...,−2,2,6,10,14,...} [3]={...,-1,3,7,11,15,...} 

Any equivalence class must be one of [0], [1], [2] 
or [3], 

so ℤ4 ={[0],[1],[2],[3]}. 

Let  +4 be  addition modulo 4. Then, 2 +4 3 = 1.

Order of a Group

276
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We can write out its Cayley table:

Therefore, ⟨ℤ4,+4 ⟩ is a group.

+4 [0] [1] [2] [3]

[0] [0] [1] [2] [3]

[1] [1] [2] [3] [0]

[2] [2] [3] [0] [1]

[3] [3] [0] [1] [2]

Order of a Group

277

 |ℤ4|=4

 1+41+41+41=4(1)=0 ⟹ |[1]|=4

 2+42=2(2)=0 ⟹ |[2]|=2

 3+43+43+43=4(3)=0 ⟹ |[3]|=4

 1(0)=0 ⟹ |[0]|=1

 ℤ4=⟨1⟩=⟨3⟩

 Let ℤn={[0], [1], [2],…,[n-1]}. Then, ⟨ℤn,+n ⟩ is a 
group.

 | ℤn |=n

Order of a Group

278

{0},.

{0},.

{0},.

,

,

,

,

Order of a Group

279

Finite Groups

Group Theory

280

Let  U4 = {1, −1, i, −i},  and  let  “.” be  multiplication. Then  

U4 is a group, and we can write out its multiplication table 

(Cayley table):

Finite Groups

. 1 -1 i -i

1 1 -1 i -i

-1 -1 1 -i i

i i -i -1 1

-i -i i 1 -1

281

 |U4|=4

 (-1)(-1)=(-1)2=1 ⟹ |-1|=2

 i.i.i.i=i4=1 ⟹ |i|=4

 (-i)(-i)(-i)(-i)=(-i)4=1 ⟹ |-i|=4

 11=1 ⟹ |1|=1

U4=⟨i⟩=⟨-i⟩

Finite Groups

282
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Is ⟨U4, .⟩≅⟨ℤ4,+4 ⟩?

1⟷[0]

-1 ⟷[2]

i ⟷[1]

-i ⟷[3]

Finite Groups

283

Let Un={ei2kπ/n: k=0, 1, …, n-1}.

Then, ⟨Un,.⟩ is a group.

⟨Un, .⟩≅⟨ℤn,+n ⟩

Finite Groups

284

Finite Groups

Group Theory

285

Since a group has to have at least one element,

namely, the identity, a minimal set that might give

rise to a group is a one-element set { e}.

The only possible binary operation on

{ e} is defined by e ∗ e = e.

The three group axioms hold.

The identity element is always its own

inverse in every group.

Finite Groups

286

Let us try to put a group structure on a set of two

elements.

Since one of the elements must play the role of

identity element, we may as well let the set be

{ e, a}.

Let us attempt to find a table for a binary
operation ∗ on { e, a} that gives a group
structure on { e, a}.

Finite Groups

287

Since e is to be the

identity, so e∗x=x∗e=x

for all x∊{e, a}.

Also, a must have an

inverse a' such that

a ∗ a' = a' ∗ a = e.

In our case, a' must be

either e or a. Since a' =

e obviously does not

work, we must have 

a' = a.

Finite Groups

288
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So, we have to complete

the table as follows:

Finite Groups

∗ e a

e e a

a a e

289

We know that

ℤ2 ={[0], [l]}

under addition modulo

2 is a group, and by

our arguments, its table

must be the one above

with e replaced by [0]

and a by [1].

Finite Groups

+2 [0] [1]

[0] [0] [1]

[1] [1] [0]

290

Finite Groups

Group Theory

291

Suppose that G is any group of three

elements and imagine a table for G with identity

element appearing first.

Since our filling out of the table for G = { e, a, b}

could be done in only one way, we see that if we

take the table for G and rename the identity e, the

next element listed a, and the last element b, the

resulting table for G gives an isomorphism of the

group G with the group G' ={[0], [1], [2]}.

Finite Groups

292

Finite Groups

+3 [0] [1] [2]

[0] [0] [1] [2]

[1] [1] [2] [0]

[2] [2] [0] [1]

∗ e a b

e e a b

a a b e

b b e a

a∗b = b ⟹ a=e not possible

a∗b = a ⟹ b=e not possible

a∗a = a ⟹ a=e not possible

b∗b = b ⟹ b=e not possible

293

Our work above can be summarized by saying that

all groups with a single element are isomorphic, all
groups with just two elements are isomorphic, and
all groups with just three elements are isomorphic.

We may say:
There is only one group of single element (up to
Isomorphism), there is only one group of two
elements (up to isomorphism) and there is only
one group of three elements (up to isomorphism).

Finite Groups

294
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There are two different types of group structures of

order 4.

 The group ⟨ℤ4 , +4⟩ is isomorphic to the group 

U4= { 1, i, -1, -i} of fourth roots of unity under

multiplication.

 The group V=⟨a,b | a2=b2=(ab)2=e ⟩

is the Klein 4-group, and the notation  V comes

from the German word Vier for four. 

Finite Groups

295

We describe Klein 4-group by
its group table.

Finite Groups

∗ e a b c

e e a b c

a a e c b

b b c e a

c c b a e

296

Finite Groups

Group Theory

297

Is ⟨ℤ6\{[0]}, .6 ⟩ a group?

Finite Groups

.6 [1] [2] [3] [4] [5]

[1] [1] [2] [3] [4] [5]

[2] [2] [4] [0] [2] [4]

[3] [3] [0] [3] [0] [3]

[4] [4] [2] [0] [4] [2]

[5] [5] [4] [3] [2] [1]

298

Is ⟨ℤ5\{[0]}, .5 ⟩ a group?

⟨ℤp\{[0]}, .p ⟩ is a group, 

where p is a prime number

Finite Groups

.5 [1] [2] [3] [4]

[1] [1] [2] [3] [4]

[2] [2] [4] [1] [3]

[3] [3] [1] [4] [2]

[4] [4] [3] [2] [1]

299

Subgroups

Group Theory

300
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Subgroups

 Let              be a group. 
A subgroup of        is  a 
subset of       which is 
itself a group under    . 

Subgroups 

,G 

G
G



301

Examples

 is a subgroup of 

Subgroups

, ,

302

Examples

 is a subgroup of 

 is not a subgroup of

Subgroups 

, ,

{0},. ,

303

Examples

 is a subgroup of 

 is not a subgroup of

 is  a subgroup of

Subgroups 

, ,

{0},. ,

{1, 1},. {1, 1, , },.i i 

304

Examples

 is a subgroup of 

 is not a subgroup of

 is  a subgroup of

 is not a subgroup of

Subgroups 

, ,

{0},. ,

{1, 1},. {1, 1, , },.i i 

{1, },.i

{1, 1, , },.i i 

305

Proposition

 Let        be a group. Let    

. Then        is a 
subgroup of       if the 
following are true:

Subgroups 

G

H G H
G

306
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Proposition

 Let        be a group. Let    

. Then        is a 
subgroup of       if the 
following are true:

1)    

Subgroups 

G

H G H
G

e H

307

Proposition

 Let        be a group. Let    

. Then        is a 
subgroup of       if the 
following are true:

1)    

2) if                   then

Subgroups 

G

H G H
G

e H

,h k H

hk H

308

Proposition

 Let        be a group. Let    

. Then        is a 
subgroup of       if the 
following are true:

1)    

2) if                   then

3) if                then 

Subgroups 

G

H G H
G

e H

,h k H

hk H

h H
1h H 
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Example

 Let                             

 Let  

Subgroups 

(2, )G GL

1

0 1

n
H n

  
   

  
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Example

 Let                             

 Let  

1)    

Subgroups 

(2, )G GL

1

0 1

n
H n

  
   

  

e H
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Example

 Let                             

 Let  

1)    

2) let                                                  

then

Subgroups 

(2, )G GL

1

0 1

n
H n

  
   

  

e H

1 1
,

0 1 0 1

n p
h k

   
    
   

1
.

0 1

p n
hk H

 
  
 
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Example

3) let                

Then 

Subgroups 

1
.

0 1

n
h

 
  
 

1
1

H.
0 1

n
h

 
  
 
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Example

3) let                

Then 

Hence        is a subgroup 
of      . 

Subgroups 

1
.

0 1

n
h

 
  
 

1
1

H.
0 1

n
h

 
  
 

G
H

314

Examples of Subgroups

Group Theory

315

If F is a field GL(n, F) denotes the group of
all invertible n  n matrices over F under
multiplication. This group is called the general linear
group of degree n over F.

We know that the associative law holds for matrix

multiplication. Checking the closure law requires us

to know that the product of two invertible matrices is

invertible. And we need to know more than just the

fact that every invertible matrix has an inverse. We

need to observe that such an inverse is itself

invertible.

Groups of Matrices

316

An interesting subgroup of GL(n, F) is T+(n, F) the

set of all n  n upper- triangular matrices over F,
that is, n  n matrices of the form:

where each diagonal component is
non-zero.

11 12 13 1

22 23 2

33 3

...

0 ...

0 0 ...

... ... ... ... ...

0 0 0 ...

n

n

n

nn

a a a a

a a a

a a

a

 
 
 
 
 
 
  

Groups of Matrices

317

Then  there  are  the  lower  triangular  matrices
T(n,  F)  which  are  the transposes of the upper
triangular ones.

11

12 22

13 23 33

1 2 3

0 0 ... 0

0 ... 0

... 0

... ... ... ... ...

...n n n nn

a

a a

a a a

a a a a

 
 
 
 
 
 
  

Groups of Matrices

318
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Diagonal matrices D(n, F). It’s closed under
multiplication, identity and inverses simply because
each of T+(n, F) and T(n, F) are.

This is a special case of the general fact that:
The intersection of any collection of subgroups is
itself a subgroup.

11

22

33

0 0 ... 0

0 0 ... 0

0 0 ... 0

... ... ... ... ...

0 0 0 ... nn

a

a

a

a

 
 
 
 
 
 
  

Groups of Matrices
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Within D(n, F) we have the non-zero scalar
matrices S(n, F).  These are simply the diagonal
matrices that have the same non-zero entry down
the diagonal, that is, non-zero scalar multiples of
the identity matrix.

0 0 ... 0 1 0 0 ... 0

0 0 ... 0 0 1 0 ... 0

, 00 0 ... 0 0 0 1 ... 0

... ... ... ... ... ... ... ... ... ...

0 0 0 ... 0 0 0 ... 1

nI





  



   
   
   
     
   
   
      

Groups of Matrices
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Another interesting subgroup of T+(n, F) is the

group of uni-upper-triangular matrices UT+(n, F).

These are the upper-triangular matrices with 1’s down

the diagonal:

12 13 1

23 2

3

1 ...

0 1 ...

0 0 1 ...

... ... ... ... ...

0 0 0 ... 1

n

n

n

a a a

a a

a

 
 
 
 
 
 
  

Groups of Matrices
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And inside T


(n, F) we have the uni-lower-triangular

matrices UT


(n, F).

12

13 23

1 2 3

1 0 0 ... 0

1 0 ... 0

1 ... 0

... ... ... ... ...

... 1n n n

a

a a

a a a

 
 
 
 
 
 
  

Groups of Matrices
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GL(n, F)

T+(n, F) T(n, F)

D(n, F)

UT+(n, F) UT(n, F)

S(n, F)

1

We can summarize the connections between these
subgroups in a “lattice diagram”:

Groups of Matrices

323

Another very important
subgroup of GL(n, F) is
SL(n, F) consisting of
all the matrices with
determinant 1.

It’s called the special
linear group of degree
n over F.

Groups of Matrices

324
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Topic No. 28

Group Theory

325

The Two Step 
Subgroup Test

Group Theory

326

Theorem

A subset H of a group G is a

subgroup of G if and only if

1. H is closed under the binary operation ∗ of G,

2. for all a ∈ H it is true that a-1 ∈ H also.

The Two Step Subgroup Test

327

Proof

The fact that if H is subgroup of G then conditions

1 and 2 must hold follows at once from the

definition of a subgroup.

Conversely, suppose H is a subset of a group G

such that conditions 1 and 2 hold.

By 1 we have at once that closure property is
satisfied. The inverse law is satisfied by 2.
Therefore, for every a∊H there exists a-1∊H such
that e=a∗a-1∊H by 1. So, e∗a=a∗e=a by 1.

The Two Step Subgroup Test

328

It remains to check the

associative axiom.

But surely for all a, b, c ∊

H it is true that

(ab)c = a(bc)

in H, for we may actually

view this as an equation

in G, where the

associative law holds.

The Two Step Subgroup Test

329

Topic No. 29

Group Theory

330
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Examples on Subgroup 
Test

Group Theory

331

Recall
Let G be a group and H a 
nonempty subset of G.  If 
a∗b is in H whenever a and
b are in H, and a-1 is in H
whenever a is in H, then H is 
a subgroup of G.

Examples on Subgroup Test

332

To Apply the Two Step 
Subgroup Test:

 Note that H is 
nonempty 

 Show that H is closed 
with respect to the 
group operation

 Show that H is  closed 
with respect to inverses.

 Conclude that H is a 
subgroup of G.

Examples on Subgroup Test

333

Example 
Show that 3Q* is a subgroup of Q*, the non-zero rational 
numbers.

3Q* is non-empty because 3 is an element of 3Q*.
For a, b in 3Q*, a=3i and b=3j where i, j are in Q*.  
Then ab=3i3j=3(3ij), an element of 3Q* (closed)
For a in 3Q*, a=3i for i an element in Q*.  
Then a-1=(i-13-1), an element of 3Q*. (inverses) 
Therefore 3Q* is a subgroup of Q*.

Examples on Subgroup Test

334

Topic No. 30

Group Theory

335

The One Step Subgroup 
Test

Group Theory

336
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Theorem

If S is a subset of the

group G, then S is a

subgroup of G if and

only if S is nonempty

and whenever a, b ∈ S,

then ab−1 ∈ S.

The one Step Subgroup Test

337

Proof

If S is a subgroup, then

of course S is nonempty

and whenever a, b ∈ S,

then ab−1 ∈ S.

The one Step Subgroup Test

338

Conversely suppose S is a nonempty subset of

the Group G such that whenever a, b ∈ S, then

ab−1 ∈ S. 

Let a ∈ S, then e = aa-1 ∈ S and so a-1 = ea-1 ∈ S.

Finally, if a, b ∈ S, then b-1 ∈ S by the above and 

so ab = a(b-1)-1 ∈ S.

The one Step Subgroup Test

339

Topic No. 31

Group Theory

340

Examples on Subgroup 
Test

Group Theory

341

Recall
Suppose G is a group and H
is a non-empty subset of G. 
If, whenever a and b are in 
H, ab-1 is also in H, 
then H is a subgroup of G.

Or, in additive notation:
If, whenever a and b are in 
H, a - b is also in H, 
then H is a subgroup of G.

Examples on Subgroup Test

342
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To apply this test:
 Note that H is a 

non-empty subset 
of G.

 Show that for any 
two elements 
a and b in H, ab-1 is      
also in H.

 Conclude that H is a 
subgroup of G.

Examples on Subgroup Test

343

Example
Show that the even integers are a subgroup of the 
Integers.
Note that the even integers is not an empty set because 
2 is an even integer.
Let a and b be even integers.  
Then a = 2j and b = 2k for some integers j and k.
a + (-b) = 2j + 2(-k) = 2(j-k) = an even integer
Thus a - b is an even integer 
Thus the even integers are a subgroup of the integers.

Examples on Subgroup Test

344

Example 
For a, b in 3Q*, a=3i and b=3j 
where i, j are in Q*
Then 
ab-1=3i(3j)-1 =3i(j-13-1)=3(ij-13-1), 
an element of 3Q*

Examples on Subgroup Test

345

Topic No. 32

Group Theory

346

The Finite Subgroup 
Test

Group Theory

347

Theorem

If S is a subset of the

finite group G, then S is

a subgroup of G if and

only if S is nonempty 

and whenever a, b ∈ S,

then ab ∈ S.

The finite Subgroup Test

348
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Proof

If S is a subgroup then obviously S is nonempty

and whenever a, b ∈ S, then ab ∈ S.

Conversely suppose S is nonempty and

whenever a, b ∈ S, then ab ∈ S.

Then let a ∈ S.  The above property says that

a2=aa∈S and so a3=aa2∈S and so a4=aa3∈S 

and so on and on and on.

The finite Subgroup Test

349

That is an ∈ S for all integers

n > 0.

But G is finite and thus so is S. 

Consequently the sequence, 

a, a2, a3, a4,…,an,… 

cannot continue to produce

new elements. 

That is there must exist m<n

such that am=an. 

Thus e= an-m ∈ S. 

The finite Subgroup Test

350

Therefore for all a ∈ S, there

is a smallest integer k > 0

such that ak = e. 

Moreover, a-1 = ak-1 ∈ S. 

Finally if a, b ∈ S, then b-1 ∈ S

by the above and so by the 

assume property we have 

a b-1 ∈ S.

Therefore S is a subgroup as

desired.

The finite Subgroup Test

351

Topic No. 33

Group Theory

352

Examples on Subgroup 
Test

Group Theory

353

Example 

 ({1,−1, i,−i}, ・)

 {1,i}

 {1,-i}

 {1,−1}

 {1,-1,i}

 {1,-1,-i}

354

Examples on Subgroup Test
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Example 

 ({[0], [1], [2], [3], [4], [5]}, +6 )

 {[0], [1]} or {[0], [4]} or {[0], [5]} or {[0], [2]}

 {[0], [3]}

 {[0], [2], [4]}

 {[0], [2], [3], [4]}

355

Examples on Subgroup Test

 Cyclic Groups

Group Theory

356

Definition

Let G be a group and let 

a ∊ G. 

Then the subgroup

H={an| n ∊ ℤ}

of G is called the cyclic 
subgroup of G generated 
by a, and denoted by 〈a〉.

Cyclic Groups

357

Definition

 An element a of a group G
generates G and is a 
generator for G if a=G. 

 A group G is cyclic if there is 
some element a in G that 
generates G. 

Cyclic Groups

358

 Let a be an element of a 
group G. 

 If the cyclic subgroup a is 
finite, then the order of a is 
the order | a | of this 
cyclic subgroup. 

 Otherwise, we say that a is 
of infinite order. 

Cyclic Groups

359

Cyclic Groups

𝝎𝟑

𝟏

𝝎𝟐

𝝎

𝑰𝒎

𝑹𝒆

= 𝜔, 𝜔2, … , 𝜔𝑛−1, 𝜔𝑛 = (𝑒𝑖
2𝜋

𝑛 )𝑛= 1

360
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 Examples of Cyclic 
Groups

Group Theory

361

Examples of Cyclic Groups

362

Examples of Cyclic Groups

363

Examples of Cyclic Groups

364

 Elementary 
Properties of Cyclic 
Groups

Group Theory

365

Theorem

Every cyclic group is 
abelian.

Elementary Properties of Cyclic Groups

366



12/16/2018

62

Proof

 Let G be a cyclic group and let a be a generator of  G so that 

G = a ={an|n ℤ}. 

 If g1 and g2 are any two elements of G, there exists integers r and s such 
that g1=ar and g2=as. 

 Then 

g1g2= aras = ar+s = as+r = asar = g2g1.

 So, G is abelian.

Elementary Properties of Cyclic Groups

367

Elementary Properties of Cyclic Groups

368

Elementary Properties of Cyclic Groups

369

 Elementary 
Properties of Cyclic 
Groups

Group Theory

370

 Elementary 
Properties of Cyclic 
Groups

Group Theory

371

Definition:  G is cyclic if G = <a> for some a in G.

Theorem

If |a| = ∞, ai=aj iff i =j

If |a| = n, ai=aj iff n| i – j

<a> = {a, a2, … an-1,e}

Corollary 1: |a| = |<a>|

Corollary 2: ak   = e implies |a| | k

Example: U5=< ω |ω5=1>=< ω2 >=< ω3 >= < ω4 >, ω=ei(2𝜋/5)

ω2≠ω4 5⫮4 – 2    ;      ω5=ω10 5|10 – 5   

Elementary Properties of Cyclic Groups

372
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Example

U6=< ω |ω6=1>={ω,ω2, ω3, ω4, ω5,1} with ω=ei(2𝜋/6)

(ω5)2= ω10= ω6ω4= ω4

(ω5)3= ω15= (ω6)2ω3= ω3

(ω5)4= ω20= (ω6)3ω2= ω2

(ω5)5= ω25= (ω6)4ω= ω

(ω5)6= ω30= (ω6)5= 1

U6 =< ω5>={ω5, ω4, ω3, ω2,ω,1} 

Elementary Properties of Cyclic Groups

373

Example

U6=< ω |ω6=1>={ω,ω2, ω3, ω4, ω5,1} with ω=ei(2𝜋/6)

< ω2>={ω2, ω4,1} < U6

< ω3>={ω3,1} < U6

< ω4>={ω4, ω2,1} = < ω2> 

Elementary Properties of Cyclic Groups
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 Elementary 
Properties of Cyclic 
Groups

Group Theory

375

Theorem 1

If |a| = n, then 

 <ak> = <agcd(n,k)>

 |ak| = n/gcd(n,k)

Elementary Properties of Cyclic Groups

376

To prove the |ak| = n/gcd(n,k) , we begin with a little lemma.
Prove: If d | n = |a|, then |ad| = n/d.
Proof:  Let n = dq.  Then e = an = (ad)q.

So |ad| ≤ q.

If 0< i < q, then 0 < di < dq = n = |a|

so (ad)i ≠ e

Hence, |ad| = q which is n/d as required.

Elementary Properties of Cyclic Groups

377

Now, we prove that |ak| = n/gcd(n,k). 

Let d = gcd(n,k).  Then, we have

|ak| = |<ak>| by Corollary 1

= |<ad>| by Part 1 of Theorem 1

= |ad| by Corollary 1

= n/d by above Lemma.

This concludes the proof.

Elementary Properties of Cyclic Groups

378
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Example

 Suppose G = <a> with |a| = 30.  

Find |a21| and <a21>.

 By Theorem 1, |a21| = 30/gcd(30,21) = 10

 Also <a21> = <a3>

= {a3, a6, a9, a12,a15, a18, a21, a24, a27, e}

Elementary Properties of Cyclic Groups

379

 Elementary 
Properties of Cyclic 
Groups

Group Theory

380

Theorem 1

If |a| = n, then <ak> = <agcd(n,k)> and |ak| = n/gcd(n,k).

Corollaries to Theorem 1

1.In a finite cyclic group, the order of an element divides the order of the 
group.

2.Let |a| = n in any group.  Then

a) <ai> = <aj> iff gcd(n,i) = gcd(n,j)

b) |ai| = |aj| iff gcd(n,i) = gcd(n,j)

Elementary Properties of Cyclic Groups

381

Corollaries to Theorem 1

3. Let |a| = n.

Then < ai > = aj iff gcd(n,i) = gcd(n,j)

4. An integer k in ℤn is a generator of ℤn iff gcd(n,k)     

=1

Elementary Properties of Cyclic Groups

382

Example

Find all the generators of U(50) = 〈3〉.

U(50) ={1,3,7,9,11,13,17,19,21,23,27,29,31,33,

37,39,41,43,47,49}          |U(50)| = 20

The numbers  relatively prime to 20 are 1, 3, 7, 9, 11, 13, 17, 19

The generators of U(50) are therefore

31, 33, 37, 39, 311, 313, 317, 319

i.e. 3, 27, 37, 33, 47, 23, 13, 17

Elementary Properties of Cyclic Groups

383

 Fundamental 
Theorem of Cyclic 
Groups

Group Theory

384
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Fundamental Theorem of Cyclic Groups

a) Every subgroup of a cyclic group is cyclic.

b) If |a| = n, then the order of any subgroup of <a> is a divisor of n

c) For each positive divisor k of n, the group <a> has exactly one subgroup 
of order k, namely <an/k>

Fundamental Theorem of Cyclic Groups

385

Subgroups are cyclic

Proof: Let G = <a> and suppose H ≤ G.  If H is trivial, then H is cyclic.  

Suppose H is not trivial.

Let m be the smallest positive integer  with am in H. 

(Does m exist?) ________

Fundamental Theorem of Cyclic Groups

386

By closure, <am> is contained in H.

We claim that H = <am>. To see this,

choose any b = ak in H.  There exist integers q,r with 

0≤ r < m such that

ak = aqm + r (Why?) ___________

Fundamental Theorem of Cyclic Groups

387

Since b = ak = aqma r, we have

ar = (am)-q b

Since b and am are in H, so is ar.

But r < m (the smallest power of a in H)

so r = 0.

Hence b = (am)q and b is in H.

It follows that H = <am> as required.

Fundamental Theorem of Cyclic Groups

388

|H| is a divisor of |a|

Proof:  Given |<a>| = n and H ≤ <a>.  We showed H = <am> where m is the 
smallest positive integer with am in H.  

Now e = an is in H, so as we just showed, n = mq for 

some q.

Now |am| = q is a divisor of n as required. 

Fundamental Theorem of Cyclic Groups

389

Exactly one subgroup for each divisor k of n

 (Existence) Given |<a>| = n. Let k | n.

Say n = kq. Note that gcd(n,q) = q

So |aq| = n/gcd(n,q) = n/q = k.

Hence there exists a subgroup of order k, namely <an/q>

Fundamental Theorem of Cyclic Groups

390
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 (Uniqueness) Let H be any subgroup of <a> with order k.  We claim H = 
<an/k>

From (a), H = <am> for some m.

From (b), m | n  so gcd(n,m) = m.

So k = |am| = n/gcd(n,m) by Theorem 1

= n/m

Hence m = n/k

So H = <an/k>  as required.

Fundamental Theorem of Cyclic Groups

391

 Subgroups of Finite 
Cyclic Groups

Group Theory

392

Theorem

Let G be a cyclic group with n elements and generated by a. Let bG and 
let b=ak. Then b generates a cyclic subgroup H of G containing n/d 
elements, where d = gcd (n, k). 

