

Properties of Real Numbers

$$\label{eq:systems} \begin{split} &\mathbb{N} = \{1,2,3,...\} \\ &\mathbb{Z} = \{...,2,...,2,...,3,...,2,...,3,...,2,...,3,...,2,...,3,...,2,...,3,...,2,...,3,...,2,...,3,...,2,...,3,...,2,...,3,...,2,...,3,...,2,...,3,...,2,...,3,...,2,...,3,$$

3

5

Properties of Real Numbers

0.131313...=0.13+ 0.0013+0.00013+... =13/100+13/10000+ 13/100000+... =(13/100)(1+1/100+ 1/10000+...) =(13/100)(100/99) =13/99

4

6

Properties of Real Numbers

- e=2.718281828459045... ∈ Q′
- $\sqrt{2}$ =1.414213562373095... ∈ \mathbb{Q}'
- $\sqrt{5}$ =2.23606797749978... $\in \mathbb{Q}'$
- $\forall a, b \in \mathbb{R}, a.b \in \mathbb{R}$
- $\forall a, b \in \mathbb{R}, a+b \in \mathbb{R}$
- $\forall a, b, c \in \mathbb{R}$, (a+b)+c=a+(b+c)
- For example, (1/4+3)+ $\sqrt{7}$ =(13+4 $\sqrt{7}$)/4=1/4+(3+ $\sqrt{7}$)

Properties of Real Numbers

- $\forall a, b, c \in \mathbb{R}$, (ab)c=a(bc)
- For instance, $((-2/3)4)\sqrt{2}=(-8/3)\sqrt{2}=(-2/3)(4\sqrt{2})$
- For every $a \in \mathbb{R}$ and $0 \in \mathbb{R}$, a+0=a=0+a
- For every $a \in \mathbb{R}$ and $1 \in \mathbb{R}$, a.1=a=1.a
- For every $a \in \mathbb{R}$ there exists $-a \in \mathbb{R}$ such that
- a+(-a)=0=(-a)+a
- For every $a \in \mathbb{R} \setminus \{0\}$ there exists $1/a \in \mathbb{R} \setminus \{0\}$ such that a(1/a)=1=(1/a)a
- $\forall a, b \in \mathbb{R}, a+b=b+a$
- $\forall a, b \in \mathbb{R}, a.b=b.a$

Properties of Complex Numbers

- $\mathbb{C}=\{a+bi \mid a, b \in \mathbb{R}\}$
- $\forall a$ +bi, c+di $\in \mathbb{C}$, (a+bi)+(c+di)=(a+c)+(b+d)i $\in \mathbb{C}$
- $\forall a$ +bi, c+di $\in \mathbb{C}$, (a+bi).(c+di)=(ac-bd)+(ad+bc)i $\in \mathbb{C}$
- $$\begin{split} & \forall \ a + bi, \ c + di, \ e + fi \in \mathbb{C}, \ [(a + bi) + (c + di)] + (e + fi) = \\ & [(a + c) + (b + d)i] + (e + fi) = [(a + c) + e] + [(b + d) + f]i \\ & = [a + (c + e)] + [b + (d + f)]i = (a + bi) + [(c + e) + (d + f)i] = \end{split}$$
- (a+bi)+[(c+di)+(e+fi)]

Properties of Complex Numbers

- ∀ a+bi, c+di, e+fi ∈ C, [(a+bi).(c+di)].(e+fi)
 =[(ac-bd)+(bc+ad)i].(e+fi)
 =[(ac-bd)e-(bc+ad)f]+[(bc+ad)e+(ac-bd)f]i
 =[a(ce-df)-b(de+cf)]+[a(de+cf)]+b(ce-df)]ii
 =(a+bi).[(ce-df)+(de+cf)i]=(a+bi).[(c+di).(e+fi)]
 For every a+bi ∈ C and 0=0+0i ∈ C, (a+bi)+0=
- (a+bi)+(0+0i)=(a+0)+(b+0)i=a+bi=0+(a+bi) ■ For every a+bi ∈ C and 1=1+0i ∈ C, (a+bi).1=
- (*a*+bi).(1+0i)=(*a*.1-0b)+(b.1+0.*a*)i=*a*+bi=1.(*a*+bi)

10

Properties of Complex Numbers

- For every a+bi ∈ C there exists -a-bi ∈ C such that (a+bi)+(-a-bi)=(a+(-a))+(b+(-b))i=0+0i=0=(-a-bi)+(a+bi)
- For every a+bi $\in \mathbb{C} \setminus \{0\}$ there exists
- $1/(a+bi)=a/(a^2+b^2)-(b/(a^2+b^2))i \in \mathbb{C}\setminus\{0\}$
- such that $(a+bi).(a/(a^2+b^2)-(b/(a^2+b^2))i)$
- $= (a^2+b^2)/(a^2+b^2)+((ab-ab)/(a^2+b^2))i=1+0i=1$
- = $(a/(a^2+b^2)-(b/(a^2+b^2))i)(a+bi)$

11

9

Properties of Complex Numbers

Definition

A binary operation * on a set S is a function mapping S x S into S. For each $(a, b) \in S \times S$, we will denote the element *((a, b)) of S by a*b.

Binary Operations

Examples • For $S = \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C},$ a * b = a + b

Binary Operations	
Examples	
• For $S = \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C},$	
a * b = a + b	
• For $S = \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C},$	
a * b = ab	
• For $S = \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C},$	
a * b = a - b	
• For $S = \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R},$	
$a * b = \min(a, b)$	
	28

Binary Operations

Examples

For $S = \mathbb{Q}$, a * b = a/b is not everywhere defined since no rational number is assigned by this rule to the pair (3,0).

Binary Operations

Examples

- For $S = \mathbb{Q}$, a * b = a/b is not everywhere defined since no rational number is assigned by this rule to the pair (3,0).
- For $S = \mathbb{Z}^+$, a * b = a / b is not a binary operation on \mathbb{Z}^+ since \mathbb{Z}^+ is not closed under *.

Binary Operations

Definition

A binary operation * on a set S is commutative if and only if a*b = b*a for all a, b ∈ S.

Binary Operations

Definition

A binary operation * on a set *S* is associative if (a*b)*c = a*(b*c)for all $a,b,c \in S$.

Binary Operations

Examples

The binary operation * defined by a*b=a+b is commutative and associative in $\mathbb{C}.$

Binary Operations

Examples

The binary operation * defined by

a*b=a+bis commutative and associative in \mathbb{C} . The binary operation * defined by a*b=ab

is commutative and associative in \mathbb{C} .

Binary Operations

The binary operation defined by a * b = a - b is not commutative in \mathbb{Z} .

Binary Operations

- The binary operation defined by a * b = a b is not commutative in \mathbb{Z} .
- The binary operation given by a * b = a b is not associative in \mathbb{Z} .

- The binary operation defined by a * b = a b is not commutative in \mathbb{Z} .
- The binary operation given by a*b = a b is not associative in Z.
- For instance,
 - (a*b)*c=(4-7)-2=-5
 - but

a*(b*c) = 4 - (7-2) = -1.

Definition

A function $f: X \to Y$ is called surjective or onto if for any $y \in Y$, there exists $x \in X$ with y = f(x).

Bijective Maps

Definition

A function $f: X \rightarrow Y$ is called surjective or onto if for any $y \in Y$, there exists $x \in X$ with y = f(x). i.e. if the image f(x) is the whole set Y.

Bijective Maps

Definition

 A bijective function or oneto-one correspondence is a function that is both injective and surjective.

Bijective Maps

Example

 $f:\mathbb{R}\to\mathbb{R}^+,\ f(x)=10^x$

Bijective Maps

Example

$$\begin{split} f: &\mathbb{R} \to \mathbb{R}^+, \ f(x) = 10^x \\ f(x) = f(y) \Longrightarrow 10^x = 10^y \Longrightarrow x = y \\ &\text{Therefore, } f \text{ is one-to-one.} \end{split}$$

Bijective Maps

Example

$f: \mathbb{R} \to \mathbb{R}^+, f(x) = 10^x$

$$\begin{split} f(x) &= f(y) \Longrightarrow 10^x = 10^y \Longrightarrow x = y \\ \text{Therefore, } f \text{ is one-to-one.} \\ \text{If } r &\in \mathbb{R}^+, \text{ then } \log_{10} r \in \mathbb{R} \text{ such that} \\ f(\log_{10} r) &= 10^{\log_{10} r} = r. \end{split}$$