Also  <ak >= <as> if and only gcd (k, n) = gcd (s, n).

Subgroups of Finite Cyclic Groups

393

Example

using additive notation, consider in ℤ12, with the

generator a=1.  

 3 = 31, gcd(3, 12)=3, so  3  has 12/3=4 elements. 

 3 ={0, 3, 6, 9}

 Furthermore,  3 =  9  since gcd(3, 12)=gcd(9, 12).

Subgroups of Finite Cyclic Groups

394

Example

 8= 81, gcd (8, 12)=4, so  8  has 12/4=3 elements. 

 8 ={0, 4, 8}

 5= 51, gcd (5, 12)=1, so  5  has 12 elements. 

 5 =ℤ12.

Subgroups of Finite Cyclic Groups

395

Corollary

If a is a generator of a finite cyclic group G of order n, then 
the other generators of G are the elements of the form ar, 
where r is relatively prime to n. 

Subgroups of Finite Cyclic Groups

396
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Example

Find all subgroups of ℤ18 and give their subgroup diagram. 

 All subgroups are cyclic

 By above Corollary is the generator of Z18, so is 5, 7, 11, 
13, and 17.

 Starting with 2,  2  ={0, 2, 4, 6, 8, 10, 12, 14, 16 }is of 
order 9, and gcd(2, 18)=2=gcd(k, 18) where k is 2, 4, 8, 10, 
14, and 16. Thus 2, 4, 8, 10, 14, and 16 are all generators 
of 2.

Subgroups of Finite Cyclic Groups

397

Example

 3={0, 3, 6, 9, 12, 15} is of order 6, and gcd(3, 
18)=3=gcd(k, 18) where k=15

 6={0, 6, 12} is of order 3, so is 12

 9={0, 9} is of order 2

Subgroups of Finite Cyclic Groups

398

1

2 3

6 9

0

Subgroups of Finite Cyclic Groups

399

Theorem on Cyclic 
Group

Group Theory

400

Theorem

Let G be a cyclic group 
with generator a. 

If the order of G is 
infinite, then G is 
isomorphic to (ℤ, +). 

If G has finite order n, 
then G is isomorphic to 
(ℤn, +n). 

Theorem on Cyclic Group

401

Proof

Case 1

For all positive integers m, am ≠ e. 

In this case we claim that no two distinct 
exponents h and k can give equal elements ah

and ak of G. 

Suppose that ah = ak and say h  > k. 

Then aha-k = ah-k = e, contrary to our Case 1 
assumption.

Theorem on Cyclic Group

402
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Case 1

Hence every element 
of G can be expressed 
as am for a unique m 
∊ ℤ. 

The map ϕ : G → ℤ
given by ϕ(ai)  = i is 
thus well defined, one 
to one, and onto ℤ.

Theorem on Cyclic Group

403

Case 1

Also, 

ϕ(aiaj)=ϕ(ai+j)

=i+j

=ϕ(ai )+ϕ(aj), 

so the homomorphism  
property is satisfied and 
ϕ is an isomorphism.

Theorem on Cyclic Group

404

Case 2

am = e for some positive integer m. 

Let n be the smallest positive integer such that 

an = e. 

If s ∊ ℤ and s = nq + r for 0 < r < n, then 

as = anq+r = (an)q ar = eq ar = ar. 

As in Case 1, if 0 < k < h < n and

ah = ak, then ah-k = e and 0 < h-k < n, 
contradicting  our choice of n. 

Theorem on Cyclic Group

405

Case 2

Thus the elements

a0=e, a, a2, a3, ···, an-1 

are all distinct and 
comprise all elements 
of G. 

The map 𝛹 : G → ℤn

given by 𝛹(ai)  = i for i
= 0, 1, 2, ···, n - 1  is 
thus well defined, one 
to one, and onto ℤn.

Theorem on Cyclic Group

406

Case 2

Because an = e, we see

that  ai aj = ak

where k = i +n j. 

Thus 𝛹(ai aj) = i +n j

= 𝛹(ai) +n 𝛹(aj), 

so the homomorphism 
property is satisfied and 
𝛹 is an isomorphism.

Theorem on Cyclic Group

407

Permutation Groups

Group Theory

408
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Definition

A permutation of a set 
A is a function from A to 
A that is both one to 
one and onto.

Permutation Groups

409

Array Notation

 Let A = {1, 2, 3, 4}

 Here are two permutations of A:

1 2 3 4

2 3 1 4


 
  
 

1 2 3 4

2 1 4 3


 
  
 

(2) 3 

(4) 4 

(4) 3 

(1) 2 

(2) (3) 4  

Permutation Groups

410

1 2 3 4 1 2 3 4
 

2 1 4 3 2 3 1 4

1 2 3 4


   

    
   

 
  
 1

Composition in Array Notation

Permutation Groups

411

1 2 3 4 1 2 3 4
 

2 1 4 3 2 3 1 4

1 2 3 4


   

    
   

 
  
 1 4

Composition in Array Notation

Permutation Groups

412

1 2 3 4 1 2 3 4
 

2 1 4 3 2 3 1 4

1 2 3 4


   

    
   

 
  
 1 4 2

Composition in Array Notation

Permutation Groups

413

1 2 3 4 1 2 3 4
 

2 1 4 3 2 3 1 4

1 2 3 4


   

    
   

 
  
 1 4 2 3

Composition in Array Notation

Permutation Groups

414
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1 2 3 4 1 2 3 4
 

2 1 4 3 2 3 1 4

1 2 3 4


   

    
   

 
  
 1 4 2 3

Composition in Array Notation

Permutation Groups

415

Definition

A permutation group of 
a set A is a set of 
permutations of A that 
forms a group under 
function composition.

Permutation Groups

416

Example

 The set of all permutations on {1,2,3} is called the symmetric group 
on three letters, denoted S3

 There are 6 permutations possible:

1 2 3

__ __ __

 3   2 1  6

 
 
 

  

Permutation Groups

417

Examples of 
Permutation Groups

Group Theory

418

S3

 The permutations of {1,2,3}:

1 2 3

1 2 3


 
  
 

1 2 3

2 3 1


 
  
 

1 2 32

3 1 2


 
  
 

1 2 3

1 3 2


 
  
 

1 2 3

2 1 3


 
  
 

1 2 32

3 2 1
 

 
  
 

Examples of Permutation Groups

419

Is S3 a group?

 Composition of functions is always associative.

 Identity is .

 Since permutations are one to one and onto, there exist inverses 
(which are also permutations).

 Therefore, S3 is  group.

Examples of Permutation Groups

420
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3
1 2 3 1 2 3

 
2 3 1 3 1 2


   

    
   

1 2 3

1 2 3


 
 

 

2
1 2 3 1 2 3

 
1 3 2 1 3 2


   

    
   

1 2 3

1 2 3


 
 

 

1 2 3 1 2 3
 

1 3 2 2 3 1


   
    
   

2
1 2 3

3 2 1
 

 
 

 

Computations in S3

Examples of Permutation Groups
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Simplified Computations in S3

 







 Double the exponent of when switching with .

We can simplify any expression in S3!

Examples of Permutation Groups
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Examples of 
Permutation Groups

Group Theory

423

Symmetric Groups, Sn

 Let A = {1, 2, … n}.  The symmetric group on n letters, denoted Sn, is 
the group of all permutations of A under composition.

 Sn is a group for the same reasons that S3 is  group.

 |Sn| = n!

Examples of Permutation Groups
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1

23

4

0

1 2 3 4

1 2 3 4
R

 
  
 

90

1 2 3 4

2 3 4 1
R

 
  
 

180

1 2 3 4

3 4 1 2
R

 
  
 

270

1 2 3 4

4 1 2 3
R

 
  
 

1 2 3 4

2 1 4 3
H

 
  
 

1 2 3 4

4 3 2 1
V

 
  
 

1 2 3 4

1 4 3 2
D

 
  
 

1 2 3 4

3 2 1 4
D

 
   

 
D4 ≤ S4

Symmetries of a Square, D4

Examples of Permutation Groups
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Why do we care?

 Every group turns out to be a permutation group on some set!  

(To be proved later).

Examples of Permutation Groups

426
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Permutation Groups

Group Theory

427

Definition

Let  f : A → B be a 
function and let H be a 
subset  of A. The image 
of H under f is

{f (h) I h ∊ H} and is 
denoted  by f[H]. 

Permutation Groups

428

Lemma

Let G and G' be groups  
and let ϕ : G → G' be a 
one-to-one function such 
that ϕ(xy) = ϕ(x )ϕ(y) 

for all x, y ∊ G. 

Then ϕ[ G] is a subgroup 
of G' and ϕ provides  an 
isomorphism of G with 
ϕ[G].

Permutation Groups

429

Proof

Let  x', y' ∊ ϕ[G]. Then  there  exist  x, y ∊ G  such  that  ϕ(x) 
= x' and  ϕ(y) = y'. 

By hypothesis, ϕ(xy) = ϕ(x)ϕ(y) = x'y', showing  that x'y'  ∊
ϕ[G]. 

We have  shown that ϕ[G]  is closed  under the operation of 
G'.

Permutation Groups

430

Let e' be the identity of G'. 

Then

e'ϕ(e)  = ϕ(e)  

= ϕ(ee) 

= ϕ(e)ϕ(e).

Cancellation in G'  shows 
that e' = ϕ(e)  so e' ∊ ϕ[G].

Permutation Groups

431

For x' ∊ ϕ[G] where x' = 

ϕ(x), we have

e'=ϕ(e)

= ϕ(xx-1)

= ϕ(x) ϕ(x-1)

= x' ϕ(x-1)

which  shows  that 

x'-1   = ϕ(x-1)   ∊ ϕ[G].  

Therefore,  ϕ[G]<G'.

Permutation Groups

432
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Note that ϕ provides  an 
isomorphism  of G with  
ϕ[G]  follows  at once 
because  ϕ provides a one-
to-one map of G onto ϕ[G]  
such that ϕ(xy)  = ϕ(x)ϕ(y) 
for all x, y ∊ G .

Permutation Groups

433

Cayley’s Theorem

Group Theory

434

Theorem

Every  group is isomorphic 
to a group  of permutations.

Cayley’s Theorem

435

Proof

Let G be a group. 

We show that G is 
isomorphic to a 
subgroup of SG. 

We Need only to define 
a one-to-one function 

ϕ:  G → SG such that 

ϕ(xy)  = ϕ(x)ϕ(y) 

for all x, y ∊ G. 

Cayley’s Theorem

436

For x  ∊ G, let λx :   G → G be defined by λx (g)  = xg
for all g ∊ G. (We think of λx as performing left 
multiplication by x.) 

The equation λx(x
-1c)  = x(x-1c)  = c for all c ∊ G 

shows  that λx maps  G onto  G. If λx(a)  = λx(b),  
then xa = xb so a= b by cancellation.  Thus λx is 
also  one  to  one,  and  is a permutation of G.

Cayley’s Theorem

437

We now  define ϕ:  G → SG by defining  ϕ(x)  = λx

for all x  ∊ G.

To show that ϕ is one to one, suppose  that 

ϕ(x)  = ϕ(y ). 

Then λx = λy as functions mapping  G into G. 

In particular λx(e)  = λy(e), so xe = ye and x = y. 

Thus ϕ is one to one. 

Cayley’s Theorem

438
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It only remains  to show that ϕ(xy)  = ϕ(x )ϕ(y ), 

that is, λxy = λx λy .

Now for any g ∊ G, we have λxy(g)  = (xy)g.

Permutation multiplication is function  
composition, so (λx λy)(g)  = λx(λy(g))  = λx(yg)  = 
x(yg). 

Thus by associativity, λxy = λx λy .

Cayley’s Theorem

439

Examples of 
Permutation Groups

Group Theory

440

There is a natural correspondence between the 
elements of S3 and the ways in which two copies of 
an equilateral triangle with vertices 1, 2, and 3 can 
be placed, one covering the other with vertices on 
top of vertices.  

For this reason, S3 is also the group D3 of 
symmetries of an equilateral triangle. We used 𝜌, 
for rotations and µ;  for mirror images in bisectors of 
angles. The notation D3 stands for the third dihedral 
group. 

The nth dihedral group Dn is the group of 
symmetries of the regular n-gon.

Examples of Permutation Groups
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1

2 3

l2

l1

l3

ρ0 = do nothing

μ1 = reflect in line l1

μ2 =  reflect in line l2

μ3 = reflect in line l3

ρ1 = rotate anticlockwise 120o

ρ2 = rotate anticlockwise 240o

1

3 2

3

2 1

2

1 3

3

1 2

2

3 1

Examples of Permutation Groups

442

ρ0 ρ1 ρ2 μ1 μ2 μ3

ρ0 ρ0 ρ1 ρ2 μ1 μ2 μ3

ρ1 ρ1 ρ2 ρ0 μ3 μ1 μ2

ρ2 ρ2 ρ0 ρ1 μ2 μ3 μ1

μ1 μ1 μ2 μ3 ρ0 ρ1 ρ2

μ2 μ2 μ3 μ1 ρ2 ρ0 ρ1

μ3 μ3 μ1 μ2 ρ1 ρ2 ρ0





























































312

321

123

321

231

321

213

321

132

321

321

321

3

2

1

2

1

0













Examples of Permutation Groups
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Examples of 
Permutation Groups

Group Theory

444
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Recall 

We form the dihedral group D4 of permutations  
corresponding  to the ways that two copies of a 
square with vertices 1, 2, 3, and 4 can be placed, 
one covering the other with vertices on top of 
vertices. 

D4 is the group of symmetries of the square. 

It is also called the octic group. 

Examples of Permutation Groups
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1

23

4

0

1 2 3 4

1 2 3 4


 
  
 

1

1 2 3 4

2 3 4 1


 
  
 

2

1 2 3 4

3 4 1 2


 
  
 

3

1 2 3 4

4 1 2 3


 
  
 

1

1 2 3 4

2 1 4 3


 
  
 

2

1 2 3 4

4 3 2 1


 
  
 

1

1 2 3 4

1 4 3 2


 
  
 

2

1 2 3 4

3 2 1 4


 
  
 

D4 ≤ S4

Symmetries of a Square, D4

Examples of Permutation Groups
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Examples of Permutation Groups
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Orbits

Group Theory

448

Definition

An orbit of a permutation 
p is an equivalence class 
under the relation:

a ~ b ⇔ b = pn(a), 
for some n in ℤ.

Orbits

449

Find all orbits of

Method: 

Let S be the set that the permutation works on.  

0) Start with an empty list 

1) If possible, pick an element of the S not already 
visited and apply permutation repeatedly to get 
an orbit.  

2)  Repeat step 1 until all elements of S have been 
visited.











45132

54321


Orbits

450
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 Look at what happens to elements as a 
permutation is applied.



α(1)=2, α2(1)=3, α3(1)=1 {1,2,3}

α(4)=5, α2(4)=4                        {4,5}

1 2 3 4 5

2 3 1 5 4


 
  
 

Orbits

451

Orbits

Group Theory

452

Theorem

Let p be a permutation 
of a set S.  

The following relation 
is an equivalence 
relation:

a ~ b ⇔ b =pn(a), 
for some n in ℤ.

Orbits

453

Proof

1) reflexive: 

a = p0(a) ⇒ a~a

2) symmetric: 

a~b ⇒ b = pn(a), for     

some n in ℤ

⇒ a = p-n(b), 

with -n in ℤ

⇒ b~a

Orbits

454

3) transitive: 

a~b and b~c

⇒ b = 𝑝𝑛1(a) and c = 𝑝𝑛2(b) , for some n1 and n2 in    

ℤ

⇒ c = 𝑝𝑛2(𝑝𝑛1(a)) , for some n1 and n2 in ℤ

⇒ c = 𝑝𝑛2+𝑛1(a) , with n2 + n1 in ℤ

⇒ a~c

Orbits

455

Cycles

Group Theory

456
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Definition

A permutation is a 
cycle if at most one of 
its orbits is nontrivial 
(has more than one 
element).

Cycles

457

Definition

A cycle of length 2 is 
called a transposition.

Cycles

458

Example

=(1, 2, 3)(4, 5)

=(1,3)(1,2)(4,5)











45132

54321


Cycles

459

Composition in cycle notation

 = (1 2 3)(1 2)(3 4) 

= (1 3 4)(2) 

= (1 3 4)

 = (1 2)(3 4)(1 2 3)

= (1)(2 4 3)

= (2 4 3)

Cycles

460

Disjoint Cycles

Group Theory

461

Definition

Two permutations are 
disjoint if the sets of 
elements moved by 
the permutations are 
disjoint.

Disjoint Cycles

462
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0

1 2 3 4
(1 2)(1 2)

1 2 3 4


 
  
 

1

1 2 3 4
(1 2 3 4) (1 4)(1 3)(1 2)

2 3 4 1


 
   
 

2

1 2 3 4
(1 3)(2 4)

3 4 1 2


 
  
 

3

1 2 3 4
(1 4 3 2) (1 2)(1 3)(1 4)

4 1 2 3


 
   
 

Symmetries of a Square, D4 ≤ S4

Disjoint Cycles

463

1

1 2 3 4
(1 2)(3 4)

2 1 4 3


 
  
 

2

1 2 3 4
(1 4)(2 3)

4 3 2 1


 
  
 

1

1 2 3 4
(2 4)

1 4 3 2


 
  
 

2

1 2 3 4
(1 3)

3 2 1 4


 
  
 

Disjoint Cycles

Symmetries of a Square, D4 ≤ S4

464

Cycle Decomposition

Group Theory

465

Theorem: 

Every permutation of 
a finite set is a product 
of disjoint cycles.

Cycle Decomposition

466

Proof: 

Let σ be a permutation.

Let B1, B2, …, Br be the 
orbits.  

Let μi be the cycle 
defined by μi (x) = σ(x) if 
x in Bi and x otherwise.

Then σ = μ1 μ2 … μr .

Note: Disjoint cycles 

commute.

Cycle Decomposition

467

Lemma

Every cycle is a product 
of transpositions.

Proof

Let (a1, a2, …, an) be a 
cycle, then

(a1, an) (a1, an-1) … (a1, a2) 
= (a1, a2, …, an). 

Cycle Decomposition

468
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Theorem

Every permutation can 
be written as a product 
of transpositions.

Proof

Use the lemma plus the 
previous theorem.

Cycle Decomposition

469

Parity of Permutation

Group Theory

470

Definition

The parity of a permutation 

is said to be even if it can

be expressed as the 

product of an even number 

of transpositions, and odd

if it can be expressed as a 

product of an odd number 

of transpositions.

Parity of a Permutation

471

Theorem

The parity of a 

permutation is even or 

odd, but not both.

Parity of a Permutation

472

Proof
We show that for any positive integer n, parity is a 
homomorphism from Sn to the group ℤ2, where 0 
represents even, and 1 represents odd.  
These are alternate names for the equivalence classes 
2ℤ and 2ℤ+1 that make up the group ℤ2.
There are several ways to define the parity map. 
They tend to use the group {1, -1} with multiplicative
notation instead of {0, 1} with additive notation.

Parity of a Permutation

473

One way uses linear algebra: For the permutation π

define a map from Rn to Rn by switching coordinates 

as follows 

Lπ(x1, x2, …, xn) = (x π(1), xπ(2), …, xπ(n)).  

Then Lπ is represented by a n x n matrix Mπ whose 

rows are the corresponding permutation of the rows 

of the n x n identity matrix.  

The map that takes the permutation π to Det (Mπ) is 

a homomorphism from Sn to the multiplicative group 

{-1, 1}.

Parity of a Permutation

474
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Another way uses the action of the permutation on 

the polynomial 

P(x1, x2, …, xn ) = Product{(xi - xj )| i < j }.  

Each permutation changes the sign of P or leaves it 

alone.  

This determines the parity: change sign = odd parity, 

leave sign = even parity.

Parity of a Permutation

475

Alternating Group

Group Theory

476

Definition

The alternating group 
on n letters consists of 
the even permutations 
in the symmetric group 
of n letters.

Alternating Group

477

Definition

The alternating group 
on n letters consists of 
the even permutations 
in the symmetric group 
of n letters.

Alternating Group

478

Theorem

If n≥2, then the 
collection of all even 
permutations of 

{1, 2, …, n} 

forms a subgroup of 
order n!/2 of the 
symmetric group Sn.

Alternating Group

479

Alternating Group

0

1

2

1

2

3

1 2 3
(12)(12)

1 2 3

1 2 3
(1 2 3) (1 3)(1 2)

2 3 1

1 2 3
(1 3 2) (1 2)(1 3)

3 1 2

1 2 3
(2 3)

1 3 2

1 2 3
(1 3)

3 2 1

1 2 3
(1 2)

2 1 3













 
  
 

 
   
 

 
   
 

 
  
 

 
  
 

 
  
 

480
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(1) (1 2 3) (1 3 2)

(1) (1) (1 2 3) (1 3 2)

(1 2 3) (1 2 3) (1 3 2) (1)

(1 3 2) (1 3 2) (1) (1 2 3)

Alternating Group

A3={(1), (1 2 3), (1 3 2)}

481

Direct Products

Group Theory

482

Definition

The Cartesian product of

sets S1, …, Sn is the set of

all n-tuples (a1,···, an),    

where ai ∊ Si for i = 1,···, n.

The Cartesian product is

denoted by either 

S1 X … X Sn or by ∏i=1
n Si.

Direct Products

483

Let G 1, ···, Gn be groups, and let us use
multiplicative notation for all the group operations.
Regarding the G as sets, we can form ∏i=1

n Gi.
Let us show that we can make ∏i=1

n Gi into a group
by means of a binary operation of multiplication by 
components.

Direct Products

484

Theorem

Let G1, …, Gn be groups. 

For (a1, …, an) and (b1,…, bn) in ∏i=1
n Gi, 

define (a1, …, an)(b1,…, bn) to be the element 

(a1 b1, …, an bn). 

Then ∏i=1
n Gi is a group, the direct product of the

groups Gi , under this binary operation.

Direct Products

485

Proof

Note that since ai , bi ∊ G, and Gi is a group, we

have aibi ∊ G.

Thus the definition of the binary operation on

∏i=1
n Gi given in the statement of the theorem

makes sense, that is, ∏i=1
n Gi is closed under the

binary operation.

Direct Products

486
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The associate law in

∏i=1
n Gi is thrown back onto the associative law in

each component as follows:

(a1,···, an)[(b1,···, bn)(c1,···, cn)]

=(a1, ···, an)(b1c1,···, bncn)= (a1(b1c1),···, an(bncn))

= ((a1b1)c1,···, (anbn)cn)=(a1b1,…,anbn)(c1,…,cn)

=[(a1,…,an)(b1,…,bn)](c1,…,cn)

Direct Products

487

If ei is the identity element in Gi, then clearly,

with multiplication by components, (e1,···,en) an

identity in ∏i=1
n Gi.

Finally, an inverse of (a1,···, an) is (a1
-1,···, an

-1);

compute the product by components.

Hence ∏i=1
n Gi is a group.

Direct Products

488

Direct Products

Group Theory

489

In the event that the operation of each Gi is
commutative, we sometimes use additive
notation in ∏i=1

n Gi, and refer to ∏i=1
n Gi as the

direct sum of the groups Gi. The notation

⨁i=1
nGi is sometimes used in this case in place of

∏i=1
n Gi, especially with abelian groups with

operation +. The direct sum of abelian groups G1,

G2,···, Gn may be written as G1 ⨁… ⨁Gn.

Direct Products
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Proposition

A direct product of 
abelian groups is 
abelian. 

Direct Products
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Proof

Let G1, …, Gn be abelian
groups. For (a1, …, an) 
and (b1,…, bn) in 

∏i=1
n Gi , 

(a1, …, an)(b1,…, bn) 

=(a1 b1, …, an bn)

=(b1a1,…,bnan)

=(b1,…, bn) (a1, …, an).

Direct Products

492
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If the Si has ri elements 
for i =1,···,n, then ∏i=1

n Si

has r1…rn elements, for 
in an n-tuple, there are 
r1 choices for the first 
component from S1,  and 
for each of these there 
are r2 choices for the 
next component from S2,  
and so on.

Direct Products

493

Direct Products

Group Theory

494

Example

Consider the group ℤ2 x ℤ3,  which has 2·3=6 
elements, namely (0, 0), (0,  1), (0, 2), (l, 0), (1, 1), 
and (1, 2). We claim that ℤ2 x ℤ3 is cyclic. It is only 
necessary  to find a generator.  Let us try (1,  1).  Here 
the operations in ℤ2 and ℤ3 are written  additively,  
so we do the same in the direct product ℤ2 x ℤ3.

Direct Products
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• 1(1, 1)  = (1,  1)

• 2(1.  1)  = (l,  l) + (1,  1)  = (0, 2)

• 3(1,  1)  = (1,  1) + (1,  1) + (1,  1)  = (1, 0)

• 4(1,  1)  = 3(1.  1) + (1,  1)  = (1, 0) + (1.  1)  = (0, 1)

• 5(1,  1)  = 4(1,  1) + (1,  1)  = (0,  1) + (1,  1)  = (1, 2)

• 6(1,  1)  = 5(1.  1) + (1,  1)  = (1, 2) + (1,  1)  = (0, 0)

Thus (1, 1) generates all of ℤ2 x ℤ3.  Since there is, 
up to isomorphism,  only one cyclic group structure 
of a given order, we see that ℤ2 x ℤ3 is isomorphic 
to ℤ6.

Direct Products
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Example

Consider ℤ3 x ℤ3. This is a group of nine elements. 
We claim that ℤ3 x ℤ3 is not cyclic.

Since the addition is by components,  and since in ℤ3

every element added to itself three times gives the 
identity, the same is true in ℤ3 x ℤ3 .  Thus no 
element can generate the group, for a generator 
added to itself successively could only give the 
identity after nine summands. We have found 
another group structure of order 9. A similar 
argument shows that ℤ2 x ℤ2 is not cyclic. Thus ℤ2 x 
ℤ2 must be isomorphic to the Klein 4-group.