Example

 $f: \mathbb{R} \to \mathbb{R}^+, f(x) = 10^x$

$$\begin{split} f(x) &= f(y) \Longrightarrow 10^x = 10^y \Longrightarrow x = y \\ \text{Therefore, } f \text{ is one-to-one.} \\ \text{If } r &\in \mathbb{R}^+, \text{ then } \log_{10} r \in \mathbb{R} \text{ such that} \\ f(\log_{10} r) &= 10^{\log_{10} r} = r. \\ \text{It implies that } f \text{ is onto.} \end{split}$$

Bijective Maps

Example

 $f: \mathbb{R} \to \mathbb{R}^+, f(x) = 10^x$

$$\begin{split} f(x) &= f(y) \Longrightarrow 10^x = 10^y \Longrightarrow x = y \\ \text{Therefore, } f \text{ is one-to-one.} \\ \text{If } r &\in \mathbb{R}^+, \text{ then } \log_{10} r \in \mathbb{R} \text{ such that} \\ f(\log_{10} r) &= 10^{\log_{10} r} = r. \\ \text{It implies that } f \text{ is onto.} \\ \text{Hence } f \text{ is bijective.} \end{split}$$

Bijective Maps

Example

 $f:\mathbb{Z}\to\mathbb{Z}, f(m)=3m$

Bijective Maps

Example

 $f: \mathbb{Z} \to \mathbb{Z}, f(m) = 3m$ $f(m) = f(n) \Longrightarrow 3m = 3n \Longrightarrow m = n$ Therefore, f is one-to-one.

Bijective Maps

Example

 $f:\mathbb{Z}\to\mathbb{Z}, f(m)=3m$

 $f(m) = f(n) \Longrightarrow 3m = 3n \Longrightarrow m = n$

Therefore, f is one-to-one. We assume that $m \in \mathbb{Z}$ is the pre-image of $4 \in \mathbb{Z}$, then $f(m) = 3m = 4 \Rightarrow m = 4/3 \notin \mathbb{Z}$. It implies that f is not onto.

Bijective Maps

Example

 $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$.

Example

 $\begin{aligned} f: \mathbb{R} \to \mathbb{R}, & f(x) = x^2. \\ f(-3) = f(3) = 9 \text{ but } -3 \neq 3. \end{aligned}$ Therefore, f is not one-to-one.

Bijective Maps

Example

$$\begin{split} f: \mathbb{R} \to \mathbb{R}, & f(x) = x^2. \\ f(-3) = f(3) = 9 \text{ but } -3 \neq 3. \\ \text{Therefore, } f \text{ is not one-to-one.} \\ \text{We assume that } x \in \mathbb{R} \text{ is the pre-image of } -5 \in \mathbb{R}, \\ \text{then } f(x) = x^2 = -5 \Longrightarrow x = \sqrt{-5} \notin \mathbb{R}. \\ \text{It implies that } f \text{ is not onto.} \end{split}$$

Bijective Maps

Definition

• Let $f: X \to Y$ be a function and let H be a subset of X. The image of H under f is given by $f[H] = \{f(h) \mid h \in H\}.$

Bijective Maps

Definition • A function $f: X \to Y$ is called surjective or onto if f[X] = Y.

Bijective Maps

Example

 $f: \mathbb{R} \to \mathbb{R}^+, f(x) = 10^x$

Bijective Maps

Example $f : \mathbb{R} \to \mathbb{R}^+, f(x) = 10^x$ $f[\mathbb{R}] = \mathbb{R}^+$ Therefore, f is onto.

Example $f: \mathbb{Z} \to \mathbb{Z}, f(m) = 3m$

Bijective Maps

Example

 $f: \mathbb{Z} \to \mathbb{Z}, f(m) = 3m$ $f[\mathbb{Z}] = 3\mathbb{Z} \neq \mathbb{Z}$ It implies that f is not onto.

Bijective Maps

Example

 $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$

Bijective Maps

Example

 $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2$ $f[\mathbb{R}] = \mathbb{R}^+ \cup \{0\} \neq \mathbb{R}$ So, f is not onto.