Direct Products
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Direct Products

Group Theory

498
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Theorem

The group ℤm x ℤn is cyclic and is isomorphic to ℤmn if 
and only if m and n are relatively prime, that is, the 
gcd of m and n is 1.

Direct Products

499

Proof

Consider the cyclic subgroup of ℤm x ℤn generated 
by (1,1). The order of this cyclic subgroup is the 
smallest power of (1,1) that gives the identity (0,0). 
Here taking a power of (1,1) in our additive 
notation will involve  adding (1,1) to itself 
repeatedly.  Under addition by components, the 
first component 1 ∊ ℤm yields 0 only after m
summands, 2m summands, and so on, and the 
second component 1 ∊ ℤn yields 0 only after n
summands, 2n summands,  and so on.

Direct Products

500

For them to yield 0 simultaneously, the number of 
summands must be a multiple of both m and n. The 
smallest number that is a multiple of both m and n 
will be mn if and only if the gcd of m and n is 1; in this 
case, (1,1)  generates a cyclic subgroup of order mn, 
which is the order of the whole group.  This shows 
that ℤm x ℤn is cyclic of order mn, and hence 
isomorphic to ℤmn if m and n are relatively prime.

Direct Products

501

For the converse, suppose that the gcd of m and 
n is d > 1. The mn/d is divisible by both m and n. 
Consequently, for any (r, s) in ℤmx ℤn, we have

(r,s) + ··· + (r,s) = (0,0).
mn/d summands

Hence no element (r, s) in ℤm x ℤn can generate 
the entire group, so ℤm x ℤn is not cyclic and 
therefore not isomorphic to ℤmn.

Direct Products

502

Corollary

The group ∏i=1
nℤ𝑚𝑖

is 
cyclic and isomorphic to
ℤ𝑚1…𝑚𝑛

if and only if 
the numbers mi for i = 
1,…,  n are such that the 
gcd of any two of them 
is 1.

Direct Products

503

Example

If n is written as a product 
of powers of distinct prime 
numbers, as in 
n=𝑝1

𝑛1…𝑝𝑟
𝑛𝑟

then ℤn is isomorphic to

ℤ𝑝1
𝑛1 x … xℤ𝑝𝑟

𝑛𝑟 .

In particular, ℤ72 is 
isomorphic to ℤ8 x ℤ9.

Direct Products

504
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Direct Products

Group Theory

505

We remark that changing 
the order  of the factors  
in a direct  product  yields  
a group isomorphic to the 
original  one. The names  
of elements have simply  
been  changed via a 
permutation of the 
components in the n-
tuples.

Direct Products

506

It is straightforward to prove that the subset  of ℤ

consisting of all integers  that are multiples of both  r

and s is a subgroup of ℤ, and hence  is cyclic group 

generated by the  least common multiple of two 

positive integers  r and s.  

Likewise,  the set of all common multiples of n positive  

integers  r1,···, rn is a subgroup of ℤ, and hence  is cyclic 

group generated by the  least common multiple of n 

positive integers r1,···, rn.

Direct Products

507

Definition

Let r1,···, rn be positive  integers.  Their  least 

common multiple (abbreviated lcm) is the positive  

generator of the cyclic  group  of all common 

multiples of the ri, that is, the cyclic  group of all 

integers  divisible  by each ri, for i = 1,···, n. 

Direct Products

508

Theorem

Let  (a1,···, an)∊ ∏i=1
n Gi.  If ai is  of finite  order  ri in  

Gi,  then the order of (a1,···,an) in ∏i=1
n Gi is equal  to 

the least common multiple of all the ri.

Direct Products

509

Proof

This  follows  by a repetition of the argument used  
in the proof of previous Theorem. For a power  of 
(a1,···, an) to give (e1, ···,en), the power must  
simultaneously be  a multiple of r1 so that this 
power  of the first component a1 will yield e1,  a 
multiple of r2, so that this power  of the second  
component a2 will yield e2, and so on.

Direct Products

510
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Direct Products

Group Theory

511

Example

Find  the order of (8, 4, 10) in the group ℤ12 x ℤ6o x 
ℤ24.

Solution

Since the gcd of 8 and 12 is 4, we see that 8 is of 
order 3 in ℤ12. Similarly,  we  find that 4 is of order  
15  in ℤ6o and  10  is of order  12  in ℤ24. The  lcm 
of 3,  15,  and  12 is 3·5·4 = 60, so (8, 4,10)  is of 
order  60 in the group ℤ12 x ℤ60 x ℤ24.

Direct Products

512

Example

The  group  ℤ x ℤ2 is generated by the elements   
(1, 0) and  (0, 1).  More  generally,  the direct 
product of n cyclic  groups,  each  of which  is 
either ℤ or ℤm for some  positive integer m, is 
generated by then n-tuples

(1, 0,···, 0), (0, 1,···, 0),…,(0, 0,···, 1). Such  a direct  
product might  also be generated by fewer 
elements.  For example, ℤ3 x ℤ4 x ℤ35 is generated 
by the single  element  (1, 1, 1).                                             

Direct Products

513

Fundamental Theorem 
of Finitely Generated 

Abelian Groups

Group Theory

514

Theorem

Every finitely generated abelian group G is 
isomorphic to a direct product of cyclic groups in the 
form

ℤ𝑝1
𝑟1x … x ℤ𝑝𝑛

𝑟𝑛 x ℤ x … x ℤ

where the pi are primes, not necessarily  distinct, 
and the ri are positive integers. The direct product  
is unique  except for possible  rearrangement  of the 
factors; that is, the number  (Betti number of G) of 
factors ℤ is unique  and the prime powers  𝑝𝑖

𝑟𝑖 are 
unique.

Fundamental Theorem of Finitely Generated 
Abelian Groups

515

Example

Find all abelian groups, up to isomorphism, of 
order 360. The phrase up to isomorphism 
signifies that any abelian group of order 360 
should be structurally identical (isomorphic) to 
one of the groups of order 360 exhibited.

Fundamental Theorem of Finitely Generated 
Abelian Groups

516
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Solution

Since our groups are to be of the finite order 
360,  no factors ℤ will appear in the direct 
product shown in the statement of the 
fundamental theorem of finitely generated 
abelian groups.

First we express 360 as a product of prime 
powers 23.32.5.

Fundamental Theorem of Finitely Generated 
Abelian Groups

517

Then, we get as possibilities

1. ℤ2 x ℤ2 x ℤ2 x ℤ3 x ℤ3 x ℤ5

2. ℤ2 x ℤ4 x ℤ3 x ℤ3 x ℤ5

3. ℤ2 x ℤ2 x ℤ2 x ℤ9 x ℤ5

4. ℤ2 x ℤ4 x ℤ9 x ℤ5

5. ℤ8 x ℤ3 x ℤ3 x ℤ5

6. ℤ8 x ℤ9 x ℤ5

Thus there are six different abelian groups (up 
to isomorphism)  of order 360.

Fundamental Theorem of Finitely Generated 
Abelian Groups

518

Applications

Group Theory

519

Definition

A group G is decomposable if it is isomorphic to 
a direct product of two proper nontrivial 
subgroups. Otherwise G is indecomposable.

Applications

520

Theorem

The finite indecomposable  abelian groups are 
exactly the cyclic groups with order a power of 
a prime.

Applications

521

Proof

Let G be a finite indecomposable abelian group. 
Then, G is isomorphic to a direct product of 
cyclic groups of prime power order.  Since G is 
indecomposable, this direct product must 
consist of just  one cyclic group whose order is a 
power of a prime number.

Conversely, let p be a prime. Then ℤp' is 
indecomposable,  for if ℤp' were isomorphic to 
ℤ𝑝𝑖 x ℤ

𝑝j , where i + j = r, then every element 

would have an order at most pmax{i,j}<pr.

Applications

522
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Applications

Group Theory

523

Theorem

If m divides the order of a finite abelian group 
G, then G has a subgroup of order m.

Applications

524

Proof

We can think of G as being

ℤ𝑝1
𝑟1x … x ℤ𝑝𝑛

𝑟𝑛 where  not all primes  pi need be 
distinct.  Since 𝑝1

𝑟1 … 𝑝𝑛
𝑟𝑛 is the order  of G, then m

must be of the form 𝑝1
𝑠1 … 𝑝𝑛

𝑠𝑛 , where 0≤ si ≤ri.

𝑝𝑖
𝑟𝑖−𝑠𝑖 generates a cyclic  subgroup  of ℤ𝑝𝑖

𝑟𝑖 of 
order equal  to the quotient of 𝑝𝑖

𝑟𝑖 by the gcd of 
𝑝𝑖

𝑟𝑖 and 𝑝𝑖
𝑟𝑖−𝑠𝑖. But the gcd of 𝑝𝑖

𝑟𝑖 and 𝑝𝑖
𝑟𝑖−𝑠𝑖 is 

𝑝𝑖
𝑟𝑖−𝑠𝑖. Thus 𝑝𝑖

𝑟𝑖−𝑠𝑖 generates  a cyclic  subgroup 
ℤ𝑝𝑖

𝑟𝑖 of order [𝑝𝑖
𝑟𝑖 ]/[𝑝𝑖

𝑟𝑖−𝑠𝑖]= 𝑝𝑖
𝑠𝑖.

Applications

525

Recalling that <a> denotes the cyclic subgroup 
generated by a, we see that

< 𝑝1
𝑟1−𝑠1 > x … x < 𝑝𝑛

𝑟𝑛−𝑠𝑛 >

is the required subgroup of order m.

Applications

526

Applications

Group Theory

527

Theorem

If m is a square free integer,  that is, m is not 
divisible  by the square  of any prime,  then

every abelian group  of order m is cyclic.

Applications

528
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Proof

Let G be an abelian group of square free order 
m. Then,  G is isomorphic to

ℤ𝑝1
𝑟1x … x ℤ𝑝𝑛

𝑟𝑛 ,

where m= 𝑝1
𝑟1 … 𝑝𝑛

𝑟𝑛 . Since  m is square free,  
we must  have all ri = 1   and all pi distinct  
primes.  Then, G is isomorphic to  ℤ𝑝1…𝑝𝑛

, so G 
is cyclic.

Applications

529

Cosets

Group Theory

530

Definition

Let H be a subgroup of a group G, which may be of finite

or infinite order and a in G.

The left coset of H containing a is the set 

aH = {ah | h in H}

The right coset of H containing a is the set

Ha = {ha | h in H}

In additive groups, we use a+H and H+a for left and 
right cosets, respectively.

Cosets

531

Example

We exhibit the left cosets and the right cosets of the 

subgroup 3ℤ of ℤ.

0+3ℤ= 3ℤ ={…, -6, -3, 0, 3, 6, … }

1+3ℤ={…, -5, -2, 1, 4, 7, … }

2+3ℤ={…, -4, -1, 2, 5, 8, … } 

ℤ= 3ℤ⊔1+3ℤ ⊔ 2+3ℤ 

So, these three left cosets constitute the partition of 
ℤ into left cosets of 3ℤ.

Cosets

532

Example

3ℤ+0= 3ℤ ={…, -6, -3, 0, 3, 6, … }=0+3ℤ

3ℤ+1={…, -5, -2, 1, 4, 7, … }=1+3ℤ

3ℤ+2={…, -4, -1, 2, 5, 8, … }=2+3ℤ 

ℤ= 3ℤ⊔3ℤ+1 ⊔ 3ℤ+2 

So, the partition of ℤ into right cosets is the same.

Cosets

533

Cosets

Group Theory

534
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Topic No. 67

Group Theory

535

Partitions of Groups

Group Theory

536

Let H be a subgroup of a

group G, which may be of 

finite or infinite order.

We exhibit two partitions

of G by defining two 

equivalence relations, ∼L

and ∼R on G.

Partitions of Groups

537

Theorem

Let H be a subgroup of a group G. 

Let the relation ∼L be defined on G by a ∼L b iff a-1b∊H.

Let ∼R be defined by a ∼R b iff ab-1∊H.

Then ∼L and ∼R are both equivalence relations on G.  

Partitions of Groups

538

Proof

Reflexive

Let a∊G. 

Then a-1a = e ∊ H 

since H is a subgroup.

Thus a∼La.

Partitions of Groups

539

Symmetric

Suppose a∼Lb.

Then a-1b∊H.

Since H is a subgroup,

(a-1b)-1=b-1a ∊H. 

It implies that b ∼L a.

Partitions of Groups

540
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Transitive

Let a∼Lb and b∼Lc .

Then a-1b∊H and b-1c∊H.

Since H is a subgroup,

(a-1b)(b-1c)=a-1c ∊H. 

So, a ∼L c.

Partitions of Groups

541

 a is called the coset
representative of aH.

 Similarly, aHa-1 ={aha-1 | 
h in H}

Partitions of Groups

542

Group Theory

Topic No. 68

543

Examples of Cosets

Group Theory

544

Vectors under addition are a group:

(a,b) + (c,d) = (a+c,b+d)∊ℝ2

Identity is (0,0) ∊ℝ2

Inverse of (a,b) is (-a,-b) in ℝ2

((a,b)+(c,d))+(e,f)=(a+c,b+d)+(e,f)=((a+c)+e,(b+d)+f)
=(a+(c+e),b+(d+f))=(a,b)+(c+e,d+f)=(a,b)+((c,d)+(e,f)) 

H = {(2t,t) | t∊ℝ} is a subgroup of ℝ2.  

Proof: (2a,a) - (2b,b) = (2(a-b),a-b) ∊H

Examples of Cosets

545

Visualizing H={(2t,t) | t∊ℝ}

Let x = 2t, y = t

Eliminate t: 

y = x/2
H

Examples of Cosets

546
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Cosets of H={(2t,t) | t ∊ ℝ} 

(a,b) + H = {(a+2t,b+t)}

Set x = a+2t, y = b+t and eliminate t:

y = b + (x-a)/2

The subgroup H is the line y = x/2.

The cosets are lines parallel to y = x/2 !

Examples of Cosets

547

H and some cosets

H

(1,0) + H

(–3,0)+H

(0,1) + H

Examples of Cosets

548

Examples of Cosets

Group Theory

549

Group Theory

Topic No. 69

550

Examples of Cosets

Group Theory

551

Left Cosets of <(23)> in S3

Let H = <(23)> {, (23)}

H = {, (23)}=H

(123)H = {(123), (12)}

(132)H = {(132), (13)}

S3= H ⊔ (123)H ⊔ (132)H 

Examples of Cosets

552
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Right Cosets of <(23)> in S3

Let H = <(23)> {, (23)}

H  = {, (23)}=H

H(123) = {(123), (13)}

H(132) = {(132), (12)}

S3= H ⊔ H(123) ⊔ H(132)

Examples of Cosets

553

Left Cosets of <(123)> in A4

Let H = <(123)> {, (123), (132)}

H = {, (123), (132)}

(12)(34)H = {(12)(34), (243), (143)}

(13)(24)H = {(13)(24), (142), (234)}

(14)(23)H = {(14)(23), (134), (124)}

Examples of Cosets

554

Examples of Cosets

Group Theory

555

Group Theory

Topic No. 70

556

Properties of Cosets

Group Theory

557

Proposition

Let H be a subgroup of G, 
and a,b in G.

1.  a belongs to aH

2. aH = H iff a belongs to    

H

Properties of Cosets

558
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Properties of Cosets

559

Properties of Cosets

560

Properties of Cosets

Group Theory

561

Group Theory

Topic No. 71

562

Properties of Cosets

Group Theory

563

Proposition

Let H be a subgroup of G, and a,b in G.

3.  aH = bH iff a belongs to bH

4. aH and bH are either equal or disjoint

5.  aH = bH iff a-1b belongs to H

Properties of Cosets

564
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Properties of Cosets

565

4. aH and bH are either disjoint or equal. 

Proof:  Suppose aH and bH are not disjoint.  Say x is in 
the intersection of aH and bH.

Then aH = xH = bH by (3).  

Consequently, aH and bH are either disjoint or equal, 

as required.

Properties of Cosets

566

Properties of Cosets

567

Properties of Cosets

Group Theory

568

Group Theory

Topic No. 72

569

Properties of Cosets

Group Theory

570
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Proposition

Let H be a subgroup of G, 
and a in G.

6.  |aH| = |bH|

7.  aH = Ha iff H = aHa-1

8.  aH ≤ G iff a belongs to H

Properties of Cosets

571

6.   |aH| = |bH|

Proof:  Let ø: aH → bH be given by

ø(ah) = bh for all h in H.

We claim ø is one to one and onto.

If ø(ah1) = ø(ah2), then bh1 = bh2

so h1 = h2.  Therefore ah1 = ah2.

Hence ø is one-to-one.  

ø is clearly onto.  

It follows that |aH| = |bH| as required.

Properties of Cosets

572

Properties of Cosets

573

Properties of Cosets

574

Properties of Cosets

Group Theory

575

Lagrange’s Theorem

Group Theory

576
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Lagrange’s Theorem

Statement

If G is a finite group and H
is a subgroup of G, then
|H| divides |G|.

577

Lagrange’s Theorem

Proof

The right cosets of H in G form a partition of G, so G

can be written as a disjoint union

G = Ha1 ∪ Ha2 ∪ ·· ·∪ Hak

for a finite set of elements a1, a2, . . . , ak ∈ G.

The number of elements in each coset is |H|.

Hence, counting all the elements in the disjoint

union above, we see that |G| = k|H|.

Therefore, |H| divides |G|.
578

Lagrange’s Theorem

Subgroups of ℤ12

|ℤ12|=12

The divisors of 12 are 1, 2, 3,
4, 6 and 12.

The subgroups of ℤ12 are

H1={[0]}

H2={[0],[6]}

H3={[0],[4],[8]}

H4={[0],[3],[6],[9]}

H5={[0],[2],[4],[6],[8],[10]}

579

Lagrange’s Theorem

Applications of 
Lagrange’s Theorem

Group Theory

580

Corollary

Every group of prime 
order is cyclic.

Applications of Lagrange’s Theorem

581

Proof

Let G be of prime order p, and let a be an element of 
G different  from the identity. 

Then the cyclic subgroup <a> of G generated by a 
has at least two elements, a and e. 

But the order m≥2 of <a> must  divide  the prime  p.

Thus  we must  have m = p and <a>=G, so G is cyclic.

Applications of Lagrange’s Theorem

582



12/16/2018

98

Since every cyclic  
group  of order  p is 
isomorphic to ℤp, we 
see that there is only 
one group  structure,  
up to isomorphism, of 
a given prime  order p.

Applications of Lagrange’s Theorem

583

Theorem

The order  of an 
element  of a finite 
group  divides  the 
order of the group.

Applications of Lagrange’s Theorem

584

Proof

Remembering that the 
order of an element  is 
the same as the order 
of the cyclic subgroup 
generated by the 
element,  we see that 
this theorem  follows 
directly  from 
Lagrange’s Theorem.

Applications of Lagrange’s Theorem

585

Indices of Subgroups

Group Theory

586

Definition

Let H be a subgroup  of 
a group  G. 

The number  of left (or 
right) cosets of H in G 
is the index (G:H) of H 
in G.

Indices of Subgroups

587

The index (G:H) just 
defined  may be finite or 
infinite. 

If G is finite, then 
obviously (G:H) is finite 
and (G:H)=IGI/IHI, since 
every coset of H contains  
IHI elements. 

Indices of Subgroups

588
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Example

μ=(1,2,4,5)(3,6)

μ2=(2,5)(1,4)

μ3=(1,5,4,2)(3,6)

μ4=ε

<μ> < S6

(S6:<μ>)=|S6|/|< μ >|

=6!/4=6.5.3.2=180.

Indices of Subgroups

589

Example

Find the right cosets of

H = {e, g4, g8} in   

C12 = {e, g, g2, . . . , g11}.

590

Indices of Subgroups

Solution

H={e, g4, g8} itself is one coset.

Another is Hg = {g, g5, g9}.

These two cosets have not exhausted all the
elements of C12, so pick an element, say g2, which is
not in H or Hg.

A third coset is Hg2 = {g2, g6, g10} and a fourth is

Hg3 ={g3, g7, g11}.

Since C12 = H ∪ Hg ∪ Hg2 ∪ Hg3, these are all the

cosets. Therefore, (C12:H)=12/3=4.

591

Indices of Subgroups

Theorem

Suppose H and K are  
subgroups  of a group  
G such that K ≤ H ≤ G,  
and  suppose (H:K) and 
(G:H) are both finite. 
Then (G:K) is finite, and 
(G:K)=(G:H)(H:K).

Indices of Subgroups

592

Converse of Lagrange’s 
Theorem

Group Theory

593

Lagrange’s Theorem 
shows  that  if there  is 
a subgroup H of a finite  
group  G, then  the 
order of H divides  the 
order of G. 

Converse of Lagrange’s Theorem

594
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Is the converse  true? 

That is, if G is a group 
of order n, and m
divides n, is there 
always a subgroup of 
order m?

We will see next that 
this is true for abelian
groups.  

Converse of Lagrange’s Theorem

595

However,  A4 can be 
shown to have no 
subgroup  of order 6, 
which  gives a 
counterexample for 
nonabelian groups.

Converse of Lagrange’s Theorem

596

A4 = {(1), (1, 2)(3, 4), 

(1, 3)(2, 4),(1, 4)(2, 3), 

(1, 2, 3), (1, 3, 2), 

(1, 3, 4), (1, 4, 3), 

(1, 2, 4),(1, 4, 2), 

(2, 3, 4), (2, 4, 3)}

Converse of Lagrange’s Theorem

597

An Interesting Example

Group Theory

598

Example 

A translation of the plane

R2 in the direction of the

vector (a, b) is a function

f :R2 → R2 defined by 

f (x, y) = (x + a, y + b). 

599

An Interesting Example

The composition of this 
translation with a 
translation g in the 
direction of (c, d) is the 
function
f g:R2 → R2, where

f g(x, y) = f (g(x, y))

= f (x + c, y + d)

= (x + c + a, y + d + b).

This is a translation in the 

direction of (c + a, d + b). 

An Interesting Example

600
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It can easily be verified

that the set of all
translations in R2 forms

an abelian group,  under

composition.

601

An Interesting Example

A translation of the plane

R2 in the direction of the

vector (0, 0) is an identity

function 1R
2:R2 → R2

defined by 

1R
2(x, y)=(x+0, y+0)=(x, y). 

602

An Interesting Example

The inverse of the 
translation of the plane

R2 in the direction of the

vector (a, b) is an inverse 

function f -1 :R2 → R2

defined by 

f -1 (x, y) = (x - a, y - b) 

such that

f f -1(x, y)=(x, y)=f-1 f(x, y).

603

An Interesting Example

The inverse of the 

translation in the

direction (a, b) is the

translation in the

opposite direction

(−a,−b).

604

An Interesting Example

Homomorphism of 
Groups

Group Theory

605

Structure-Relating Maps

Let G and G' be groups. 
We are interested in 
maps from G to G' that 
relate the group 
structure  of G to the 
group  structure  of G'.  

Such  a map often  gives 
us information about one 
of the groups from 
known structural 
properties of the other. 

606

Homomorphism of Groups
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Structure-Relating Maps

An isomorphism ϕ: G →
G', if one exists, is an 
example of such a 
structure-relating map. If 
we know all about the 
group G and know that ϕ
is an isomorphism,  we 
immediately know all 
about the group structure 
of G', for it is structurally 
just a copy of G. 

607

Homomorphism of Groups

Structure-Relating Maps

We now consider more general structure-relating 
maps, weakening the conditions from those of an 
isomorphism by no longer requiring that the maps 
be one to one and onto. We see, those conditions 
are the purely set-theoretic portion of our definition 
of an isomorphism, and have nothing to do with the 
binary operations of G and of G'.

608

Homomorphism of Groups

Definition

If (G,・) and (H, ) are
two groups, the function
f :G → H is called a group
homomorphism if

f(a・b)=f(a)f(b)

for all a, b ∈ G.

609

Homomorphism of Groups

We often use the 
notation 

f : (G, ・) → (H, ) 

for such a homorphism. 

Many authors use 
morphism instead of 
homomorphism.

610

Homomorphism of Groups

Definition

A group isomorphism is a 
bijective group 
homomorphism. 

If there is an isomorphism 
between the groups (G,・) 
and (H,), we say that 

(G,・) and (H,) are 
isomorphic and write 

(G,・)  (H,  ).

611

Homomorphism of Groups

Example

Let ϕ: G → G' be a group homomorphism  of G onto 
G'. We claim that if G is abelian, then  G'  must be 
abelian.  Let a', b' ∊ G'.  We must  show that a' b' = b' 
a'. Since ϕ is onto  G',  there exist  a, b ∊ G such that 
ϕ(a)= a' and ϕ(b)  = b', Since G is abelian,

we have ab=  ba. Using homomorphism property,  
we have a'b'  = ϕ(a) ϕ(b) = ϕ(ab)= ϕ(ba)  =

ϕ(b) ϕ(a) = b' a', so G' is indeed abelian. 

612

Homomorphism of Groups
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Examples of Group

Homomorphisms

Group Theory

613

Example

The function  f : Z → Zn , 

defined by f (x) = [x] is

the group 

homomorphism, 

for if i, j  ℤ, then 

f(i+j)=[i+j]

=[i]+n[j]

=f(i)+nf(j).

614

Homomorphism of Groups

Example

Let be R the group of all real numbers with 

operation addition, and let R+ be the group of all 

positive real numbers with operation multiplication. 

The function f : R → R+ , defined by f (x) = ex , is a 

homomorphism, for if x, y  R, then 

f(x + y) = ex+y = ex ey = f (x) f (y). 

615

Examples of Group Homomorphisms

Now f is an isomorphism, for its inverse function

g :R+ → R is ln x.

Therefore, the additive group R is isomorphic to
the multiplicative group R+ .

Note that the inverse function g is also an 
isomorphism: 

g(x y) = ln(x y) = lnx + lny = g(x) + g(y). 

616

Examples of Group Homomorphisms

Examples of Group

Homomorphisms

Group Theory

617

Example

Let Sn be the symmetric group on n letters, and let : 
ϕ: Sn →  ℤ2 be defined by

ϕ(σ)  = 0    if σ is  an even permutation, 

= 1   if σ is an odd permutation.

Show that ϕ is a homomorphism.

618

Examples of Group Homomorphisms
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Solution

We must show that ϕ(σ, µ) = ϕ(σ) + ϕ(µ) for all 
choices of σ, µ ∊ Sn. Note that the operation on the 
right-hand side of this equation is written additively 
since it takes place in the group ℤ2. Verifying this 
equation amounts to checking just four cases:

 σ odd and µ odd, 

 σ odd and µ even, 

 σ even and µ odd, 

 σ even and µ even.
619

Examples of Group Homomorphisms

Checking the first case, if σ and µ can both be 
written as a product of an odd number of 
transpositions, then σµ can be written as the 
product of an even number of transpositions. Thus 
ϕ(σ, µ) = 0 and ϕ(σ) + ϕ(µ)  = 1  +  1   = 0 in ℤ2. The 
other cases can be checked similarly. 

620

Examples of Group Homomorphisms

Properties of

Homomorphisms

Group Theory

621

Proposition 

Let ϕ :G → H be a group 
morphism, and let eG

and eH be the identities 
of G and H, respectively. 

Then

(i) ϕ (eG) = eH .

(ii) ϕ (a−1) = ϕ (a)−1 for 
all a ∈ G.

622

Properties of Homomorphisms

Proof

(i) Since ϕ is a morphism, 

ϕ (eG) ϕ (eG) 

= ϕ (eG eG) 

= ϕ (eG) 

= ϕ (eG)eH

Hence (i) follows by 
cancellation in H.

623

Theorems on Group Homomorphisms

Proof

(ii) ϕ (a) ϕ (a−1) 

= ϕ (a  a−1) 

= ϕ (eG) 

= eH by (i). 

Hence ϕ (a−1) is the 
unique inverse of ϕ (a); 
that is ϕ (a−1) = ϕ (a)−1.

624

Theorems on Group Homomorphisms
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Properties of

Homomorphisms

Group Theory

625

We tum to some 
structural features  of G 
and G' that are 
preserved by a 
homomorphism

ϕ: G → G'.  

First  we review  set-
theoretic definitions. 

626

Properties of Homomorphisms

Definition

Let ϕ be a mapping  of 
a set X into a set Y, and 
let A ⊆ X and B ⊆ Y. The 
image ϕ[A] of A in Y 
under ϕ is {ϕ(a) |a∊A}. 
The set ϕ[X] is the 
range of ϕ. The inverse 
image ϕ-1[B] of B in X is  
{x∊X|ϕ(x)∊B}.

627

Properties of Homomorphisms

Theorem

Let ϕ be a 
homomorphism of a 
group  G into a group  G'.

1. If H is a subgroup of 
G, then ϕ[H] is a 
subgroup of G'.

2. If K' is a subgroup of 
G', then ϕ-1[K'] is a 
subgroup of G.

628

Properties of Homomorphisms

Proof

(1) Let H be a subgroup  of G, and let ϕ(a)  and ϕ(b)

be any two elements in ϕ[H]. Then ϕ(a) ϕ(b) = 

ϕ(ab), so we see that ϕ(a) ϕ(b) ∊ ϕ[H]; thus, ϕ[H]

is closed under the operation of G'. The fact that

ϕ(eG) = 𝑒𝐺′ and ϕ (a−1) = ϕ (a)−1 completes the 

proof that ϕ[H] is a subgroup of G’.

629

Properties of Homomorphisms

Proof
(2) Let K' be a subgroup of G'. Suppose a and b are
in ϕ-1 [K']. Then ϕ(a)ϕ(b)∊K' since K' is a subgroup. 
The equation ϕ(ab)  = ϕ(a) ϕ(b) shows that 
ab∊ϕ-1 [K']. Thus ϕ-1[K'] is closed under the binary 
operation in G. 

630

Properties of Homomorphisms
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Also, K' must contain the  identity  element 𝑒𝐺′= 
ϕ(eG),  so eG ∊ ϕ-1[K'].  If a ∊ ϕ-1[K'],  then

ϕ(a) ∊ K',  so ϕ(a)-1 ∊ K'.  But ϕ(a)-1 = ϕ(a-1), so we 
must have a-1 ∊ ϕ-1[K'].

Hence ϕ-1[K'] is a subgroup of G. 

631

Properties of Homomorphisms

Properties of

Homomorphisms

Group Theory

632

Theorem: Let h be a homomorphism from a group G 

into a group G’.  Let K be the kernel of h.  Then

a K = {x in G | h(x) = h(a)} = h -1[{h(a)}]

and also

K a = {x in G | h(x) = h(a)} = h -1[{h(a)}]

Properties of Homomorphisms

633

Proof

h -1[{h(a)}] = {x in G | h(x) = h(a)}  directly from the 

definition of inverse image.

Now we show that: a K = {x in G | h(x) = h(a)} :

x in a K ⇔ x = a k, for some k in K

⇔ h(x) = h(a k) = h(a) h(k) = h(a) , for some k in K

⇔ h(x) = h(a) 

Thus, a K = {x in G | h(x) = h(a)}.

Likewise,   K a = {x in G | h(x) = h(a)}.

Properties of Homomorphisms

634

Suppose: h: X  Y is any map of sets.  Then h 
defines an equivalence relation ~h on X by:

x ~h y ⇔ h(x) = h(y)

The previous theorem says that when h is a homomorphism 
of groups then the cosets (left or right) of the kernel of h are 
the equivalence classes of this equivalence relation.

Properties of Homomorphisms

635

Properties of

Homomorphisms

Group Theory

636
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Definition

If ϕ: G → G' is a group morphism, the kernel of ϕ , denoted by Ker ϕ, is
defined to be the set of elements of G that are mapped by f to the
identity of G'. That is, Ker f ={g ∈ G|f (g) = e' }.

637

Properties of Homomorphisms

Corollary

Let ϕ: G → G' be a group morphism. Then, ϕ is injective if and only if
Ker ϕ = {e}.

638

Properties of Homomorphisms

Proof

If Ker(ϕ) =  {e}, then for every a ∊ G, the elements mapped into ϕ(a) 
are precisely the elements of the left coset a { e}  = {a}, which shows 
that ϕ is one to one.

Conversely, suppose ϕ is one to one. Now, we know that ϕ(e)=e', the 
identity element of G'. Since ϕ is one to one, we see that e is the only 
element mapped into e' by ϕ, so Ker(ϕ)=  {e}.

639

Properties of Homomorphisms

Definition

To Show ϕ: G → G' is an 
Isomorphism

Step 1   Show ϕ is a 
homomorphism. 

Step 2   Show Ker(ϕ)=  
{e}.

Step 3   Show ϕ maps G
onto G'.

640

Properties of Homomorphisms

Normal Subgroups

Group Theory

641

Normal Subgrops

Let G be a group with subgroup H. The right cosets of H in G are
equivalence classes under the relation a ≡ b mod H, defined by ab−1 ∈
H. We can also define the relation L on G so that a L b if and only if b−1a
∈ H. This relation, L, is an equivalence relation, and the equivalence
class containing a is the left coset aH = {ah|h ∈ H}. As the following
example shows, the left coset of an element does not necessarily equal
the right coset.

642

Normal Subgroups
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Example

Find the left and right
cosets of H = A3 and K =
{(1), (12)} in S3.

643

Normal Subgroups

Solution

We calculated the right cosets of H = A3.

Right Cosets

H = {(1), (123), (132)}; H(12) = {(12), (13), (23)}

Left Cosets

H = {(1), (123), (132}; (12)H = {(12), (23), (13)}

In this case, the left and right cosets of H are the

same.

644

Normal Subgroups

However, the left and right cosets of K are not all the
same.

Right Cosets

K = {(1), (12)} ; K(13) = {(13), (132)} ; K(23) = {(23),
(123)}

Left Cosets

K = {(1), (12)};(23)K = {(23), (132)}; (13)K = {(13),
(123)}

645

Normal Subgroups

Normal Subgroups

Group Theory

646

Definition

A subgroup H of a 

group G is called a 

normal subgroup of G if 

g−1hg ∈ H for all g ∈ G 

and h ∈ H.

647

Normal Subgroups

Proposition

Hg = gH, for all g ∈ G, if

and only if H is a normal

subgroup of G.

648

Normal Subgroups
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Proof

Suppose that Hg = gH. 

Then, for any element h ∈

H, hg ∈ Hg = gH. 

Hence hg = gh1 for some 

h1 ∈ H and 

g−1hg = g−1gh1 = h1 ∈ H. 

Therefore, H is a normal 

subgroup.

649

Normal Subgroups

Conversely, if H is normal, let hg ∈ Hg and 

g−1hg = h1 ∈ H. 

Then hg = gh1 ∈ gH and Hg ⊆ gH. 

Also, ghg−1 = (g−1)−1hg−1 = h2 ∈ H, since H is 

normal, so gh = h2g ∈ Hg. Hence, gH ⊆ Hg, 

and so Hg = gH.

650

Normal Subgroups

Theorem on Normal 
Subgroup

Group Theory

651

If N is a normal 

subgroup of a group G, 

the left cosets of N in G 

are the same as the 

right cosets of N in G, so 

there will be no 

ambiguity in just talking 

about the cosets of N in 

G.

652

Theorem on Normal Subgroup

Theorem

If N is a normal subgroup 

of (G, ·), the set of cosets

G/N = {Ng|g ∈ G} forms a 

group (G/N, ·), where the 

operation is defined by 

(Ng1) · (Ng2) = N(g1 · g2). 
This group is called the 
quotient group or factor 
group of G by N.

653

Theorem on Normal Subgroup

Proof. The operation of multiplying two cosets, Ng1

and Ng2, is defined in terms of particular elements,
g1 and g2, of the cosets. For this operation to make
sense, we have to verify that, if we choose
different elements, h1 and h2, in the same cosets,
the product coset N(h1 · h2) is the same as

N(g1 · g2). In other words, we have to show that
multiplication of cosets is well defined.

654

Theorem on Normal Subgroup
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Since h1 is in the same coset as g1, we have 

h1 ≡ g1 mod N. Similarly, h2 ≡ g2 mod N. 

We show that Nh1h2 = Ng1g2. 

We have h1g 1
−1 = n1 ∈ N and h2g 2

−1 = n2 ∈ N, so 

h1h2(g1g2)−1 = h1h2g 2
−1g 1

−1 =  n1g1n2g2g2
−1 g 1

−1 = 
n1g1n2g 1

−1. 

Now N is a normal subgroup, so g1n2g 1
−1 ∈ N and 

n1g1n2g 1
−1 ∈ N. Hence h1h2 ≡ g1g2 mod N and 

Nh1h2 = Ng1g2. 

Therefore, the operation is well defined.

Theorem on Normal Subgroup

655

• The operation is associative because (Ng1 · Ng2) ·
Ng3 = N(g1g2) · Ng3 = N(g1g2)g3 and also Ng1 · (Ng2

· Ng3) = Ng1 · N(g2g3) = Ng1(g2g3) = N(g1g2)g3.

• Since Ng · Ne = Nge = Ng and Ne · Ng = Ng, the
identity is Ne = N.

• The inverse of Ng is Ng−1 because Ng · Ng−1 = N(g ·
g−1) = Ne = N and also Ng−1 · Ng = N.

• Hence (G/N, ·) is a group.

656

Theorem on Normal Subgroup

Example on Normal 
Subgroup

Group Theory

657

Example

(Zn, +) is the quotient
group of (Z,+) by the
subgroup

nZ = {nz|z ∈ Z}.

658

Example on Normal Subgroup

Solution
Since (Z,+) is abelian, every subgroup is normal. The
set nZ can be verified to be a subgroup, and the
relationship a ≡ b mod nZ is equivalent to a − b ∈ nZ
and to n|a − b. Hence a ≡ b mod nZ is the same
relation as a ≡ b mod n. Therefore, Zn is the quotient
group Z/nZ, where the operation on congruence
classes is defined by [a] + [b] = [a + b].

659

Example on Normal Subgroup

(Zn,+) is a cyclic group 

with 1 as a generator.

When there is no 

confusion, we write the 

elements of Zn as 0, 1, 
2, 3, . . . , n − 1 instead 

of [0], [1], [2], [3], . . . , 

[n − 1].

660

Example on Normal Subgroup
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Morphism Theorem for 
Groups

Group Theory

661

Theorem 

Let K be the kernel of the 
group morphism

f :G → H. Then G/K is 
isomorphic to the image 
of f, and  the isomorphism

ψ: G/K → Im f   

is defined by   

ψ(Kg) = f(g).

662

Morphism Theorem for Groups

This result is also known as the first isomorphism 
theorem.

Proof. The function ψ is defined on a coset by 
using one particular element in the coset, so we 
have to check that ψ is well defined; 

that is, it does not matter which element we use. 

663

Morphism Theorem for Groups

ψ: G/K → Im f, ψ(Kg)=f(g).

If Kg’=Kg, then g’≡g mod K

so g’g−1 = k ∈ K = Ker f. 

Hence g’=kg and so

f(g’) = f(kg) 

= f(k)f(g) 

= eHf(g) = f(g).

Thus ψ is well defined on 

cosets.

664

Morphism Theorem for Groups

The function ψ is a  
morphism because

ψ(Kg1Kg2) 

= ψ(Kg1g2) 

= f (g1g2) 

= f (g1)f (g2) 

= ψ(Kg1)ψ(Kg2).

665

Morphism Theorem for Groups

If ψ(Kg) = eH, then 

f (g) = eH and g ∈ K.

Hence the only element

in the  kernel of ψ is the

identity coset K, and 

ψ is injective. 

666

Morphism Theorem for Groups
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Finally, Im ψ = Im f, that is,

ψ-1(f(g))=Kg , by the

definition of ψ. 

Therefore, ψ is the

required isomorphism

between G/K and Im f.

667

Morphism Theorem for Groups

Application of 
Morphism Theorem

Group Theory

668

Example

Show that the quotient 
group R/Z is 
isomorphic to the circle 
group 

W = {eiθ ∊ C | θ ∊ R }.

669

Application of Morphism Theorem

Solution

The set W= {eiθ ∊ C | θ ∊ R } consists of points on

the circle of complex numbers of unit modulus, and

forms a group under multiplication.

Define the function f : R → W by f (x) = e2πix.

This is a morphism from (R,+) to (W, ·) because

f (x + y) = e2πi(x+y)

= e2πix · e2πiy

= f (x) · f (y).
670

Application of Morphism Theorem

The morphism f : R → W 

is clearly surjective, 

and its kernel is                     

{x ∈ R|e2πix = 1} = Z.

Therefore, the morphism

theorem implies that 

R/Z   W.

671

Application of Morphism Theorem

Normality of Kernel of 
a Homomorphism

Group Theory

672
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Right Cosets

Let (G, ·) be a group
with subgroup H. For a,
b ∈ G, we say that a is
congruent to b modulo
H, and write a ≡ b mod
H if and only if ab−1 ∈ H.

673

Normality of Kernel of a Homomorphism

Proposition 

The relation a ≡ b mod H 
is an equivalence 
relation on G. 

The equivalence class 
containing a can be 
written in the form Ha = 
{ha|h ∈ H}, and it is 
called a right coset of H 
in G. The element a is 
called a representative 
of the coset Ha.

674

Normality of Kernel of a Homomorphism

Theorem 

Let  be a 
homomorphism 
function from group 

(G, *)  to group (G‘,.). 
Then, (Ker,*) is a 
normal subgroup of 
(G,*).

Normality of Kernel of a Homomorphism

675

Proof
i) Ker is a subgroup of G 
a,bKer, (a)=eG‘, 
(b)=eG‘.
Then, (a*b)=(a)
(b)=eG‘.
Therefore, a*bKer.
Inverse element:
aKer,(a)=eG‘. 
Then, 
(a-1)=(a)-1 

=eG‘  Therefore, a-

1Ker.

Normality of Kernel of a Homomorphism

676

ii) gG,aKer, (a)=eG‘.
Then,
(g-1*a*g)
= (g-1)(a)  (g)
=  (g)-1 eG‘  (g)
= eG‘

Therefore,
g-1*a*gKer.

Normality of Kernel of a Homomorphism

677

Example of Normal 
Group

Group Theory

678
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Definition

A subgroup H of a group 
is a normal subgroup if 
gH=Hg for gG.

Example of Normal Group

679

Example 

 Any subgroups of Abelian group are normal 
subgroups

 S3={(1),(1,2,3), (1,3,2), (2,3), (1,3), (1,2)}.

 H1={(1), (2,3)}; H2={(1), (1,3)}; H3={(1), (1,2)};

 (1,3)H1={(1,3),(1,2)}        H1(1,3)={(1,3),(1,2)}

 (1,2,3)H1={(1,2,3),(1,2)}   H1(1,2,3)={(1,2,3),(1,3)}

Example of Normal Group

680

 H4={(1), (1,2,3), (1,3,2)} 
are subgroups of S3. 

 H4 is a normal subgroup.

Example of Normal Group

681

(1)Hg=gH, it does not 
imply hg=gh.

(2) If Hg=gH, then there 
exists h'H such that 
hg=gh' for hH. 

Example of Normal Group

682

 Let H be a subgroup of a group G.  When is 
(a H) (b H) = a b H?

 This is true for abelian groups, but not always when G is 
nonabelian.

 Consider S3: Let H = {ρ0, μ1}.  The left cosets are 
{ρ0, μ1}, {ρ1, μ3}, {ρ2, μ2}.  

If we multiply the first two together, then 
{ρ0, μ1}, {ρ1, μ3} = {ρ0 ρ1, ρ0 μ3, μ 1 ρ1, μ 1 μ3}

= {ρ1, μ3, μ2, ρ 2}

This has four distinct elements, not two!

Example of Normal Group

683

Factor Group

Group Theory

684
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Definition 

Let (H,*) be a normal 
subgroup of the group 
(G,*). (G/H,) is called 
quotient group, where the 
operation  is defined on 
G/H by 

Hg1Hg2= H(g1*g2). 

If G is a finite group, then 
G/H is also a finite group, 
and |G/H|=|G|/|H|. 

Factor Group

685

• The product of two sets is define as follow

SS’ = {xx’xS and x’S}

• {aHaG, H is normal} is a group, denote by G/H and called it factor 
groups of G.

• A mapping f: GG/H is a homomorphism, and call it canonical 
homomorphism. 

Factor Group

686

G G/H

f

H H

aH aH

Factor Group

687

Consider S3: Let H = {ρ0, ρ1 , ρ2}.  The left cosets are 
{ρ0, ρ1 , ρ2}, {μ1, μ2 , μ3}

If we multiply the first two together, then 
{ρ0, ρ1 , ρ2} {μ1, μ2, μ3} = {ρ0 μ1, ρ0 μ2, ρ0 μ3, ρ1 μ1, ρ1 μ2, ρ1 μ3, ρ2 μ1, 

ρ2 μ2, ρ2 μ3} = {μ1, μ2, μ3, μ3, μ1, μ2, μ2, μ3, μ1}  = {μ1, μ2, μ3}

This is one of the cosets.  Likewise, 
{ρ0, ρ1 , ρ2} {ρ0, ρ1 , ρ2} = {ρ0, ρ1 , ρ2} 
{μ1, μ2 , μ3}{ρ0, ρ1 , ρ2} = {μ1, μ2 , μ3}
{μ1, μ2 , μ3 }{μ1, μ2 , μ3} = {ρ0, ρ1 , ρ2} 

Note that the cosets of  {ρ0, ρ1 , ρ2} with this binary operation 

form a group isomorphic to ℤ2.

Factor Group

688

Note that there is a 
natural map from S3 to 

{{ρ0, ρ1 , ρ2}, {μ1, μ2 , μ3}} 
that takes any element to 
the coset that contains it.  
This gives a 
homomorphism called 
the cannonical
homomorphism.

Factor Group

689

Coset Multiplication 
and Normality

Group Theory

690
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Theorem

Let H be a subgroup of a 

group G.  

Then H is normal if and 

only if 

(a H )( b H) = (a b) H, 

for all a, b in G

Coset Multiplication and Normality

691

Proof

Suppose  

(a H )( b H) = (a b) H, 

for all a, b in G. 

We show that aH = H a, 

for all a in H.

We do this by showing: 

a H  H a and Ha aH, 

for all a in G.

Coset Multiplication and Normality

692

a H  H a: First observe that  aHa-1 (aH)(a-1H)

=(aa-1)H = H. 

Let  x be in a H.  Then x = a h, for some h in H.  Then 

x a-1 = a h a-1, which is in = a H a-1 ,

thus in H.  Thus x a-1 is in H.  Thus x is in H a. 

H a  a H:  H a  H a H = (e H )( a H) = (e a) H = a H. 

This establishes normality.

Coset Multiplication and Normality
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For the converse, assume H is normal.

(a H )( b H)  (a b) H: For a, b in G, x in (a H )( b H) 

implies that x = a h1 b h2, for some h1 and h2 in H.  

But h1 b is in H b, thus in b H.  Thus h1 b = b h3 for 

some h3 in H. Thus x = a b h3 h2 is in a b H.  

(a b) H  (a H )( b H):  x in (a b) H ⇒ x = a e b h,  for 

some h in H.  

Thus x is in (a H) (b H).

Coset Multiplication and Normality
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Examples on Kernel of 
a Homomorphism

Group Theory

695

Let h: G→G' be a 
homomorphism  and let 
e' be the identity 
element of G'. Now {e'} 
is a subgroup of G', so 

h-1[{e'}] is a subgroup K 
of G. This subgroup is 
critical to the study of 
homomorphisms.

Examples on Kernel of a Homomorphism

696
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Definition

Let h: G→G' be a 
homomorphism of 
groups. The   subgroup 
h-1[{e'}]={x∊G| h(x)=e'} 
is the kernel of h, 
denoted by Ker(h). 

Examples on Kernel of a Homomorphism
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Example

Let ℝn be the additive 
group of column vectors 
with n real-number  
components. (This group is 
of course isomorphic  to 
the direct product of ℝ
under addition with itself 
for n factors.) Let A be an 
m x n matrix of real 
numbers.  Let ϕ: ℝn→ℝm

be defined by ϕ(v)=Av for 
each column vector v∊ℝn. 
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Examples on Kernel of a Homomorphism

Example

Then ϕ is a 
homomorphism, since v, 
w∊ℝn, matrix algebra 
shows that 
ϕ(v+w)=A(v+w)

=Av+Aw=ϕ(v)+ϕ(w) 

In linear algebra, such a 
map computed by 
multiplying  a column 
vector on the left by a 
matrix A is known as a 
linear transformation.

699

Examples on Kernel of a Homomorphism

Ker(h) is called the null 
space of A. It consists of 
all v ∊ ℝn such that 

Av = 0, the zero vector.

Examples on Kernel of a Homomorphism

700

Examples on Kernel of 
a Homomorphism

Group Theory

701

Example

Let GL(n, ℝ) be the 
multiplicative  group of 
all invertible n x n 
matrices. Recall that a 
matrix A is invertible if 
and only if its 
determinant, det(A), is 
nonzero. 

702

Examples on Kernel of a Homomorphism



12/16/2018

118

Recall also that for matrices A,
B ∊GL(n, ℝ) we have 
det(AB)=det(A)det(B). This 
means that det is a 
homomorphism  mapping GL(n, 
ℝ) into the multiplicative group 
ℝ* of nonzero real numbers.

Ker(det) 

= {A∊ GL(n, ℝ)|det(A)=1}.
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Examples on Kernel of a Homomorphism

Homomorphisms of a 
group G into itself are 
often useful for studying 
the structure of G. Our 
next example gives a 
nontrivial 
homomorphism  of a 
group into itself.
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Examples on Kernel of a Homomorphism

Example

Let r∊ℤ and let ϕr: ℤ→ℤ 
be defined by ϕr(n)=rn
for all n∊ℤ. For all m, 
n∊ℤ, we have 
ϕr(m+n)=r(m + n) 
=rm+rn=ϕr (m)+ϕr(n) so 
ϕr is a homomorphism.
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Examples on Kernel of a Homomorphism

Note that ϕ0 is the trivial 
homomorphism, ϕ1 is 
the identity map, and ϕ-1 

maps ℤ onto ℤ. For all 
other r in ℤ, the map ϕr

is not onto ℤ. 

Ker(ϕ0)= ℤ                   
Ker(ϕr)= {0} for r≠0       

706
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Examples on Kernel of 
a Homomorphism

Group Theory

707

Example (Reduction 
Modulo n)

Let y be the natural map 
of ℤ into ℤn given by y(m) 
= r, where r is the 
remainder given by the 
division algorithm when 
m is divided by n. Show 
that y is a 
homomorphism. Find 
Ker(y).

708
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Solution
We need to show that y(s+t)=y(s)+y(t) for s, t ∊ ℤ. Using 
the division algorithm, we let
s=q1n+r1 (1)  and 
t=q2n+r2                    (2)  where 0≤ri<n for i=1, 2.
If r1+r2=q3n+r3 (3) for 0≤r3<n then adding Eqs. (1) and 
(2) we see that s + t = (q1 + q2 + q3)n + r3, so that 
y(s+t)=r3. From Eqs. (1) and (2) we see that 
y(s) =r1 and y(t)=r2. Equation (3) shows that
the sum r1+r2 in ℤn is equal to r3 also. 
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Examples on Kernel of a Homomorphism

Consequently 
y(s+t)=y(s)+y(t), 

so we do indeed  have a 
homomorphism.

Ker(y)=nℤ

710
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Kernel of a 
Homomorphism

Group Theory

711

Theorem

Let h be a 

homomorphism from a 

group G into a group G’.  

Let K be the kernel of h.  

Then

a K = {x in G | h(x) = h(a)} 

= h -1[{h(a)}] and also

K a = {x in G | h(x) = h(a)} 

= h -1[{h(a)}]

Kernel of a Homomorphism

712

Let K=Ker(h) for a homomorphism h:G→G'. We think 
of h as "collapsing" K down onto e‘. Above Theorem 
shows that for g ∊ G, the cosets gK and Kg are the 
same, and are collapsed onto the single element 
h(g) by h. That is h-1[{h(g)}]=gK=Kg. We have 
attempted to symbolize this collapsing in Fig. below,

where the shaded rectangle represents  G, the solid 
vertical line segments represent the cosets of 

K= Ker(h),  and the horizontal  line at the bottom  
represents G'.

713

Kernel of a Homomorphism

714

Kernel of a Homomorphism

a' h(b) e' h(x) y'

h-1[{a'}] bK K xK h-1[{y'}]

G

G'

h

Cosets of K collapsed by h
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We view h as projecting the elements  of G, which 
are in the shaded rectangle,  straight  down onto 
elements  of G',  which are on the horizontal  line 
segment  at the bottom.  Notice the downward 
arrow labeled h at the left, starting at G and ending 
at G'.  Elements  of K=Ker(h) thus lie on the solid 
vertical line segment in the shaded box lying over e', 
as labeled at the top of the figure.

715

Kernel of a Homomorphism

Kernel of a 
Homomorphism

Group Theory

716

Example

We have |z1z2|=|z1||z2| 
for complex numbers z1
and z2. This means that 
the absolute value 
function | | is a 
homomorphism of the 
group ℂ* of nonzero 
complex numbers under 
multiplication  onto the 
group ℝ+ of positive real 
numbers under 
multiplication.  
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Kernel of a Homomorphism

Since  {1}  is a subgroup of ℝ+, the complex numbers 
of magnitude 1  form a subgroup U of ℂ*.  Recall 
that the complex numbers can be viewed as filling 
the coordinate plane, and that the magnitude of a 
complex number is its distance from the origin.  
Consequently,  the cosets of U are circles with 
center at the origin. Each circle is collapsed by this 
homomorphism  onto its point of intersection with 
the positive real axis. 

Kernel of a Homomorphism

718

Kernel of a 
Homomorphism

Group Theory

719

Theorem

Let h be a 

homomorphism from a 

group G into a group G’.  

Let K be the kernel of h.  

Then

a K = {x in G | h(x) = h(a)} 

= h -1[{h(a)}] and also

K a = {x in G | h(x) = h(a)} 

= h -1[{h(a)}]

Kernel of a Homomorphism

720
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Above theorem shows that the kernel of a group 

homomorphism h:G→G' is a subgroup K of G whose 

left and right cosets coincide, so that gK=Kg  for all g

∊ G. When left and right cosets coincide, we can 

form a coset group G/K. Furthermore,  we have 

seen that K then appears as the kernel of a 

homomorphism  of G onto this coset group in a very 

natural way. Such subgroups K whose left and right 

cosets coincide are very useful in studying normal 

group.

Kernel of a Homomorphism

721

Example

Let D be the additive group of all differentiable functions 
mapping ℝ into ℝ, and let F be the additive group of all 
functions mapping ℝ into ℝ Then differentiation gives 
us a map ϕ: D→F, where ϕ(f)=f' for f∊F. We easily see 
that ϕ is a homomorphism, for
ϕ(f+g)=(f+g)'=f'+g'=ϕ(f)+ϕ(g); the derivative of a sum is 
the sum of the derivatives.

722

Kernel of a Homomorphism

Now Ker(ϕ) consists of all functions f such that f'=0. 
Thus Ker(ϕ) consists of all constant functions, which 
form a subgroup C of F. Let us find all functions in G 
mapped into x2 by ϕ, that is, all functions  whose 
derivative is x2. Now we know that x3/3 is one such 
function. By previous theorem, all such functions 
form the coset x3/3+C. 

723

Kernel of a Homomorphism

Examples of Group

Homomorphisms

Group Theory

724

Example (Evaluation Homomorphism)     

Let F be the additive group of all functions mapping

ℝ into ℝ, let ℝ be the additive group of real 
numbers, and let c be any real number. Let

ϕ: F→ℝ be the evaluation  homomorphism  defined 
by ϕc(f)= f(c) for f∊F. Recall that, by definition, the 
sum of two functions f and g is the function f + g 
whose value at x is  f (x) + g(x). Thus we have

ϕc(f+g)=(f+g)(c)=f(c)+g(c)=ϕc(f)+ϕc(g), so we have a 
homomorphism.

725

Examples of Group Homomorphisms

Composition of group homomorphisms is again a 
group homomorphism. That is, if

ϕ: G→G'  and y: G'→G" are both  group 
homomorphisms then their composition 

(y∘ϕ): G→G", where (y∘ϕ)(g) = y(ϕ(g)) for g ∊ G, is 
also  a homomorphism. 

726

Examples of Group Homomorphisms



12/16/2018

122

Examples of Group

Homomorphisms

Group Theory

727

Example

Let G=G1 x ··· x Gi x ··· x Gn be a direct product of 
groups. The projection map πi: G→Gi where 

πi(g1, ···, gi, ··· , gn)  = gi is a homomorphism  for 
each i=1, ··· , n. 

This follows immediately  from the fact that the 
binary operation of G coincides in the ith
component with the binary operation in Gi.
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Examples of Group Homomorphisms

Example

Let F be the additive group of continuous functions 
with domain [0, 1] and let ℝ be the additive group of 
real numbers. The map σ:F→ℝ defined by 
σ(f)=∫0

1f(x)dx for f ∊ F is a homomorphism, for

σ(f+g)=∫0
1(f+g)(x)dx=∫0

1[f(x)+g(x)]dx=

∫0
1f(x)dx+∫0

1g(x)dx=σ(f)+σ(g) for all f, g ∊ F.
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Examples of Group Homomorphisms

Each of the homomorphisms in the preceding two 
examples  is a many-to-one map. That  is, different 
points  of the domain  of the map  may  be carried  
into the same point. Consider, for illustration, the 
homomorphism π1: ℤ2 x ℤ4→ℤ2 We have

π1(0, 0)=π1(0, 1)= π1(0, 2)= π1(0, 3)=0, so four 
elements in ℤ2 x ℤ4 are mapped  into 0 in ℤ2 by π1.

730

Examples of Group Homomorphisms

Factor Groups from

Homomorphisms

Group Theory

731

Let G be a group and let S be a set having the same 
cardinality as G. Then there is a one-to-one 
correspondence ↔ between S and G. We can use ↔
to define a binary operation on S, making S into a 
group isomorphic to G. Naively, we simply use the 
correspondence to rename each element of G by 
the name of its corresponding  (under ↔) element in 
S. We can describe explicitly the computation  of xy
for x, y ∊ S as follows:

if x ↔ g1 and y ↔ g2 and z↔ g1g2, then xy=z (1)

732

Factor Groups from Homomorphisms
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The direction → of the one-to-one  correspondence  
s↔g between s∊S and g∊G gives us a one-to-one 
function µ mapping S onto G. The direction ← of ↔
gives us the inverse function µ-1.  Expressed in terms 
of µ, the computation (1) of xy for x, y ∊ S becomes

if µ(x)=g1 and µ(y)=g2 and µ(z)=g1g2, then xy=z     (2)

The map  µ: S→G now becomes an isomorphism 
mapping the group S onto the group G. Notice that 
from (2), we obtain µ(xy)=µ(z)=g1g2=µ(x)µ(y), the 
required homomorphism property.

733

Factor Groups from Homomorphisms

→→

Factor Groups from

Homomorphisms

Group Theory

734

Let G and G' be groups, 
let h: G→G' be a 

homomorphism,  and let 
K=Ker(h). The previous

theorem shows that for 
a∊G, we have 

h-1[{h(a)}]=aK =Ka. We 
have a one-to-one 
correspondence aK
↔h(a) between cosets of 
K in G and elements of 
the subgroup h[G] of G'. 

Factor Groups from Homomorphisms

→→

735

Remember that if x∊aK,  so that x=ak for some k∊K, 
then h(x)=h(ak)=h(a)h(k)=h(a)e'

=h(a), so the computation of the element of h[G]

corresponding  to the coset aK=xK is the same 
whether we compute it as h(a) or as h(x ). Let us 
denote the set of all cosets of K by G/K. (We read 
G/K as "G over K" or as "G modulo K" or as "G mod 
K," but never as "G divided by K.")

Factor Groups from Homomorphisms

→→

736

We started with a homomorphism h: G→G' having 
kernel K, and we finished with the set G/K of cosets
in one-to-one correspondence with the elements of 
the group h[G]. In our work above that, we had a set  
S with elements in one-to-one correspondence  with 
a those of a group G, and we made S into a group 
isomorphic to G with an isomorphism µ.
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Factor Groups from Homomorphisms

→→

Replacing  S by  G / H and replacing  G by h[G]  in 
that construction, we can consider G/K to be a 
group isomorphic to h[G] with that isomorphism µ. 
In terms of G/K and h[G], the computation (2) of 
the product (xK)(yK) for xK, yK ∊ G/K becomes if 

µ(xK)=h(x) and µ(yK)=h(y) and µ(zK)=h(x)h(y), then    
(xK)(yK)=zK. (3)

Factor Groups from Homomorphisms

→→

738
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But because h is a homomorphism, we can easily 
find z∊G such that µ(zK)=h(x )h(y ); namely, we take 
z=xy in G, and find that µ(zK)=µ(xyK)=h(xy)=h(x)h(y).

This shows that the product (xK)(yK) of two cosets is 
the coset (xy)K that contains the product xy of x and 
y in G. While this computation of (xK)(yK) may seem  
to depend on our choices x from xK and y from yK,  
our work above shows it does not. We demonstrate 
it again here because it is such an important point. If 
k1, k2 ∊ K so that xk1 is an element of xK and yk2 is an 
element of yK,  then there exists h3 ∊ K such that 
k1y= yk3 because Ky=  yK by previous Theorem. 

739

Factor Groups from Homomorphisms

→→

Thus we have 

(xk1)(yk2)=x(k1y)k2=x(yk3)k2=(xy)(k3k2) ∊ (xy)K,

so we obtain the same coset. Computation  of the 
product of two cosets is accomplished by choosing 
an element from each coset and taking, as product 
of the cosets, the coset that contains the product in 
G of the choices. Any time we define something  
(like a product) in terms of choices, it is important to 
show that it is well defined, which means that it is 
independent of the choices made. 
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Factor Groups from

Homomorphisms

Group Theory

741

Theorem

Let h: G→G' be a group 
homomorphism with kernel K. 
Then the cosets of K form a 
factor group,  G/K.  where 
(aK)(bK)=(ab)K.  Also, the map µ: 
G/H→h[G]

defined by µ(aK)=h(a) is an 
isomorphism. Both coset
multiplication and µ are well 
defined, independent  of the 
choices a and b from the cosets.

Factor Groups from Homomorphisms

→→

742

Example

Consider the map y: ℤ→ℤn, where  y(m) is the 
remainder when m is divided by n in accordance  
with the division algorithm. We know that y is a 
homomorphism.  Of course,  Ker(y)  = nℤ.  By above 
Theorem,  we see that the factor group ℤ/nℤ is 
isomorphic to ℤn. The cosets of nℤ are the residue 
classes modulo n. 

743

Factor Groups from Homomorphisms

→→

For example, taking n = 5, we see the cosets of 5ℤ are

5ℤ={…, -10, -5, 0, 5, 10,…},

1 +5ℤ = {…, -9, -4, 1, 6, 11,…},

2 + 5ℤ = {…, -8, -3, 2, 7, 12,…},

3 +5ℤ = {…, -7, -2, 3, 8, 13,…}

4+5ℤ = {…, -6, -1, 4, 9, 14,…}.

Note that the  isomorphism µ: ℤ/5ℤ→ ℤ5 of previous 
Theorem assigns to each coset of 5ℤ its smallest 
nonnegative element. That is, µ(5ℤ)=0, µ(1+ 5Z)  = 1, 
etc.

Factor Groups from Homomorphisms

→→

744
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Factor Groups from

Homomorphisms

Group Theory

745

It is very important that we 
learn how to compute in a 
factor group. We can multiply 
(add) two cosets by choosing  
any two representative 
elements,  multiplying  (adding) 
them and finding the coset in 
which the resulting product 
(sum) lies.

746

Factor Groups from Homomorphisms

→→

Example

Consider the factor group ℤ/5ℤ with the cosets
shown in precious example.  We can add 
(2+5ℤ)+(4+5ℤ) by choosing  2 and 4, finding 2+4=6, 
and noticing that 6 is in the coset 1+5ℤ. We could 
equally well add these two cosets by choosing 27 in 
2+5ℤ and -16 in 4+5ℤ; the sum 27+(-16)=11 is also 
in the coset 1+5ℤ.

747

Factor Groups from Homomorphisms

→→

The factor groups ℤ/nℤ in the preceding example 
are classics. Recall that we refer to the cosets of nℤ
as residue classes  modulo n. Two integers in the 
same coset are congruent modulo n. This 
terminology is carried over to other factor groups. A 
factor group G/H is often called the factor group of 
G modulo H. Elements in the same coset of H are 
often said to be congruent modulo H. By abuse of 
notation, we may sometimes write ℤ/nℤ=ℤn and 
think of ℤn as the additive group of residue classes 
of ℤ modulo n. 

Factor Groups from Homomorphisms

→→

748

Factor Groups from 
Normal Subgroups

Group Theory

749

So far, we have obtained 
factor groups only from 
homomorphisms. Let G 
be a group and let H be a 
subgroup of G. Now H 
has both left cosets and 
right cosets, and in 
general, a left coset aH
need not be the same set 
as the right coset Ha. 

750

Factor Groups from Normal Subgroups

→→
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Suppose we try to define a binary operation on left 
cosets by defining (aH)(bH)=(ab)H as in the 
statement of previous theorem. The above equation 
attempts to define left coset multiplication by 
choosing representatives a and b from the cosets. 
The above equation is meaningless unless it gives a 
well-defined operation, independent of the 
representative elements a and b chosen from the 
cosets. In the following theorem, we have proved 
that the above equation gives a well-defined binary 
operation if and only if H is a normal subgroup of G.

751

Factor Groups from Normal Subgroups

→→

752

Factor Groups from Normal Subgroups

→→

Theorem

Let H be a subgroup of a 

group G.  

Then H is normal if and 

only if 

(a H )( b H) = (a b) H, 

for all a, b in G
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Factor Groups from Normal Subgroups

→→

Above theorem shows 
that if left and right 
cosets of H coincide, 
then the equation

(aH)(bH)=(ab)H, for all a, 

b in G

gives a well-defined 

binary operation on 

cosets. 

754

Factor Groups from Normal Subgroups

→→

Theorem

If N is a normal subgroup 

of (G, ·), the set of cosets

G/N = {Ng|g ∈ G} forms a 

group (G/N, ·), where the 

operation is defined by 

(Ng1)·(Ng2)=N(g1·g2).
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Factor Groups from Normal Subgroups

→→

Example

Since ℤ is an abelian
group, nℤ is a normal  
subgroup. Above 
theorem allows us to 
construct the factor 
group ℤ/nℤ with no 
reference to a 
homomorphism. As we 
already observed, ℤ/nℤ is 
isomorphic to ℤn.

Factor Groups from

Normal Subgroups

Group Theory

756
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757

Factor Groups from Normal Subgroups

→→

Example

Consider the abelian
group ℝ under addition, 
and let c ∊ ℝ+. The cyclic 
subgroup <c> of ℝ
contains as elements

··· -3c, -2c, -c, 0, c, 2c, 
3c,···.
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Factor Groups from Normal Subgroups
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Every coset of <c> contains just one element of x
such that 0 ≤ x < c. lf we choose these elements as
representatives of the cosets when computing in

ℝ/ <c>, we find that we are computing their sum 
modulo c in ℝc. For example, if c = 5.37, then the  
sum  of the cosets 4.65+<5.37> and 3.42+<5.37>

is the coset 8.07+<5.37>, which contains 8.07-5.37  
= 2.7, which is 4.65+5.373.42.
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Factor Groups from Normal Subgroups

→→

Working with these coset elements x where 0 ≤ x < 
c, we thus see that the group ℝc is isomorphic to 

ℝ / <c> under an isomorphism µ where µ(x) =x+<c>  
for all x ∊ ℝc.  Of course, ℝ / <c>  is then also 
isomorphic  to the circle group U of complex

numbers of magnitude 1 under multiplication.

Kernel of an Injective 
Homomorphism 

Group Theory

760
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Kernel of an Injective Homomorphism

Theorem

A homomorphism 

h: G→G' is injective 

if and only if 

Ker h={e}. 

762

Proof

Suppose h is injective, 

and let x ∊ Ker h. 

Then h(x)=e'=h(e). 

Hence x=e. 

Kernel of an Injective Homomorphism
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763

Conversely, suppose 
Ker h={e}. 
Then h(x)=h(y)
⇒h(xy-1)=h(x)h(y -1)
=h(x)h(y)-1=e'
⇒xy-1∊ Ker h
⇒ xy-1=e
⇒x=y. 
Hence, h is injective.

Kernel of an Injective Homomorphism

Factor Groups from

Normal Subgroups

Group Theory

764

765

Factor Groups from Normal Subgroups

Theorem

Let K be a normal 
subgroup  of G. 

Then y: G→G/K given by  
y(g)=gK is a 
homomorphism  with 
kernel K.

766

Factor Groups from Normal Subgroups

Proof

Let g1, g2 ∊ G. Then

y(g1g2)=(g1g2)K

=(g1K)(g2K)=y(g1)y(g2), 

so y is a homomorphism.  
Since g1K= K if and only if 

g1∊ K, we see that the 
kernel  of y is indeed K.
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Factor Groups from Normal Subgroups

We have proved that if   
h:G→G' is a 
homomorphism with 
kernel K, then 
µ:G/K→h[G] where µ(gK) 
= h(g) is an isomorphism. 

Above theorem shows 
that y:G→G/K defined by  
y(g)= gK is  a 
homomorphism.

768

Factor Groups from Normal Subgroups

We show these  groups 
and  maps in the figure.  
We see  that  the  
homomorphism h can be 
factored, h = µy,

where y is a 
homomorphism and µ is 
an isomorphism of G/K
with h[ G].

G h[G]

G/K

h

y 𝜇
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Example on Morphism
Theorem of Groups

Group Theory

769

Theorem 

Let K be the kernel of the 
group morphism

h :G → G'. Then G/K is 
isomorphic to the image 
of h, h[G], and  the 
isomorphism

µ: G/K → Im h   

is defined by   

µ(Kg) = h[g].
770

Example on Morphism Theorem of Groups

771

Example

Classify the group 

(ℤ4xℤ2) /({0}x ℤ2) 
according to the 
fundamental theorem of 
finitely generated abelian
groups.

Example on Morphism Theorem of Groups

Solution

The projection map 

π1: ℤ4xℤ2→ℤ4 given by 

π1(x,y) = x is  a 
homomorphism of ℤ4xℤ2 
onto ℤ4 with kernel 
{0}xℤ2.  By fundamental 
theorem of 
homomorphism, we 
know that the given 
factor group is 
isomorphic to ℤ4. 

Example on Morphism Theorem of Groups

772

773

The projection map 

π1: ℤ4xℤ2→ℤ4 given by 

π1(x,y) = x.

K=Ker π1={0}xℤ2

={(0,0),(0,1)}.

(1,0)+K={(1,0),(1,1)}

(2,0)+K={(2,0),(2,1)}

(3,0)+K={(3,0),(3,1)}

Example on Morphism Theorem of Groups

Normal Groups and 
Inner Automorphisms

Group Theory

774
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We derive some 
alternative 
characterizations of 
normal  subgroups, 
which  often provide us 
with  an easier  way to 
check  normality than  
finding  both  the left 
and the right  coset
decompositions.

Normal Groups and Inner Automorphisms

775

Theorem

The following  are three 
equivalent conditions  
for a subgroup H of a 
group G to be a normal
subgroup of G.

1. ghg-1∊H for all g∊G
and h∊H.

2. gHg-1=H for all g∊G.

3. gH=Hg for all g∊G.

Normal Groups and Inner Automorphisms

776

Condition  (2)  of  above 
Theorem  is often taken as 
the definition of a normal 
subgroup H of a group G.

777

Normal Groups and Inner Automorphisms

Proof

Suppose that gH = Hg for all g ∊ G. Then gh = h1g, so 
ghg-1 ∊ H for all g ∊ G and all h ∊ H.

Then  gHg-1= {ghg-1 I h ∊ H} ⊆ H for all g ∊ G. 

We  claim that  actually gHg-1 = H. We must show 
that H ⊆ gHg-1 for all g ∊ G. Let h ∊ H. Replacing g by 
g-1 in the relation ghg-1 ∊ H, we obtain 

g-1h(g-1)-1 = g-1hg  = h1 where h1 ∊ H. 

Consequently, gHg-1 = H for all g ∊ G. 

778

Normal Groups and Inner Automorphisms

Conversely, if gHg-1 = H for all
g ∊ G, then ghg-1 = h1 so

gh = h1g ∊ Hg, and gH ⊆ Hg.
But also, g-1Hg = H giving

g-1hg = h2, so that hg = gh2

and Hg ⊆ gH.

779

Normal Groups and Inner Automorphisms

Normal Groups and 
Inner Automorphisms

Group Theory

780
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Example

Every subgroup  H of an 
abelian group G is 
normal.  

We need only note that 
gh = hg for all h ∊ H and 
all g ∊ G, so, of course, 
ghg-1 = h ∊ H for all g ∊
G and all h ∊ H .

Normal Groups and Inner Automorphisms

781

Example

The map ig: G → G 
defined by ig(x)  = gxg-1 is 
a homomorphism  of G 
into itself.

ig (xy)=gxyg-1

= (gxg-1)(gyg-1)

=ig(x)ig(y)

782

Normal Groups and Inner Automorphisms

We see that 

ig(x)=ig(y) 

⇒ gxg-1 = gyg-1

⇒ x = y, 

so ig is injective. 

Since for any x in G

ig(g
-1xg) = g(g-1xg)g-1 = x, 

we see that ig is onto G, 
so it is an isomorphism

of G with itself.
783

Normal Groups and Inner Automorphisms

Inner Automorphisms

Group Theory

784

Definition

An isomorphism ϕ: G→G 
of a group G with itself is 
an automorphism of G. 
The automorphism

ig: G→G, where ig(x)=gxg-1

for all x ∊ G, is the inner 
automorphism of G by g, 
denoted by Inn (G).
Performing  ig on x is 
called conjugation  of x 
by g.

785

Inner Automorphisms

Theorem

The following  are three equivalent conditions  for 
a subgroup H of a group G to be a normal
subgroup of G.

1. ghg-1∊H for all g∊G and h∊H.

2. gHg-1=H for all g∊G.           3. gH=Hg for all g∊G.

The equivalence of conditions (2) and (3) shows 
that gH=Hg for all g ∊ G if and only if ig[H]=H for all 
g ∊ G, that is, if and only if H is invariant under all 
inner automorphisms of  G.

Inner Automorphisms

786
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It is important  to realize  that ig[H] = H  is an

equation in sets; we need not have ig(h) = h for all 
h ∊ H. 

That is ig may perform  a nontrivial permutation 
of the set H. 

We see that the normal subgroups of a group G 
are precisely those that are invariant under all 
inner automorphisms.  

A subgroup K of G is a conjugate subgroup of H if 
K  = ig[H]  for some g ∊ G.

787

Inner Automorphisms

Inner Automorphisms

Group Theory

788

Lemma

The set of all inner 
automorphisms of G 
is a subgroup of 
Aut(G).

789

Inner Automorphisms

Proof

(1) Let ia, ib ∊ Inn (G). 

Then ia( ib(x)) =a(ib(x))a-1 =abxb-1a-1

=abx(ab)-1=iab ∊ Inn (G). 

Hence the conjugation by b composed by
conjugation by a is conjugation by ab.

(2) The inverse of ia is conjugation by a’=a-1.

ia((ia’)(x))=ia(a’x(a’)-1)=aa’xa’-1a-1=aa’x(aa’)-1=x.

Thus Inn (G) is a subgroup.

790

Inner Automorphisms

Example on 
Automorphism

Group Theory

791

Example

Prove that 
Aut(ℤn)≅Un.

792

Inner Automorphisms
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Solution

An automorphism ϕ:ℤn→ℤn is determined by
ϕ(1) as for any integer k,

ϕ(k)=ϕ(1+…+1)=ϕ(1)+…+ϕ(1)= kϕ(1). 

Since isomorphisms preserve order, ϕ(1) must 
be a generator of ℤn . 

We have proved that the generators of ℤn are
those integers k ∊ ℤn for which gcd(k, n) = 1. 
But these k are precisely the elements of

Un={1, ω,…, ωn-1 | ω=e2πi/n}.  
793

Inner Automorphisms

In this way, each element a of Un  gives a
distinct automorphism ϕa which is multiplication
by a, and these are all the automorphisms of ℤn.

Furthermore, 𝜇: Aut(ℤn)→Un given by 𝜇(ϕa)=a is 
a group isomorphism.

 𝜇(ϕab)=ab=𝜇(ϕa) 𝜇(ϕb)

 𝜇(ϕa)=𝜇(ϕb)⇒a=b

 𝜇(ϕa)=a

794

Inner Automorphisms

Theorem on Factor 
Group

Group Theory

795

Theorem

A factor group of a 
cyclic group is cyclic.

796

Theorem on Factor Group

Proof

Let G be cyclic with generator  a,  and let N  be a 
normal  subgroup  of G. We claim the coset aN
generates  G / N.  We must compute all powers 
of aN. But this amounts to computing, in G, all 
powers of the representative a and all these 
powers give all elements in G. Hence the powers 
of aN certainly give all cosets of N  and G / N  is 
cyclic. 

797

Theorem on Factor Group

Example on Factor 
Group

Group Theory

798
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Example

Let us compute the 
factor group 

(ℤ4 x ℤ6)/((0, 2)). 
Now (0, 2) generates 
the subgroup

H={(0,0), (0, 2),(0,4)} 

of ℤ4 x ℤ6 of order 3.  

799

Example on Factor Group

Here the first factor ℤ4

of ℤ4 x ℤ6 is left  alone. 
The ℤ6 factor, on the 
other hand, is 
essentially collapsed by 
a subgroup of order 3, 
giving a factor group in 
the second factor of 
order 2 that must be 
isomorphic to ℤ2.  Thus 
(ℤ4 x ℤ6)/((0, 2)) is 
isomorphic  to ℤ4 x ℤ2.

800

Example on Factor Group

Factor Group 
Computations

Group Theory

801

Let N be a normal  
subgroup  of G. In the 
factor group  G / N, the 
subgroup N acts as 
identity element. We may 
regard  N  as being  
collapsed to a single 
element,  either to 0 in 
additive  notation  or to e 
in multiplicative notation.  

802

Factor Group Computations

This  collapsing of N 
together with the  
algebraic structure  of  
G require  that  other 
subsets  of G, namely,  
the cosets of N, also 
collapse  into a single 
element  in the factor  
group. A visualization of 
this collapsing is  
provided by  Figure.

803

Factor Group Computations

804

Factor Group Computations

G

y

G/N
aN N cNbN (cb)N (ab)N
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Recall that  y: G→G/N  defined  by y(a)=aN for 

a Є G is a homomorphism of G onto G / N. We 
can view the "line"  G / N at the bottom of the 
figure as obtained by collapsing to a point  each  
coset of N in another  copy  of G. Each  point  of 
G / N  thus corresponds to a whole  vertical  line  
segment  in  the  shaded  portion,  representing 
a coset of N  in G. It is crucial  to remember that 
multiplication of cosets in G / N can be 
computed by multiplying in G, using any 
representative elements of the cosets.

805

Factor Group Computations

Factor Group 
Computations

Group Theory

806

Additively, two elements 
of G will collapse into the 
same element of G/N if 
they differ by an element 
of N.  Multiplicatively, a 
and b collapse together if 
ab-1 is in N. The degree of 
collapsing can vary from 
nonexistent to 
catastrophic. We illustrate 
the two extreme cases by 
examples.

Factor Group Computations

807

Example

The trivial subgroup 

N = {0}  of ℤ is, of 
course, a normal 
subgroup.  

Compute ℤ /{0}.

Factor Group Computations

808

Solution

Since N={0}  has only 
one element, every 
coset of N has only one 
element.  That is, the 
cosets are of the form 
{m} for m ϵ ℤ. There is 
no collapsing at all, and 
consequently, ℤ /{0} ≅
ℤ. Each m ϵ ℤ is simply 
renamed  {m}  in ℤ /{0}. 

Factor Group Computations

809

Example

Let n be a positive 
integer. The set 

nℝ = {nr|r ϵ ℝ}  is a 
subgroup of ℝ under 
addition, and it is 
normal since ℝ is 
abelian. 

Compute ℝ/nℝ.

Factor Group Computations

810
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Solution

Actually nℝ= ℝ, 
because each xϵℝ is of 
the form n(x/n) and 

x/nϵℝ. Thus ℝ/nℝ has 
only one element,  the 
subgroup nℝ. The 
factor group is a trivial 
group consisting only of 
the identity element.

Factor Group Computations

811

Factor Group 
Computations

Group Theory

812

As illustrated  in above 
Examples for any group  
G, we have G/{e} ≅ G 
and G/G≅{e},  where 
{e} is the trivial group 
consisting only of the 
identity element e. 
These two extremes of 
factor groups are of 
little importance. 

Factor Group Computations

813

We would like 
knowledge of a factor 
group G/N to give some 
information about the 
structure of G. 

If N={e}, the factor 
group has the same 
structure as G and we 
might as well have tried 
to study G directly.

Factor Group Computations

814

If N = G, the factor 
group has no 
significant structure to 
supply information 
about G. 

Factor Group Computations

815

If G is a finite group 
and N ≠{e} is a normal 
subgroup of G, then 
G/N is a smaller group 
than G, and 
consequently  may 
have a more simple 
structure than G.

Factor Group Computations

816
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The multiplication of 
cosets in G/N reflects 
the multiplication in G, 
since products of cosets
can be computed by 
multiplying in G 
representative elements 
of the cosets.

Factor Group Computations

817

In next module, we give 
example showing that 
even when G/N has 
order 2, we may be 
able to deduce some 
useful results. 

If G is a finite group and 
G/N has just two 
elements, then we 
must have |G|=2|N|. 

Factor Group Computations

818

Factor Group 
Computations

Group Theory

819

Note that every 
subgroup H containing 
just half the elements 
of a finite group G must 
be a normal subgroup, 
since for each element 
a in G but not in H, 
both the left coset aH
and the right coset Ha 
must consist of all 
elements in G that are 
not in H. 

Factor Group Computations

820

Thus the left and right 
cosets of H coincide 
and H is a normal 
subgroup of G.

821

Factor Group Computations

Example

Because |Sn|= 2|An|, 
we see that An is a 
normal subgroup of Sn, 
and Sn/An has order 2.

Let 𝜎 be an odd 
permutation in Sn,   

so that 

Sn/An = {An, 𝜎An}. 

822

Factor Group Computations
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Renaming the element An "even" and the 
element 𝜎An "odd," the multiplication in Sn/An

shown in Table becomes

(even)(even)=even, (even)(odd)=odd, 
(odd)(even)=odd, (odd)(odd)=even.

Thus the factor group reflects these 
multiplicative properties for all the permutations 
in Sn.

Factor Group Computations

An 𝜎An

An An 𝜎An

𝜎An 𝜎An An

823

Above example 
illustrates that while 
knowing the product of 
two cosets in G/N does 
not tell us what the 
product of two 
elements of G is, it may 
tell us that the product 
in G of two types of 
elements is itself of a 
certain type.

Factor Group Computations

824

Factor Group 
Computations

Group Theory

825

The theorem of Lagrange 
states if H is a subgroup 
of a finite group G, then 
the order of H divides the 
order of G. 

We show that it is false 
that if d divides the order 
of G, then there must 
exist a subgroup H of G 
having  order d.

Factor Group Computations

826

Example

We show that A4,  which 
has order 12, contains  no 
subgroup of order 6.

Suppose that H were a 
subgroup of A4 having 
order 6. 

As observed before in 
previous example, it 
would follow that H 
would be a normal 
subgroup of A4.

Factor Group Computations

827

Then A4/H would have only two elements, H and 𝜎H 
for some 𝜎ϵA4 not in H. Since in a group of order 2, 
the square of each element is the identity, we would 
have HH=H and (𝜎H)(𝜎H)=H. Now computation in a 
factor group can be achieved by computing with 
representatives in the original group. Thus, 
computing in A4,  we find that for each αϵH we must 
have α2ϵH  and for each βϵ𝜎H we must have β2ϵH. 
That is, the square of every element in A4 must be in 
H.

Factor Group Computations

828
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But in A4, we have

(1, 2, 3) = (1, 3, 2)2 and    (1, 3, 2) = (1, 2, 3)2

so (1,  2, 3) and (1,  3, 2) are in H.  

A similar computation  shows that (1, 2, 4), 

(1, 4, 2), (1,  3, 4), (1, 4, 3), (2,  3, 4), and (2,  4, 3) 
are all in H. 

This shows  that there must be at least 8 
elements in H, contradicting the fact that H was 
supposed to have order 6.

Factor Group Computations

829

Factor Group 
Computations

Group Theory

830

We now turn to several examples that compute  
factor groups. If the group we start with is finitely 
generated and abelian, then its factor group will be 
also. Computing such a factor group means 
classifying it according to the fundamental 
theorem of finitely generated abelian groups.

Factor Group Computations

831

Example

Let us compute the factor group (ℤ4xℤ6)/ 
(0, 1) . Here (0, 1) is the cyclic subgroup H of 

ℤ4xℤ6 generated by (0, 1). Thus

H = {(0, 0), (0, 1), (0. 2), (0, 3), (0, 4), (0, 5)}.

Since ℤ4xℤ6 has 24 elements and H has 6 
elements, all cosets of H must  have 6  elements,  
and (ℤ4x ℤ6)/H must have order 4. Since ℤ4xℤ6 is  
abelian, so is (ℤ4x ℤ6)/H. Remember, we compute 
in a factor group by means  of representatives 
from the original group.

Factor Group Computations

832

In additive notation,  the cosets are

H=(0, 0)+H, (1,0)+H, (2, 0)+H, (3, 0)+H.

Since we can compute by choosing the 
representatives (0, 0), (1, 0), (2, 0), and (3, 0), it is 
clear that (ℤ4xℤ6)/H is isomorphic to ℤ4. Note that 
this is what we would expect, since in a factor group 
modulo H, everything in H becomes the identity 
element; that is, we are essentially setting 
everything in H equal to zero. Thus the whole second 
factor ℤ6 of ℤ4xℤ6 is collapsed, leaving just the first 
factor ℤ4.                                                                   

Factor Group Computations

833

Factor Group 
Computations

Group Theory

834



12/16/2018

140

The last example is a special case of a general 
theorem that we now state  and prove. We should 
acquire an intuitive feeling for this theorem in 
terms of collapsing one of the factors to the 
identity element.

Factor Group Computations

835

Theorem

Let G = H x K  be the direct product of groups H 
and K.  Then ഥH={(h, e)| h ϵ H} is  a normal 
subgroup of G. Also G/ഥH is isomorphic to K in  a 
natural way.  Similarly, G / ഥK ≃ H in a natural 
way.

Factor Group Computations

836

Proof

Consider the map π2:  H x K → K given by 

π2(h, k) = k. The map π2 is homomorphism since

π2(h1h2,k1k2)=k1k2= π2(h1,k1) π2(h2,k2).

Because Ker(π2)  = ഥH , we see that ഥH is a normal 
subgroup of H x K. Because π2 is onto K, 
Fundamental Theorem of Homomorphism tells us 
that (H x K)/ ഥH ≃ K.

Factor Group Computations
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Factor Group 
Computations

Group Theory

838

Example

Let us compute the factor group (ℤ4 x ℤ6)/ 
(2, 3) . Be careful!  There is a great temptation to 

say that we are setting the 2 of ℤ4 and the 3 of ℤ6

both equal to zero, so that ℤ4 is collapsed to a 
factor group isomorphic to ℤ2 and ℤ6 to one 
isomorphic to ℤ3, giving a total factor group 
isomorphic to ℤ2 x ℤ3. This is wrong!  

Note that H  = (2, 3) = {(0, 0), (2, 3)} is  of order  
2, so (ℤ4 x ℤ6)/ (2, 3) has order  12,  not 6.

Factor Group Computations

839

Setting (2, 3) equal to zero does not make (2, 0) 
and (0, 3) equal to zero individually, so the 
factors do not collapse separately.

The possible abelian groups of order 12 are 

ℤ4 x ℤ3 and ℤ2 x ℤ2 x ℤ3, and we must decide to 
which one our factor group is isomorphic. These 
two groups are most easily distinguished in that 
ℤ4 x ℤ3 has an element of order 4, and 

ℤ2 x ℤ2 x ℤ3 does not.

Factor Group Computations

840
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We claim that the coset (1, 0) + H is of order 4 in 
the factor group (ℤ4 x ℤ6)/H.

To find the smallest power of a coset giving the 
identity in a factor group modulo H, we must, by 
choosing representatives,  find the smallest 
power of a representative that is in the subgroup 
H. Now, 4(1,0)=(1, 0)+(1,0)+(1,0)+(1,0)=(0,0) is 
the first time that (1,0) added to itself gives an 
element of H. Thus (ℤ4 x ℤ6)/ (2, 3) has an 
element of order 4 and is isomorphic to ℤ4 x ℤ3

or ℤ12.

Factor Group Computations

841

Factor Group 
Computations

Group Theory

842

Example

Let us compute (that is, classify as in Fundamental 
Theorem of Abelian Groups the group (ℤxℤ)/ 
(1, 1) . We may visualize ℤ x ℤ as the points in 

the plane with both coordinates integers, as 
indicated by the dots in Fig. below. The subgroup 
(1, 1) consists of those points that lie on the

45° line through the origin, indicated in the figure. 
The coset (1, 0) + (1, 1) consists of those dots on 
the 45° line through the point (1, 0), also shown in 
the figure.

Factor Group Computations

843 844

Factor Group Computations

Continuing, we see that each coset consists of 
those dots lying on one of the 45° lines in the 
figure. We may choose the representatives

···, (-3,0), (-2,0), (-1,0), (0,0), (1,0), (2,0), (3,0),···

of these cosets to compute in the factor group. 
Since these representatives correspond precisely 
to the points of ℤ on the x-axis,  we see that the 
factor group (ℤ x ℤ) / (1, 1) is isomorphic to ℤ.

Factor Group Computations

845

Simple Groups

One feature of a factor 
group is that it gives 
crude information about 
the structure of the whole 
group. 

Of course, sometimes 
there may be no 
nontrivial proper normal 
subgroups.

846
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Simple Groups

For example, Lagrange’s 
Theorem shows that a 
group of prime order can 
have no nontrivial proper 
subgroups of any sort.

847

Simple Groups

Definition

A group is simple if it is 
nontrivial and has no 
proper nontrivial normal 
subgroups.

848

Simple Groups

Example

The cyclic group G=ℤ/5ℤ of congruence classes

modulo 5 is simple. 

If H is a subgroup of this group, its order must be 
a divisor of the order of G which is 5. 

Since 5 is prime, its only divisors are 1 and 5, so 
either H is G, or H is the trivial group.

849

Simple Groups 

Group Theory

850

Simple Groups

Example

The cyclic group G=ℤ/pℤ
of congruence classes

modulo p is simple, 
where p is a prime 
number. 

851

Simple Groups

Example

On the other hand, the 
group G = ℤ /12ℤ is not 
simple. 

The set H={0, 4, 8} of 
congruence classes of 0, 
4, and 8 modulo 12 is a 
subgroup of order 3, and 
it is a normal subgroup 
since any subgroup of 
an abelian group is 
normal.

852
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Simple Groups

Example

The additive group ℤ of

integers is not simple; 
the set of even integers 
2ℤ is a non-trivial proper 
normal subgroup.

853

Simple Groups

Theorem

The alternating group An

is simple for n≥5.

854

Simple Groups 

Group Theory

855

Simple Groups

Theorem

Let 𝜙: G → G' be a group 
homomorphism. If N is a 
normal subgroup of G, 
then 𝜙[N] is a normal 
subgroup of 𝜙[G]. Also, if 
N' is a normal subgroup 
of 𝜙[G], then 𝜙-1[N'] is a 
normal subgroup of G.

856

Simple Groups

Proof

Let ϕ: G → G' be a group 
homomorphism. If N is a 
normal subgroup of G, 
then gng-1∈ N for all g∈G 
and n∈N. It implies that 
ϕ(gng-1)=

ϕ(g)ϕ(n)ϕ g -1 ∈ ϕ[N].

Therefore, ϕ[N] is a 
normal subgroup of ϕ[G]. 

857

Simple Groups

Proof

Also, if N' is a normal subgroup of ϕ[G], then 
ϕ g n′ϕ g -1 ∈ N' for every ϕ g ∈ ϕ G

and n′ ∈ N’. 

By definition, there exist n ∈ N such thatϕ n = n′.
Therefore, ϕ g n′ϕ g −1 = ϕ gng −1 .

Hence ϕ-1[N'] is a normal subgroup of G.

858
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Simple Groups 

Group Theory

859

Simple Groups

The last Theorem should 
be viewed  as saying that  
a homomorphism 

ϕ: G → G' preserves 
normal subgroups 
between G and ϕ[G]. 

It is important to note 
that ϕ[N] may not be 
normal in G', even 
though N is normal in G.

860

Simple Groups

Example

For example, ϕ: ℤ2 → S3,  where

ϕ(0)  = ρ0 and ϕ(1)  = µ1 is a homomorphism,  and 
ℤ2 is a normal subgroup of itself, but {ρ0, µ1} is not 
a normal subgroup of S3.

(1 3)(2 3)=(2 1 3)               

(2 3)(1 3)=(1 2 3)

861

Maximal Normal 
Subgroups

Group Theory

862

Maximal Normal Subgroups

We characterize when 
G/N is a simple group.

Definition

A maximal normal 
subgroup of a group G is 
a normal subgroup M 
not equal to G such that 
there is no proper 
normal subgroup N  of G 
properly containing M.

863

Maximal Normal Subgroups

Theorem

M is a maximal normal  
subgroup of G if and only 
if G / M is simple.

864
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Maximal Normal Subgroups

Proof

Let M be a maximal normal subgroup of  G.  
Consider the canonical homomorphism 

y: G→G/M. Now y-1 of any nontrivial proper 
normal subgroup of G/M is a proper normal   
subgroup of G properly containing M.  But  M  is 
maximal,  so this can not happen. Thus G/M is 
simple.

865

Maximal Normal Subgroups

Conversely, if N is a normal subgroup of G 
properly containing M, then y[N] is normal in 

G/M. If also N≠G, then y[N]≠G/M and y[N]≠
{M}.

Thus, if G/M is simple so that no such y[N] can 
exist, no such N can exist, and M is maximal. 

866

The Center Subgroup

Group Theory

867

The Center Subgroup

Definition

The center Z(G) is 
defined by

Z(G)={z ∈ G| zg=gz for all 
g ∈ G}.

868

The Center Subgroup

Exercise

Show that Z( G) is a 
normal and an abelian 
subgroup of G. 

869

The Center Subgroup

Solution

For each g ∈ G and 

z∈Z(G) we have 

gzg-1=zgg-1=ze=z, we see 
at once that Z(G) is a 
normal subgroup of G. It 
implies that gz=zg for g ∈
G and z∈Z(G). 
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The Center Subgroup

If G is abelian,  then  

Z(G)  = G; 

in this case, the center  is 
not useful.

871

Example on Center 
Subgroup

Group Theory

872

Example on Center Subgroup

Example

ρ0 (123) = (123)ρ0

ρ0 (132) = (132)ρ0

ρ0 (23) = (23)ρ0

ρ0 (13) = (13)ρ0

ρ0 (12) = (12)ρ0

873

Example on Center Subgroup

(132)(123) = ρ0 = 123 132
123 23 = 12 , (23)(123) = (13)
132 13 = 12 , 13 132 = 23
13 12 = 123 , (12)(13) = (132)

Z(S3)={ρ0}, so the center of S3 is trivial. 

874

Example on Center 
Subgroup

Group Theory

875

Example on Center Subgroup

The center of a group G 
always contains the 
identity element e. 

It may be that Z(G)={e}, 
in which case we say that 
the center of G is trivial. 
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Example on Center Subgroup

Example

S3 x ℤ5={(ρ0,0), (ρ0,1), (ρ0,2), (ρ0,3), (ρ0,4),

(ρ1,0), (ρ1,1), (ρ1,2), (ρ1,3), (ρ1,4),

(ρ2,0), (ρ2,1), (ρ2,2), (ρ2,3), (ρ2,4),

(μ1,0), (μ1,1), (μ1,2), (μ1,3), (μ1,4),

(μ2,0), (μ2,1), (μ2,2), (μ2,3), (μ2,4),

(μ3,0), (μ3,1), (μ3,2), (μ3,3), (μ3,4)}

877

Example on Center Subgroup

The center  of S3 x ℤ5

must be {ρ0} x ℤ5, which  
is isomorphic to ℤ5. 

878

The Commutator 
Subgroup

Group Theory

879

The Commutator Subgroup

Every  nonabelian 
group  G has  two  
important normal  
subgroups,  

the  center Z(G) of G 
and the commutator 
subgroup C of G. 

880

The Commutator Subgroup

Turning to the 
commutator subgroup, 
recall that in forming a 
factor group of G modulo 
a normal subgroup N, we 
are essentially putting  
every element in G that is 
in N equal to e, for N 
forms our new identity in 
the factor group. 

This indicates another use 
for factor  groups.  

881

The Commutator Subgroup

Suppose, for example, that we are studying the 
structure of a nonabelian group G. 

Since Fundamental Theorem of Abelian Groups 
gives complete information about the structure 
of all sufficiently small abelian  groups,  it might  
be of interest to try to form an abelian group as 
much like G as possible, an abelianized version of 
G, by starting  with  G and then requiring that 
ab=ba for all a and b in our new group structure.
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The Commutator Subgroup

To require  that ab=ba is to say  that aba-1b-1=e in 
our new  group.  

An  element  aba-1b-1 in a group is a commutator 
of the group. 

Thus we wish to attempt  to form an abelianized 
version of G by replacing every commutator of G 
by e. 

We should then attempt to form the factor group 
of G modulo the smallest normal subgroup we 
can find that contains all commutators of G.

883

The Commutator Subgroup

Theorem

Let G be a group. 

The set of all 
commutators aba-1b-1

for a, b ∈ G generates a 
subgroup C of G.  

884

The Commutator Subgroup

Proof

Let a, b ∈ G. Then,

(aba-1b-1)(aba-1b-1)-1

=aba-1b-1bab-1a-1

=e ∈ C

since e = eee-1e-1 is a 
commutator.

885

The Commutator Subgroup

Definition

The set of all 
commutators aba-1b-1

for a, b ∈ G generates a 
subgroup C of G is 
called the commutator  
subgroup.  

886

Generating Sets 

Group Theory

887

Generating Sets

Let G be a group, and let 
a ∈ G. We have 
described the cyclic 
subgroup <a> of G, 
which is the smallest 
subgroup of G that 
contains the element a. 

Suppose we want  to find 
as small a subgroup as 
possible that contains  
both a and b for another  
element b in G.

888



12/16/2018

149

Generating Sets

We see that any 
subgroup containing a 
and b must contain an

and bm for all m, n ∈ ℤ, 
and consequently must 
contain  all finite 
products of such powers 
of a and b. 

889

Generating Sets

For example,  such an expression might be 

a2b4a-3b2a5.  

Note that we cannot  "simplify" this expression by 
writing  first all powers  of a followed by the powers 
of b, since G may not be abelian.  However, products 
of such expressions are again expressions of the 
same type.  

Furthermore, e = a0 and the inverse of such an 
expression is again  of the same type.

890

Generating Sets

For example,  the inverse  of a2b4a-3b2a5 is 

a-5b-2a3b-4a-2.  

This shows  that all such products of integral  powers  
of a and b form  a subgroup of G, which  surely  must  
be the smallest  subgroup containing both  a and b. 
We call a and b generators of this subgroup. 

If this subgroup should  be all of G, then we say that 
{a, b} generates G. 

We could have made  similar arguments for three, 
four, or any number of elements of G, as long as we 
take only finite products of their integral  powers.

891

Generating Sets

Example

The Klein 4-group V = {e, 
a, b, c} is generated by 
{a,b} since ab=c. 

It is also generated by 
{a,c}, {b,c }, and {a,b,c}. 

If a group G is generated 
by a subset S, then every 
subset  of G containing S 
generates G. 

892

Generating Sets 

Group Theory

893

Generating Sets

Example

The group ℤ6 is 
generated by {1} and {5}. 

It is also generated by 
{2,3} since 2+3=5, so 
that any subgroup 
containing 2 and 3 must 
contain 5 and must 
therefore be ℤ6.  

894
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Generating Sets

It is also generated by 
{3,4}, {2,3,4}, {1,3}, and 
{3,5}. 

But it is not generated 
by {2, 4} since  

<2> = {0, 2, 4} 

contains 2 and 4.

895

Generating Sets

We have given an 
intuitive explanation of 
the subgroup of a group 
G generated by a subset 
of G. 

What follows is a 
detailed exposition of 
the same  idea 
approached in another 
way, namely  via 
intersections of 
subgroups. 

896

Generating Sets

Definition

Let {Si|i ∈ I} be a collection of sets. 

Here I may be any set of indices. 

The intersection ځi∈I Si of the sets Si is the set of 
all elements that are in all the sets Si; that is,

i∈Iځ Si = {x| x ∈ Si for all i ∈ I}.

If I is finite, I= {1, 2,...,n}, we may denote i∈Iځ Si by

S1 ځ … ځ Sn.

897

Generating Sets 

Group Theory

898

Generating Sets

Theorem

The intersection of some 
subgroups Hi of a group 
G for i ∈ I is again a 
subgroup of G.

899

Generating Sets

Proof

Let us show closure.  Let a ∈ i∈Iځ Hi and 

b ∈ i∈Iځ Hi ,  so that a ∈ Hi for all i ∈ I  and

b ∈ Hi for all i ∈ I. Then ab ∈ Hi for all i ∈ I, since 
Hi is a group. Thus ab ∈ i∈Iځ Hi.

Since Hi is a subgroup for all i ∈ I,  we have e ∈ Hi

for all i ∈ I,  and hence e ∈ i∈Iځ Hi .

Finally,  for a ∈ i∈Iځ Hi , we have a ∈ Hi for all i ∈ I,  
so a-1 ∈ Hi for all i ∈ I, which implies that 

a-1 ∈ i∈Iځ Hi. 

900



12/16/2018

151

Generating Sets

Let G be a group and let ai ∈ G for i ∈ I. 

There is at least one subgroup of G containing all 
the elements ai for i ∈ I, namely G is itself. 

The above theorem assures us that if we take the 
intersection of all subgroups of G containing all ai

for i ∈ I, we will obtain a subgroup H of G. 

This subgroup  H is the smallest subgroup of G 
containing  all the ai for i ∈ I.

901

Generating Sets 

Group Theory

902

Generating Sets

Definition

Let  G be a group and 
let ai ∈ G for i ∈ I.

The smallest subgroup 
of G containing {ai| i ∈
I} is the subgroup 
generated by {ai|i ∈ I}. 

If this subgroup is all of 
G, then {ai|i ∈ I} 
generates G and the ai
are generators of G. 

903

Generating Sets

Definition

If there is a finite set 

{ ai|i ∈ I} 

that generates G, then 
G is finitely generated.

904

Generating Sets

Note that this definition is consistent with our 
previous definition of a generator for a cyclic 
group.  

Note also that the statement a is a generator of G 
may mean either that G = <a> or that a is a 
member of a subset of G that generates G. 

Our next theorem  gives the structural insight 
into the subgroup of G generated by {ai |i ∈ I} 
that we discussed for two generators in the 
beginning of these modules.

905

Generating Sets

Theorem

If G is a group and ai ∈ G 
for i ∈ I, then the 
subgroup H of G 
generated by { ai| i ∈ I} 
has as elements precisely 
those elements of G that 
are finite products of 
integral powers of the ai, 
where powers of a fixed 
ai may occur several 
times in the product.
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Generating Sets

Proof

Let K denote the set of all finite products  of 
integral powers of the ai. Then K⊆H.

We need only observe that K is a subgroup and 
then, since H is the smallest subgroup containing  
ai for i ∈ I, we will be done.  

Observe that a product  of elements  in K is again 
in K. Since (ai)

0=e, we have e ∈ K. 

907

Generating Sets

For every element k in 
K, if we form from the 
product giving k a new 
product with the order 
of the a,  reversed and 
the opposite sign on 
all exponents, we have 
k-1 which is thus in K. 

908

The Commutator 
Subgroup

Group Theory

909

The Commutator Subgroup

Theorem

Let G be a group. 

Then, the commutator  
subgroup C of G is a 
normal  subgroup of G. 

910

The Commutator Subgroup

Proof

We must show that C is 
normal in G. 

The last theorem then 
shows that C consists 
precisely of all finite 
products of commutators. 

For x ∈ C, we must show 
that g-1xg ∈ C for all g ∈ G, 
or that if x is a product of 
commutators, so is 

g-1xg for all g ∈ G. 
911

The Commutator Subgroup

By inserting e = gg-1 between each product of 
commutators occurring in x, we see that it is 
sufficient to show for each commutator  cdc-1d-1

that g-1 (cdc-1d-1)g is in C. 

But g-1 (cdc-1d-1)g  = (g-1cdc-1)(e)(d-1g)

= (g-1cdc-1)(gd-1dg-1)(d-1g)

= [(g-1c)d(g-1c)-1d-1][dg-1d-1g], which is in C. 

Thus C is normal in G.

912
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The Commutator 
Subgroup

Group Theory

913

The Commutator Subgroup

Theorem

If N is a normal  
subgroup of G, then 
G/N is abelian  if and 
only if C≤N.

914

The Commutator Subgroup

Proof

If N is a normal 
subgroup of G and G/N 
is abelian, then 

(a-1N)(b-1N)=(b-1N)(a-1N);  
that is, aba-1b-1N=N,  

so aba-1b-1 ∈ N,  and 

C ≤ N.  

915

The Commutator Subgroup

Finally,  if C ≤ N, then

(aN)(bN)=abN

=ab(b-1a-1ba)N

= (abb-1a-1)baN

= baN

= (bN)(aN).

916

The Commutator 
Subgroup

Group Theory

917

The Commutator Subgroup

Example

For the group S3, we find that one commutator is 
ρ1μ1 ρ1

-1μ1
-1 = ρ1μ1 ρ2μ1= μ3μ2= ρ2.

(12)(13)=(132)

We similarly find that 

ρ2μ1 ρ2
-1μ1

-1 = ρ2μ1 ρ1μ1= μ2μ3= ρ1.

(13)(12)=(123)

918
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The Commutator Subgroup

Thus the commutator 
subgroup C of S3

contains  A3.  Since  A3

is a normal  subgroup 
of S3 and

S3/A3 is abelian, above 
theorem shows that 
C=A3.

919

Automorphisms

Group Theory

920

Automorphisms

Recall that an
automorphism of a group
G is an isomorphism of G
onto G. 
The set of all
automorphisms of G is
denoted by Aut(G). 

921

Automorphisms

We have seen that every
g ∈ G determines an
automorphism ig of G 
(called an inner 
automorphism)given by 
ig(x)=gxg-1. The set of all 
inner automorphisms of 
G is denoted by Inn(G).

922

Automorphisms

Theorem
The set Aut(G) of all
automorphisms of a
group G is a group under
composition of 
mappings, and
lnn(G) ⊲ Aut(G).
Moreover, 
G/Z(G)≃Inn(G).

923

Automorphisms

Proof
Clearly, Aut(G) is nonempty. Let σ, τ ∈ Aut(G).  
Then  for all x, y ∈ G, στ(xy)=σ ((τ(x) τ(y)) =
(στ(x))(στ(y)).

Hence, στ ∈ Aut(G). Again,

σ(σ−1(x)σ−1(y))=

σσ−1(𝑥)σσ−1(y)=xy.

Hence σ−1(x)σ−1(y)= σ−1(xy). Therefore, σ−1 ∈
Aut(G). This proves that Aut( G) is a subgroup of
the symmetric group SG and, hence, is itself a group.

924
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Automorphisms

Group Theory

925

Automorphisms

Theorem
The set Aut(G) of all
automorphisms of a
group G is a group under
composition of 
mappings, and
lnn(G) ⊲ Aut(G).
Moreover, 
G/Z(G)≃Inn(G).

926

927

Automorphisms

Consider the mapping ϕ: G → Aut G given by
ϕ(a)=ia=axa-1 for all x∈ G.
For any a, b ∈ G, iab(x)=
abx(ab)-1= a(bxb-1)a-1 = iaib(x) 
for all x ∈ G. 
Hence, ϕ is a
homomorphism, and, 
therefore, lnn(G)=Im ϕ is a
subgroup of Aut(G).

928

Automorphisms

Further, ia is the identity automorphism if and only
if axa-1= x for all x ∈ G. Hence, Ker ϕ = Z(G), and by
the fundamental theorem of homomorphisms 
G/Z(G)≃lnn(G). 

Finally, for any σ ∈ Aut(G), 

(σiaσ-1 )(x) = σ(aσ−1(x)a-1)

= σ(a)x σ(a) -1

= iσ(a) (x); hence σiaσ-1=iσ(a) ∈ Inn(G). 
Therefore, lnn(G) ⊲ Aut(G).

929

Automorphisms

It follows from above theorem that if the center of a
group G is trivial, then G ≃ lnn(G). A group G is said
to be complete if Z(G) = {e} and every 
automorphism of G is an inner automorphism; that 
is,  G ≃ lnn(G)=Aut(G).

When considering the possible automorphisms σ
of a group G, it is useful to remember that, for any
x ∈ G, x and σ(x) must be of the same order.

Examples on 
Automorphisms

Group Theory

930
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Examples on Automorphisms

Example
The symmetric group S3

has a trivial center {e}. 
Hence, Inn(S3) ≃S3. We
have seen that 
S3= {e,a,a2,b,ab,a2b} with
the defining relations
a3= e= b2,  ba = a2b. The
elements a and a2 are of
order 3, and b, ab, and
a2b are all of order 2. 

931

Examples on Automorphisms

Hence, for any σ ∈
Aut(S3), σ(a)= a or a2,
σ(b)= b, ab, or a2b.
Moreover, when σ(a) and
σ(b) are fixed, σ(x) is
known for every x ∈ S3.
Hence, σ is completely
determined. 

932

Examples on Automorphisms

Thus, there cannot be
more than six 
automorphisms of S3. 
Hence 
Aut (S3)=Inn(S3) ≃ S3. 
Therefore, S3 is a 
complete group.

933

Examples on 
Automorphisms

Group Theory

934

Example
Let G be a finite abelian
group of order n, and let
m be a positive integer 
relative prime to n. Then 
the mapping σ: x→ xm is 
an automorphism of G.

Examples on Automorphisms

935

Solution
(m,n) = 1 ⇒ there exist
integers u and v such  
that mu + nv = 1 ⇒
for all x ∈ G, 
xmu+nv=xmuxnv=xum since 
o(G)=n. Now for all x ∈ G, 
x=(xu )m implies that 
σ is onto. Further,
xm=e⇒ xmu=e ⇒ x = e,
showing that σ is 1-1.

Examples on Automorphisms

936
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That σ is a
homomorphism follows
from the fact that G is
abelian. Hence, σ is an
automorphism of G.

Examples on Automorphisms

937

Examples on 
Automorphisms

Group Theory

938

Example
A finite group G having 
more  than two
elements and with the 
condition that x2 ≠e for
some x ∈ G must have a
nontrivial automorphism. 

Examples on Automorphisms

939

When G is abelian, then
𝜎 : x ↦ x-1 is an
automorphism, and, 
clearly, 𝜎 is not an
identity automorphism.
When G is not abelian, 
there exists a nontrivial
inner automorphism.

Examples on Automorphisms

940

Example
Let G = <a|an=e> be a
finite cyclic group of
order n. Then the
mapping 𝜎 : a → am is an
automorphism of G iff
(m,n) = 1.

Examples on Automorphisms

941

Solution
If (m,n) = 1, then it has
been shown in Example
of last module that 𝜎 is
an automorphism. So let
us assume now that 𝜎 is
an automorphism. Then

the order of 𝜎 (a) = am is
the same as that of a,
which is n.

Examples on Automorphisms

942
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Further, if (m,n)=d, then 
(am)n/d=(an)m/d = e. Thus, 
the order of am divides
n/d; that is, n|n/d.
Hence, d = 1, and the
solution is complete.

Examples on Automorphisms

943

Group Action on a Set 

Group Theory

944

Group Action on a Set

We define a binary 
operation * on a set S to 
be a function mapping 
SxS into S. The function * 
gives us a rule for 
"multiplying" an element 
s1 in S and an element s2

in S to yield an element s1

* s2 in S.

945

Group Action on a Set

More generally, for any 
sets A,  B, and C, we can 
view a map *: A x B→C as 
defining a 
"multiplication,"  where 
any element a of A times 
any element b of B has as 
value some element c of 
C. Of course, we write a* 
b = c, or simply ab= c. 

946

947

Group Action on a Set

In these modules, we will 
be concerned with the 
case where X is a set, G is 
a group, and we have

a map *: G x X→ X. We 
shall write *(g, x) as g * x 
or gx.

948

Group Action on a Set

Definition

Let X be a set and G a 
group. An action of G on 
X is a map *: G x X → X 
such that

1. ex = x for all x ∈ X,

2. (g1g2)(x)  = g1(g2x) for all 
x ∈ X and all g1, g2 ∈ G. 
Under these conditions, 

X is a G-set.
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Group Action on a Set

Example

Let X  be any set, and let 
H be a subgroup of the 
group Sx of all 
permutations of X.

Then X  is an H -set,  
where the action of 𝜎 ∈
H  on X  is its action as an 
element  of Sx, so that 
𝜎 x = 𝜎(x) for all x ∈ X.  

949

Group Action on a Set 

Group Theory

950

Group Action on a Set

Condition 2 is  a 
consequence  of the 
definition of permutation 
multiplication  as function 
composition,  and 
Condition  1  is immediate 
from the definition of the 
identity permutation as 
the identity function. Note 
that, in particular,

{1, 2, 3, ···, n} is an Sn set. 

951

Group Action on a Set

Our next  theorem will  
show that for  every G-set 
X  and  each  g ∈ G, the  
map σg:  X→X defined by 
σg= gx is a permutation of 
X, and that there is a 
homomorphism 𝜙: G→Sx
such that the action of G 
on X is essentially the 
above Example action of 
the image subgroup H  = 
𝜙 [G]  of Sx on X.  

952

Group Action on a Set

So actions of subgroups 
of Sx on X describe all 
possible group actions on 
X. When studying the set 
X, actions using 
subgroups of Sx suffice. 
However, sometimes a 
set X is used to study G 
via a group action of G on 
X. Thus we need the 
more general concept 
given by above Definition.

953

Group Action on a Set

Theorem

Let X be a G-set.  For each 
g ∈ G, the function σg:  
X→X  defined by σg(x)  = 
gx for x∈X is a 
permutation of X. Also, 
the map 𝜙:  G→ Sx

defined by 𝜙(g)  = σg is a

homomorphism  with the 
property that 𝜙(g)(x) = 
gx.

954
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Group Action on a Set

Proof

To show that σg is  a permutation  of X,  we must  
show that  it  is a one-to-one map of X onto itself. 
Suppose that σg(x1) = σg(x2) for x1, x2 ∈ X. Then gx1= 
gx2 Consequently,  g-1 (gx1) = g-1(gx2).  Using  
Condition  2 in Definition,  we see that (g-1 g)x1= (g-1

g)x2,  so ex1 = ex2.  Condition  1  of the definition 
then yields x1 = x2, so σg is one to one.  The two 
conditions of the definition show that for x ∈ X, we 
have σg(g

-1x) = g(g-1)x  = (gg-1)x  =ex= x, so σg maps X 
onto X. Thus σg is indeed a permutation.

955

Group Action on a Set 

Group Theory

956

Group Action on a Set

Theorem

Let X be a G-set.  For each 
g ∈ G, the function σg:  
X→X  defined by σg(x)  = 
gx for x∈X is a 
permutation of X. Also, 
the map 𝜙:  G→ Sx

defined by 𝜙(g)  = σg is a

homomorphism  with the 
property that 𝜙(g)(x) = 
gx.

957

Group Action on a Set

To show that ϕ: G→Sx defined by ϕ(g)  = σg is a 
homomorphism,  we must show that ϕ(g1g2) = ϕ(g1)
ϕ(g2) for all g1, g2 ∈ G. We show the equality of 
these two permutations in Sx by showing they both 
carry an x ∈ X  into the same element.  Using the two 
conditions  in above Definition  and the rule for 
function composition,  we obtain

ϕ(g1g2)(x)  = σg1g2
(x)  = (g1g2)x  = g1(g2x)  = g1 σg2

(x)  
= σg1

(σg2
(x))= (σg1

ο σg2
)(x) =(σg1

σg2
)(x)=

( ϕ(g1) ϕ(g2) )(x).

958

Group Action on a Set

Thus ϕ is a 
homomorphism.  

The stated property of ϕ
follows  at once  since by 
our definitions, we have 
ϕ (g)(x) = σg(x)  = gx. 

959

Group Action on a Set 

Group Theory

960
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Group Action on a Set

Definition

Let X be a set and G a 
group. An action of G on 
X is a map *: G x X → X 
such that

1. ex = x for all x ∈ X,

2. g1(g2x)=(g1g2)(x) for all 

x ∈ X and all g1, g2 ∈ G. 
Under these conditions, 

X is a G-set.

961

Group Action on a Set

Example

Let G be the additive 
group ℝ, and X be the
set of complex numbers z
such that |z| = 1. Then X
is a G-set under the
action γ*c = eiγc, where 
γ ∈ ℝ and c ∈ X. Here the 
action of γ is the rotation
through an angle θ=γ
radians, anticlockwise.

962

Group Action on a Set

Example

Let G=S5 , and

X={x1, x2, x3, x4, x5} be a
set of beads forming a
circular ring. Then X is a
G-set under the action 

G*xi=xg(i), g∈S5.

x5

x1

x3

x4

x2

963

Group Action on a Set

Example

Let G=D4 and X be the 
vertices 1, 2, 3, 4 of a 
square. X is a G-set under 
the action

g * i = g(i), g ∈ D4, 

i ∈ {1, 2, 3, 4}.

964

Group Action on a Set

Example

Let G be a group. Define

a*x =ax, a ∈ G, x ∈ G.

Then, clearly, the set G is a
G-set.

This action of the group G
on itself is called
translation.

965

Group Action on a Set 

Group Theory

966



12/16/2018

162

Group Action on a Set

Example

Let G be a group.

Define

a*x =axa-1, a∈G, x∈G.
We show that G is a G-set.
Let a, b ∈ G. Then 
(ab)*x=(ab)x(ab)-1

= a(bxb-1)a-1=a(b*x)a-1

=a*(b*x). 
Also, e*x=x. 

967

Group Action on a Set

This proves G is a G-set.
This action of the group G
on itself is called
conjugation. 

968

Group Action on a Set

Example

Let G be a group and H<G.
Then the set G/H of left
cosets can be made into a 
G-set defining

a*xH=axH, a∈G, xH∈G/H.

969

Group Action on a Set

Example

Let G be a group and
H⊲G.

Then the set G/H of left
cosets is a G-set if we
define a*xH=axa-1H, a∈G,
xH∈G/H.

970

Group Action on a Set

To see this, let a, b∈G and
xH∈G/H. Then

(ab)*xH=abxb-1a-1H

=a*bxb-1H =a*(b*xH).

Also, e*xH=xH. 

Hence, G/H is a G-set.

971

Group Action on a Set 

Group Theory

972
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Group Action on a Set

Theorem
Let G be a group and let X 
be a set.

(i) If X is a G-set, then the
action of G on X induces a
homomorphism

ϕ:G→SX.

(ii) Any homomorphism
ϕ:G→SX induces an action
of G onto X.

973

Group Action on a Set

Proof

(i) We define ϕ:G→SX by (ϕ(a))(x)=ax, a∈G, x∈X.
Clearly ϕ(a)∈SX, a∈G. Let a, b∈G. Then
(ϕ(ab))(x)=(ab)x=a(bx)=a((ϕ(b))(x)) =
(ϕ(a))((ϕ(b))(x))=(ϕ(a)ϕ(b))x for all x∈X.

Hence, ϕ(ab)= ϕ(a) ϕ(b).
(ii) Define a*x=(ϕ(a))(x); that is, ax=(ϕ(a))(x). Then
(ab)x = (ϕ(ab))(x)=(ϕ(a)ϕ(b))(x)= ϕ(a)(ϕ(b)(x))=
ϕ(a)(bx)=a(bx). Also, ex=(ϕ(e))(x)=x. 
Hence, X is a G-set. 

974

Stabilizer

Group Theory

975

Stabilizer

Definition
Let G be a group acting on
a set X, and let x ∈ X. Then
the set
Gx= {g ∈ G | gx = x},

which can be shown to be
a subgroup, is called the
stabilizer (or isotropy)
group of x in G.

976

Stabilizer

Example

Let G be a group. Define a*x =axa-1, a∈G, x∈G.

This action of the group G on itself is called
conjugation. 
Then, for x ∈ G, Gx = {a∈G|axa-1=x}=N(x), the
normalizer of x in G.
Thus, in this case the stabilizer of any element x in G
is the normalizer of x in G.

977

Stabilizer

Example

Let G be a group and H<G. We define action of G on 
the set G/H of left cosets by

a*xH=axH, a∈G, xH∈G/H.

Here the stabilizer of a left coset xH is the subgroup 
{g∈G | gxH=xH} = {g∈G | x-1gx∈H} 

= {g∈G | g∈xHx-1} = xHx-1

978



12/16/2018

164

Stabilizer

Group Theory

979

Stabilizer

Theorem

Let X be a G-set. 

Then  Gx is a subgroup  
of G for each x ∈ X.

980

Stabilizer

Proof

Let x ∈ X  and let g1, g2∈Gx. Then g1x=x and g2x=x.  
Consequently, (g1g2)x=g1(g2x)=g1x=x, so g1g2∈Gx, 
and Gx is closed under the induced operation of G. 

Of course  ex=x, so e∈Gx. 

If g∈Gx, then gx = x, so x=ex=(g-1g)x= g-1(gx)=g-1x, 
and consequently g-1∈Gx. 

Thus Gx is a subgroup of G. 

981

Orbits

Group Theory

982

Orbits

Theorem

Let X be a G-set. For x1,  
x2∈X, let x1∼x2 if and 
only if there exists g∈G  
such that gx1=x2. Then ∼
is an equivalence 
relation on X.

983

Orbits

Proof

For each x∈X, we have ex=x, so x∼x and ∼ is 
reflexive.

Suppose   x1 ∼ x2, so gx1=x2 for some g∈G. Then 

g-1x2=g-1(gx1) =(g-1g)x1=ex1=x1, so x2∼x1,  and ∼ is 
symmetric.

Finally, if x1∼x2 and x2∼x3,  then g1x1=x2 and g2x2=x3

for some g1, g2∈G. Then (g2g1)x1= g2(g1x1)= g2x2=x3,  
so x1∼x3 and ∼ is transitive. 

984
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Orbits

Definition
Let G be a group acting
on a set X, and let x ∈ X. 
Then the set
Gx = {ax | a ∈ G}

is called the orbit

of x in G.

985

Orbits

Example

Let G be a group. Define

a*x =ax, a ∈ G, x ∈ G.
The orbit of x∈G is
Gx={ax|a ∈ G}=G.

986

Orbits

Example

Let G be a group.

Define

a*x =axa-1, a∈G, x∈G.
The orbit of x∈G is 
Gx ={axa-1|a∈G}, called
the conjugate class of x
and denoted by C(x).

987

Conjugacy and G-Sets 

Group Theory

988

Conjugacy and G-Sets

Theorem

Let X be a G-set and let x∈X. Then |Gx|=(G:Gx).  

If |G| is finite, then |Gx| is a divisor of |G|.

If X is a finite set, |X|=σx∈C(G: Gx), 

where C is a subset of X containing exactly one
element from each orbit.

989

Conjugacy and G-Sets

Proof

We define a one-to-one map 𝜓 from Gx onto the 
collection of left cosets of Gx in G.

Let x1∈Gx. Then there exists g1∈G such that g1x=x1.  
We define 𝜓(x1)  to be the left coset g1Gx of Gx. 

We must show that this map 𝜓 is well defined, 
independent of the choice of g1∈G such that g1x=x1.  
Suppose also that g1'x=x1. Then, g1x=g1'x, so

g1
-1(g1x)= g1

-1(g1’x), from which we deduce 

x=(g1
-1g1')x. Therefore g1

-1g1'∈Gx, so g1'∈g1Gx, and 

g1Gx=g1'Gx. Thus the map 𝜓 is well defined.

990
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Conjugacy and G-Sets 

Group Theory

991

Conjugacy and G-Sets

Theorem

Let X be a G-set and let x∈X. Then |Gx|=(G:Gx).  

If |G| is finite, then |Gx| is a divisor of |G|.

If X is a finite set, |X|=σx∈C(G: Gx), 

where C is a subset of X containing exactly one
element from each orbit.

992

Conjugacy and G-Sets

To show the map 𝜓 is one to one, suppose x1, x2∈Gx, 
and 𝜓(x1)=𝜓(x2). Then there exist g1, g2∈G such that 
x1=g1x, x2=g2x, and g2∈g1Gx. Then g2=g1g for some 

g ∈Gx, so x2=g2x=g1(gx)=g1x=x1. Thus 𝜓 is one to one.

Finally, we show that each left coset of Gx in G is of 
the form 𝜓(x1) for some x1∈Gx. Let g1Gx be a left 
coset. Then if g1x=x1, we have g1Gx= 𝜓(x1).  

Thus 𝜓 maps Gx one to one onto the collection of 
left cosets so |Gx|=(G:Gx).

993

Conjugacy and G-Sets

If |G| is finite, then the 
equation
|G|=|Gx|(G:Gx)  shows 
that |Gx|=(G:Gx) is a 
divisor of |G|. 
Since X is the disjoint
union of orbits Gx, it
follows that if X is finite, 
then |X|=σx∈C(G: Gx).

994

Isomorphism 
Theorems

Group Theory

995 996

Isomorphism Theorems

There are several 
theorems concerning  
isomorphic factor groups 
that are known as the 
isomorphism theorems of 
group theory. 
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997

Isomorphism Theorems

Theorem

Let ϕ: G→G' be a 
homomorphism with 
kernel K, and let 

yK: G → G/K be the 
canonical homomorphism. 
There is a unique 
isomorphism 

μ: G/K→ ϕ[G]  such that 
ϕ(x)  = µ(yK(x)) for each 
x∈G.

998

The first isomorphism 
theorem is diagrammed 
in Figure below. 

G 𝛟[G]

G/K

𝛟

yK 𝜇

Isomorphism Theorems

999

Isomorphism Theorems

Lemma

Let  N be a normal  
subgroup of a group G and 
let  y: G → G/N be the 
canonical homomorphism. 
Then the map ϕ from the 
set of normal subgroups of 
G containing N to the set 
of normal subgroups of 
G/N given by ϕ(L)=y[L] is 
one to one and onto.

1000

Isomorphism Theorems

Proof

If L is a normal subgroup of G containing N, then 
ϕ(L)=y[L] is a normal subgroup of G/N. 

Because  N≤L, for each x∈L the entire coset xN in 
G is contained in L. Thus, y-1[ϕ(L)]=L. 
Consequently, if L and M are normal subgroups of 
G, both containing N,  and if ϕ(L)= ϕ(M)  = H, 
then L=y-1[H]=M. Therefore ϕ is one to one.

1001

Isomorphism Theorems

If H is a normal  subgroup 
of G/N, then y-1[H]  is a 
normal subgroup  of G.  
Because N∈H  and 

y-1[{N}]=N,  we see that 
N⊆y-1[H].  Then 

ϕ(y-1[H])=y[y-1[H]]=H.  

This shows that ϕ is onto 
the set of normal

subgroups of G/N.

Isomorphism 
Theorems

Group Theory

1002
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1003

Isomorphism Theorems

If H and N are subgroups 
of a group G, then we let

HN={hn| h ∈ H, n ∈ N}.

We define the join H V N  
of H and N as the 
intersection of all 
subgroups of G that 
contain HN;  thus  H V N  
is the smallest subgroup 
of G containing  HN. 

Isomorphism Theorems

Of course H V N is also 
the smallest subgroup of 
G containing both  H  and 
N, since any such 
subgroup must contain 
HN. In general, HN need 
not be a subgroup of G. 

1004

1005

Isomorphism Theorems

Lemma

If N is a normal subgroup 
of G, and if H is any 
subgroup of G, then 

H V N=HN=NH. 

Furthermore, if H is also 
normal in G, then HN is 
normal in G.

Isomorphism Theorems

Proof

We show that HN is a subgroup of G, from which 

H V N=HN follows at once. Let h1, h2∈H  and n1, n2∈N.  
Since N is a normal  subgroup, we have n1h2=h2n3 for

some n3∈N. Then (h1n1)(h2n2)=h1(n1h2)n2=h1(h2n3)n2= 
(h1h2)(n3n2)∈HN, so HN is closed under the induced 
operation in G. Clearly e=ee is in HN. For h∈H and 
n∈N, we have (hn)-1=n-1h-1= h-1n4 for some n4∈N,  
since N is a normal subgroup. Thus (hn)-1∈HN, so 

HN ≤G. 

1006

Isomorphism Theorems

A similar argument shows 
that NH is a subgroup, so 
NH=H V N=HN.

Now suppose that H is 
also normal in G, and let 
h ∈ H, n ∈ N,  and g ∈ G. 
Then

ghng-1=(ghg-1)(gng1)∈HN,  
so HN is indeed normal in 
G. 

1007

Second Isomorphism 
Theorem

Group Theory

1008
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Second Isomorphism Theorem

Theorem

Let H be a subgroup of G 
and let N be a normal 
subgroup of G. Then 
(HN)/N≃H/(H ∩ N).

1009

Second Isomorphism Theorem

Proof

Let y: G→G/N be the canonical homomorphism and 
let H≤G. Then y[H] is a subgroup of G/N. Now the 
action of y on just the elements of H (called y  
restricted to H) provides us with a homomorphism  
mapping H onto y[H], and the kernel of this restriction  
is clearly the set of elements of N that are also in H,

that is, the intersection  H∩N. By first isomorphism 
theorem, there is an isomorphism

𝜇1: H/(H∩N)→y[H].

1010

Second Isomorphism Theorem

On the other hand, y restricted to HN also provides  a 
homomorphism mapping HN onto y[H], because y(n) 
is the identity N of G/N for all n∈N.  The kernel of y 
restricted to HN is N. The first isomorphism theorem 
then provides  us with an isomorphism

μ2:  (HN)/N→y[H].
Because (HN)/N and H/(H∩N) are both isomorphic to 
y[H], they are isomorphic to each other. Indeed, 

ϕ: (HN)/N→H/(H∩N) where ϕ=µ1
-1µ2 will be an

isomorphism. More explicitly,

Φ((hn)N)=µ1
-1(µ2((hn)N))= µ1

-1(hN)=h(H∩N).

1011

Isomorphism Theorems

Group Theory

1012

Isomorphism Theorems

Example

Let G be a group such that
for some fixed integer

n >1, (ab)n =anbn for all a, 
b∈G. Let Gn={a∈G|an=e}
and Gn=(an |a∈G}.

Then Gn⊲G, Gn⊲G, and 
G/Gn≃Gn.

1013

Isomorphism Theorems

Solution

Let a, b∈Gn and x∈G. Then (ab-1)n=an(bn)-1=e, so ab-1∈

Gn. Also, (xax-1)n=(xax -1)…(xax -1)=xanx-1 =e implies 

xax -1∈Gn. Hence, Gn⊲G.

Let a, b, x∈G. Then an(bn)-1=(ab-1)n∈Gn. 

Also, xanx-1 =(xax -1)…(xax -1)= (xax-1)n∈Gn. Therefore, 
Gn⊲G.

1014
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Isomorphism Theorems

Group Theory

1015

Isomorphism Theorems

Example

Let G be a group such that
for some fixed integer

n >1, (ab)n =anbn for all a, 
b∈G. Let Gn={a∈G|an=e}
and Gn={an |a∈G}.

Then Gn⊲G, Gn⊲G, and 
G/Gn≃Gn.

1016

Isomorphism Theorems

Define a mapping f: G→Gn

by f(a) = an. 

Then, for all a, b ∈ G, 
f(ab)=(ab)n=anbn=f(a)f(b).
Thus, f is a homomorphism. 

Now Ker f={a|an = e}=Gn.  
Therefore, by the first 
isomorphism theorem 
G/Gn≃Gn.

1017

Isomorphism Theorems

Example

Let  G=ℤx ℤxℤ, 
H=ℤxℤx{0},  and 
N={0}xℤxℤ.  Then clearly  
HN=ℤxℤxℤ and  
H∩N={0}xℤx{0}.  We  have  
(HN)/N≃ ℤ and we also 
have H/(H∩N)≃ ℤ. 

1018

Third Isomorphism 
Theorem

Group Theory

1019

Third Isomorphism Theorem

If H and K  are two normal  
subgroups of G and K≤H,  
then H/K is a normal 
subgroup of G/K. 

The third isomorphism 
theorem concerns these 
groups.

1020
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Third Isomorphism Theorem

Theorem

Let H and K be normal 
subgroups of a group G 
with K≤H. 

Then G/H≃(G/K)/(H/K).

1021

Third Isomorphism Theorem

Proof

Let ϕ:G→(G/K)/(H/K) be given by ϕ(a)= (aK)(H/K) 
for a  ∈ G. 

Clearly ϕ is onto (G/ K)/(H/ K),  and for a, b∈G,

ϕ(ab)=[(ab)K](H/K)

=[(aK)(bK)](H/K)

= [(aK)(H / K)][(bK)(H / K)]=ϕ(a) ϕ(b), 

so ϕ is a homomorphism.  

1022

Third Isomorphism Theorem

The kernel consists of 
those x ∈ G such that 
ϕ(x)=H/K.

These x are just the 
elements of H. 

Then first isomorphism 
theorem shows that 
G/H≃(G/K)/(H/K).

1023

Third Isomorphism 
Theorem

Group Theory

1024

Third Isomorphism Theorem

A nice way of viewing third 
isomorphism theorem is to 
regard the canonical map 
yH:G→G/H as being factored 
via a normal subgroup K of 
G, K≤H≤G, to give

yH=yH/K yK, up to a natural 
isomorphism,  as illustrated 
in Figure. 

1025

Third Isomorphism Theorem

G G/H

G/K (G/K)/(H/K)yH/K

yK

yH

Natural Isomorphism

1026
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Third Isomorphism Theorem

Another way of visualizing 
this theorem is to use the 
subgroup diagram in Figure, 
where each group is a 
normal subgroup of G and is 
contained in the one above 
it.

G

H

K

1027

Third Isomorphism Theorem

The larger the normal subgroup, the smaller the factor 
group. 

Thus we can think of G collapsed by H, that is, G/H, as 
being smaller than G collapsed by K. 

Third isomorphism theorem states that we can collapse 
G all the way down to G/H in two steps. 

First, collapse to G/K, and then, using H/K, collapse this 
to (G/ K)/(H/K).  The overall result is the same (up to 
isomorphism) as collapsing G by H.

1028

Third Isomorphism 
Theorem

Group Theory

1029

Third Isomorphism Theorem

Theorem

Let H and K be normal 
subgroups of a group G 
with K≤H. 

Then G/H≃(G/K)/(H/K).

1030

Third Isomorphism Theorem

Example

Consider 

K = 6ℤ<H=2ℤ<G=ℤ.    

Then G/H=ℤ/2ℤ ≃ ℤ2.

Now G/K=ℤ/6ℤ has 
elements 6ℤ, 1+6ℤ, 2+6ℤ, 
3+6ℤ, 4+6ℤ, and 5+6ℤ.

Of these six cosets, 6ℤ, 
2+6ℤ, and 4+6ℤ lie in 
2ℤ/6ℤ.  

1031

Third Isomorphism Theorem

Thus  (ℤ/6ℤ)/(2ℤ/6ℤ) has 
two elements and is 
isomorphic to ℤ2 also. 
Alternatively,  we see that 
ℤ/6ℤ ≃ ℤ6,  and 2ℤ/6ℤ
corresponds under this 
isomorphism to the cyclic 
subgroup <2> of ℤ6.  

Thus (ℤ/6ℤ)/(2ℤ/6ℤ)

≃ ℤ6/<2>≃ ℤ2≃ ℤ/2ℤ. 

1032
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Sylow Theorems

Group Theory

1033

Sylow Theorems

The fundamental theorem 
for finitely generated 
abelian groups gives us 
complete information 
about all finite abelian 
groups. The study of finite 
nonabelian groups is 
much more complicated. 
The Sylow theorems give 
us some important 
information about them.

1034

Sylow Theorems

We know the order of a subgroup of a finite group 
G must divide |G|. If G is abelian, then there exist 
subgroups of every order dividing |G|. 

We showed that A4, which has order 12, has no 
subgroup of order 6. 

Thus a nonabelian group G may have no subgroup 
of some order d dividing |G|;  the "converse of the 
theorem of Lagrange" does not hold.

1035

Sylow Theorems

The Sylow theorems give a weak converse. Namely, 
they show that if d is a power of a prime and d divides  
|G|,  then G does contain a subgroup of order d. 

Note that 6 is not a power of a prime. The Sylow
theorems also give some information concerning the 
number of such subgroups and their relationship to 
each other. 

We will see that these theorems are very useful in 
studying finite nonabelian groups.

1036

Sylow Theorems

Proofs of the Sylow
theorems give us another 
application of action of a 
group on a set. This time, 
the set itself is formed 
from the group; in some 
instances the set is the 
group itself, sometimes it 
is a collection of cosets of 
a subgroup, and 
sometimes it is a 
collection of subgroups.

1037

Sylow Theorems

Group Theory

1038
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Sylow Theorems

Let X be a finite G-set. 
Recall that for x∈X,  the 
orbit of x in X under G is 
Gx={gx| g∈G}. Suppose 
that there are r orbits in X 
under G, and let {x1, x2,···, 
xr} contain one element 
from each orbit in X. Now 
every element of X is in 
precisely one orbit, so

|X|=σi=1
r |Gxi|·

1039

Sylow Theorems

There may be one-element orbits in X. 

Let XG={x∈X|gx=x for all g∈G}. 

Thus XG is precisely  the union  of the one-element 
orbits in X. 

Let us suppose there are s one-element orbits, 
where 0≤s≤r. Then |XG|=s, and reordering the xi if 
necessary, we may rewrite above equation as

|X|=|XG|+ σi=s+1
r |Gxi|.

Most of the  results  of these modules will  flow from  
above equation.

1040

Sylow Theorems

Theorem

Let G be a group of order pn

and let X be a finite G-set. 
Then 

|X| ≡ |XG| (mod p).

1041

Sylow Theorems

Proof

Recall |X|=|XG|+ σi=s+1
r |Gxi|.

In the notation of above Equation, we know that

|Gxi| divides  |G|. 

Consequently p divides |Gxi|  for s + 1≤i≤ r. Above 
equation then shows that |X|-|XG|  is divisible by p, 
so |X|≡|XG|  (modp). 

1042

Sylow Theorems

Definition

Let p be a prime. A group 
G is a p-group if every 
element in G has order a 
power of the prime p. 

A subgroup of a group G is 
a p-subgroup of G if the 
subgroup is itself a p-
group.

1043

Cauchy’s Theorem

Group Theory

1044
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Cauchy’s Theorem

Our goal in these modules is 
to show that a finite group G 
has a subgroup of every 
prime-power order dividing 
|G|. 
As a first step, we prove 
Cauchy's theorem, which 
says that if p divides |G|, 
then G has a subgroup of 
order p.

1045

Cauchy’s Theorem

Cauchy’s Theorem

Let p be a prime. Let G be 
a finite group and let p  
divide |G|.

Then G has an element of 
order p and, 
consequently,  a subgroup 
of order p.

1046

Cauchy’s Theorem

Proof

We form the set X of all p-
tuples (g1, g2, ···,  gp) of 
elements of G having the 
property that the product of 
the coordinates in G is e. 
That is,

X={(g1, g2, ···,  gp) |gi∈ G and 
g1g2 ···gp=e}.

1047

Cauchy’s Theorem

We claim p divides |X|. In 
forming a p-tuple in X, we 
may let g1, g2,···, gp-1 be any 
elements  of G, and gp is then 
uniquely  determined  as 

(g1 g2… gp-1)-1.  

Thus  |X| = |G|p-1 and since 
p divides |G|, we see that p 
divides |X|. Let 𝜎 be the 
cycle (1, 2, 3,…, p) in Sp. 

1048

Cauchy’s Theorem

We let 𝜎 act on X by 𝜎(g1 , g2,…, gp)

=(g𝜎(1), g𝜎(2), …, g𝜎(p)) =(g2 , g3,…, gp, g1 ).

Note that  (g2 , g3,…, gp, g1 )∈X,  for g1(g2 g3…gp)=e implies that g1=  
(g2 g3…gp)-1,  so (g2 g3…gp)g1=e also. Thus 𝜎 acts on X, and we 
consider the subgroup < 𝜎>

of Sp to act on X by iteration in the natural way.

1049

Cauchy’s Theorem

Now |<σ>|= p, so we may apply above Theorem, and we 
know that |X|≡|X<𝜎>| (mod p). Since p divides |X|, it must 
be that p divides |X<𝜎>| also. Let us examine X<𝜎>·

Now (g1 , g2,…, gp) is left fixed by σ, and hence by <σ>, if and 
only if g1=g2=…= gp. We know at least one element in X<𝜎>, 
namely (e, e, …,  e). Since p divides |X<𝜎>|, there must be at 
least p elements in X<𝜎>. Hence there exists some element 
a∈G, a≠e, such that (a, a, ... ,a)∈X<𝜎> and hence ap = e, so a 
has order p. Of course, <a> is a subgroup of G of order p. 
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1051

Sylow Theorems

Corollary

Let G be a finite group. 
Then G is a p-group if 
and only if |G| is a 
power of p.

1052

Sylow Theorems

Let G be a group, and let 
𝒮 be the collection of all 
subgroups of G. 

We make 𝒮 into a G-set 
by letting G act on 𝒮 by 
conjugation. 

That is, if H ∈ 𝒮 so H≤G 
and g ∈ G, then g acting 
on H yields the conjugate 
subgroup gHg-1. 

1053

Sylow Theorems

Now GH={g∈G|gHg-1=H} is 
easily seen to be a 
subgroup of G, and H is a 
normal subgroup of GH. 
Since GH consists of all 
elements of G that leave 
H invariant under 
conjugation, GH is the 
largest subgroup of G 
having H as a normal 
subgroup.

1054

Sylow Theorems

Definition

The subgroup 

GH ={g ∈ G | gHg-1=H} 

is the normalizer of H in 
G and is denoted by 
N[H].

1055

Sylow Theorems

Lemma

Let H be a p-subgroup of a 
finite group G. Then

(N[H]:H)≡(G:H) (mod  p).

1056
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Sylow Theorems

Proof

Let ℒ be the set of left cosets of H in G, and let H 
act on ℒ by left translation, so that h(xH) = (hx)H. 
Then ℒ becomes an H-set. Note that |ℒ|=(G:H).

Let us determine ℒH, that is, those left cosets that 
are fixed under action by all elements of H. 

Now xH= h(xH) if and only if H=x-1hxH, or if and 
only if x-1hx ∈ H.

1057

Sylow Theorems

Thus xH=h(xH) for all h∈H if and only if x-1hx

=x-1h(x-1)-1∈H for all h∈H, or if and only if x-1∈N[H], 
or if and only if x∈N[H]. Thus the left cosets in ℒH are 
those contained in N[H]. The number of such cosets
is (N[H]:H), so |ℒH|= (N[H]:H).

Since H is a p-group, it has order a power of p. Then 
|ℒ| ≡ |ℒH| (mod p),  that is, 

(G:H) ≡ (N[H]:H)  (mod p).

1058

First Sylow Theorem

Group Theory

1059

First Sylow Theorem

Theorem

Let G be a finite group and 
let |G|= pnm where n≥1  
and where p does not 
divide m. Then

1. G contains a subgroup 
of order pi for each i
where 1≤i≤n,

2. Every subgroup H of G 
of order pi is a normal 
subgroup of a subgroup of 
order pi+1 for 1 ≤ i < n.

1060

Proof

We know G contains a 
subgroup of order p by 
Cauchy's theorem. 

We use an induction 
argument and show that 
the existence of a 
subgroup of order pi for 
i<n implies the existence 
of a subgroup of order pi+1.

First Sylow Theorem

1061

Let H be a subgroup of order pi. Since i < n, we see p 
divides (G:H). We then know p divides (N[H]:H). 

Since H is a normal subgroup of N[H], we can form 
N[H]/H, and we see that p divides |N[H]/H|. 

By Cauchy's theorem, the factor group N[H]/H has a 
subgroup K which is of order p. 

If y:N[H]→N[H]/H is the canonical homomorphism, 
then y-1[K]={x∈N[H]|y(x)∈K} is a subgroup of N[H] 
and hence of G. This subgroup contains H and is of 
order pi+1.

First Sylow Theorem

1062
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2. We repeat the 
construction in part 1 and 
note that H < y-1[K] ≤ N[H] 
where |y-1[K]|= pi+1. 

Since H is normal in N[H], 
it is of course normal in 
the possibly smaller group 
y-1[K]. 

First Sylow Theorem

1063

Definition

A Sylow p-subgroup P of a 
group G is a maximal 

p-subgroup of G, 

that is, 

a p-subgroup contained in 
no larger p-subgroup. 

First Sylow Theorem
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Second Sylow Theorem

Group Theory

1065

Let G be a finite group, 
where |G|=pnm as in first 
Sylow theorem. 

The theorem shows that 
the Sylow p-subgroups of 
G are precisely those 
subgroups of order pn.  

If P is a Sylow p-
subgroup, every 
conjugate gPg-1 of P is 
also a Sylow p-subgroup. 

Second Sylow Theorem

1066

The second Sylow
theorem states that 
every Sylow p-subgroup 
can be obtained from P 
in this fashion; that is, 
any two Sylow p-
subgroups are conjugate.

Second Sylow Theorem

1067

Theorem

Let P1 and P2 be Sylow p-
subgroups of a finite 
group G. 

Then P1 and P2 are 
conjugate subgroups of G.

Second Sylow Theorem

1068
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Proof

Here we will let one of the subgroups act on left cosets of 
the other. Let ℒ be the collection of left cosets of P1,  and 
let P2 act on ℒ by z(xP1)=(zx)P1 for z∈P2. Then ℒ is a P2-set. 
We have |ℒP2

| ≡ |ℒ| (mod p), and |ℒ|= (G: P1) is not 
divisible by p, so |ℒP2

|≠0. Let xP1 ∈ ℒP2
.

Then zxP1=xP1 for all z∈P2, so x-1zxP1=P1 for all z∈P2.  Thus x-

1zx∈P1 for all z∈P2, so x-1P2x≤P1. 

Since |P1|=|P2|, we must have P1=x-1P2x, so P1 and P2 are 
indeed conjugate subgroups. 

Second Sylow Theorem

1069

Third Sylow Theorem

Group Theory

1070

The final Sylow theorem 
gives information on the 
number of Sylow p-
subgroups.
Theorem 
If G is a finite group and p 
divides |G|, then the 
number of Sylow p-
subgroups  is congruent to 1 
modulo p and divides |G|.

Third Sylow Theorem

1071

Proof

Let P be one Sylow p-subgroup of G. Let 𝒮 be the 
set of all Sylow p-subgroups and let P act on 𝒮 by 
conjugation, so that x∈P carries T ∈ 𝒮 into xTx-1. 

We have |𝒮|≡|𝒮P|(mod p). Let us find 𝒮P. 

If T∈ 𝒮P, then xTx-1=T for all x ∈ P. Thus P≤N[T]. 

Of course T≤N[T] also. 

Since P and T are both Sylow p-subgroups of G, they 
are also Sylow p-subgroups of N[T]. 

But then they are conjugate in N[T] by second Sylow
theorem. 

Third Sylow Theorem

1072

Since T is a normal subgroup of N[T], it is its only 
conjugate in N[T]. Thus T=P. 

Then 𝒮P = {P}. Since |𝒮|≡|𝒮P|=1 (mod p),  we see 
the number of Sylow p-subgroups is congruent to 1  
modulo p.

Now let G act on 𝒮 by  conjugation.  Since all Sylow
p-subgroups  are conjugate, there is only one orbit in 
𝒮 under G. 

If P ∈ 𝒮 then |𝒮|=|orbit of P|= (G:GP). GP is, in fact,  
the normalizer of P. But (G:GP) is a divisor of |G|, so 
the number of Sylow p-subgroups divides |G|.

Third Sylow Theorem

1073

Sylow Theorems

Group Theory

1074
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Example

The Sylow 2-subgroups of 
S3 have order 2. 

The subgroups of order 2 
in S3 are

{ρ0, μ1}, {ρ0, μ2}, {ρ0, μ3}.

Note that there are three 
subgroups and that 

3 ≡ 1 (mod 2). 

Sylow Theorems

1075

Also, 3 divides 6, the order 
of S3. 

We can readily check that

iρ2
[{ρ0, μ1}]={ρ0, μ3} and 

iρ1
[{ρ0, μ1}]={ρ0, μ2}

where iρj
(x)=ρjxρj

-1, 

illustrating that they are all 
conjugate. For instance, 
iρ2

(μ1)=ρ2μ1ρ2
-1=ρ2μ1ρ1=

(1,3,2)(2,3)(1,2,3)=(1,2)=
μ3.

Sylow Theorems
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Example

Let us use the Sylow theorems to show that no group of 
order 15 is simple. Let G have order 15. 

We claim that G has a normal subgroup of order 5. 

By first Sylow theorem G has at least one subgroup of 
order 5, and by third Sylow theorem the number of 
such subgroups is congruent to 1  modulo 5 and divides 
15. Since 1, 6, and 11 are the only positive numbers less 
than 15 that are congruent to 1  modulo 5, and since 
among these only the number 1 divides 15, we see that 
G has exactly one subgroup P of order 5.

Sylow Theorems

1077

But for each g∈G, the 
inner automorphism ig of 
G with ig(x)=gxg-1 maps P 
onto a subgroup gPg-1, 
again of order 5. 

Hence we must have 

gPg-1=P for all g ∈ G, so P 
is  a normal subgroup of G. 

Therefore, G is not simple.  

Sylow Theorems

1078

Application of Sylow
Theory

Group Theory

1079

Let  X be a finite G-set 
where G is a finite group. 
Let XG={x∈X|gx=x for all 
g∈G}. Then 

|X|=|XG|+ σi=s+1
r |Gxi|, 

where xi is an element in 
the ith orbit in X. 

Application of Sylow Theory

1080
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Consider now the special case of above equation, 
where X=G and the action of G on G is by 
conjugation, so g ∈ G carries x ∈ X = G into gxg-1. 
Then XG={x ∈ G| gxg-1=x for all g ∈ G}

= {x ∈ G| xg=gx for all g ∈ G}=Z(G), the center of G. 

If we let c=|Z(G)| and ni=|Gxi| in above equation, 
then we obtain |G|=c+nc+1+…+nr , where ni is the 
number of elements in the ith orbit of G under 
conjugation by itself. 

Note that ni divides |G| for c+1≤ i ≤ r since we know 
|Gxi|=(G: Gxi

), which is a divisor of |G|. 

Application of Sylow Theory

1081

Definition

The equation 
|G|=c+nc+1+…+nr , where

c=|Z(G)| and ni is the 
number of elements in 
the ith orbit of G under 
conjugation by itself,  is 
the class equation of G. 

Each  orbit  in G under  
conjugation by  G is a 
conjugate class in G.

Application of Sylow Theory
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Example

iρ1
(ρ0)=ρ1ρ0ρ1

-1=ρ0 iμ1
(ρ1)=μ1ρ1μ1

-1=ρ2

iμ1
(ρ2)=μ1ρ2μ1

-1=μ1ρ2μ1=ρ1

iρ1
(μ1)=ρ1μ1ρ1

-1=(1,2,3)(2,3)(1,3,2)=(1,3)=μ2

iρ1
(μ2)=ρ1μ2ρ1

-1=μ3 iρ1
(μ3)=ρ1μ3ρ1

-1=μ1

Therefore, the conjugate classes of S3 are 

{ρ0},       {ρ1, ρ2},        {μ1, μ2, μ3}.

The class equation of S3 is 6 = 1+2+3. 

Application of Sylow Theory
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Theorem

The center of a finite 
nontrivial p-group G is 
nontrivial.

Application of Sylow Theory

1084

Proof

We have |G|=c+nc+1+…+nr , where ni is the number 
of elements in the ith orbit of G under conjugation 
by itself.

For G, each ni divides |G|  for c+1≤i≤r, so p divides 
each ni,  and p divides |G|. Therefore p divides c. 
Now e∈Z(G), so c≥1. Therefore c≥p, and there exists 
some a∈Z(G) where a≠e. 

Application of Sylow Theory
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Application of Sylow
Theory

Group Theory
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Lemma

Let G be a group 
containing  normal 
subgroups  H and K such 
that H∩K = {e}  and

H V K = G. Then G is 
isomorphic to H X K.

Application of Sylow Theory

1087

Proof

We start by showing that hk=kh for k∈K and h∈H.  
Consider  the commutator

hkh-1k-1=(hkh-1)k-1=h(kh-1k-1). 

Since H and K are normal subgroups of G, the two 
groupings with parentheses show that hkh-1k-1 is 
in both K and H. 

Since K∩H={e}, we see that hkh-1k-1=e, so hk=kh.

Application of Sylow Theory

1088

Let ϕ: H x K→G be defined by ϕ(h,k) = hk. 

Then ϕ((h, k)(h', k'))=ϕ(hh', kk')=hh'kk'= hkh'k'

=ϕ(h, k) ϕ(h', k’), so ϕ is a homomorphism.

If ϕ(h, k)=e, then hk=e, so h = k-1, and both h and k 
are in H ∩ K. Thus h=k=e, so Ker(ϕ)={(e, e)} and ϕ is 
one to one.

We know that HK=H V K,  and H V K = G by 
hypothesis.

Thus ϕ is onto G, and H x K≃G.

Application of Sylow Theory
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Application of Sylow
Theory

Group Theory
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Theorem

For a prime number p, 
every group G of order p2

is abelian.

Application of Sylow Theory
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Proof

If G is not cyclic, then every element except e must 
be of order p. 

Let a be such an element. Then the cyclic subgroup 
<a> of order p does not exhaust G. 

Also let b∈G with b∉<a>. Then <a>∩<b>={e}, since 
an element c in <a>∩<b> with c≠e would generate 
both <a> and <b>, giving <a>=<b>, contrary to 
construction. 

Application of Sylow Theory
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From first Sylow theorem, <a> is normal in some 
subgroup of order p2 of G, that is, normal in all of G. 
Likewise <b> is normal in G. 

Now <a> V <b> is a subgroup of G properly  
containing <a> and of order dividing p2. 

Hence <a> V <b>  must be all of G. 

Thus the hypotheses of last lemma are satisfied, and 
G is isomorphic to <a> x <b> and therefore abelian. 

Application of Sylow Theory

1093