Group Theory

Inversion Theorem

Inversion Theorem

Lemma

If $f: X \to Y$ and $g: Y \to Z$ are two functions, then: (i) If f and g are injective, $g \circ f$ is injective.

Inversion Theorem

Lemma

If $f: X \to Y$ and $g: Y \to Z$ are two functions, then: (i) If f and g are injective, $g \circ f$ is injective. (ii) If f and g are surjective, $g \circ f$ is surjective.

Inversion Theorem

Lemma

If f: X → Y and g: Y → Z are two functions, then:
(i) If f and g are injective, g ∘ f is injective.
(ii) If f and g are surjective, g ∘ f is surjective.
(iii) If f and g are bijective, g ∘ f is bijective.

Inversion Theorem

Proof

(i) Suppose that $(g \circ f)(x_1) = (g \circ f)(x_2)$ Then, $g(f(x_1)) = g(f(x_2)) \Longrightarrow f(x_1) = f(x_2) \Longrightarrow x_1 = x_2$:

Inversion Theorem

Proof

(i) Suppose that $(g \circ f)(x_1) = (g \circ f)(x_2)$. Then, $g(f(x_1)) = g(f(x_2)) \Rightarrow f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ (ii) Let $z \in Z$. Since g is surjective, there exists $y \in Y$ with g(y) = z.

Inversion Theorem

Proof

(i) Suppose that $(g \circ f)(x_1) = (g \circ f)(x_2)$ Then, $g(f(x_1)) = g(f(x_2)) \Rightarrow f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ (ii) Let $z \in Z$. Since g is surjective, there exists $y \in Y$ with g(y) = z. Since f is also surjective, there exists $x \in X$ with f(x) = y.

Inversion Theorem

Proof

(i) Suppose that $(g \circ f)(x_1) = (g \circ f)(x_2)$ Then, $g(f(x_1)) = g(f(x_2)) \Rightarrow f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ (ii) Let $z \in Z$. Since g is surjective, there exists $y \in Y$ with g(y) = z. Since f is also surjective, there exists $x \in X$ with f(x) = y. Hence, $(g \circ f)(x) = g(f(x)) = g(y) = z$. So, $g \circ f$ is surjective.

Inversion Theorem

Proof

 $\begin{array}{ll} \text{(i) Suppose that } \left(g\circ f\right)(x_1) = \left(g\circ f\right)(x_2) & \text{Then,} \\ g\left(f\left(x_1\right)\right) = g\left(f\left(x_2\right)\right) \Rightarrow f\left(x_1\right) = f\left(x_2\right) \Rightarrow x_1 = x_2 \\ \text{(ii) Let } z \in Z & \text{. Since } g \text{ is surjective, there exists } y \in Y \\ \text{with } g(y) = z & \text{. Since } f \text{ is also surjective, there exists } \\ x \in X & \text{with } f(x) = y & \text{. Hence,} \\ & \left(g\circ f\right)(x) = g\left(f\left(x\right)\right) = g\left(y\right) = z \\ \text{So, } g\circ f \text{ is surjective.} \\ \text{(iii) This follows from parts (i) and (ii).} \end{array}$

Inversion Theorem

Theorem The function $f: X \rightarrow Y$ has an inverse if and only if f is bijective.

Inversion Theorem

Proof Suppose that $h: Y \to X$ is an inverse of f.

Inversion Theorem

Proof

Suppose that $h: Y \to X$ is an inverse of f. The function f is injective because $f(x_1) = f(x_2) \Rightarrow (h \circ f)(x_1) = (h \circ f)(x_2) \Rightarrow x_1 = x_2$.

Inversion Theorem

Proof

Suppose that $h: Y \to X$ is an inverse of f. The function f is injective because $f(x_1) = f(x_2) \Rightarrow (h \circ f)(x_1) = (h \circ f)(x_2) \Rightarrow x_1 = x_2$. The function f is surjective because if for any $y \in Y$ with x = h(y), it follows that f(x) = f(h(y)) = y.

Inversion Theorem

Proof

Suppose that $h: Y \to X$ is an inverse of f. The function f is injective because $f(x_1) = f(x_2) \Rightarrow (h \circ f)(x_1) = (h \circ f)(x_2) \Rightarrow x_1 = x_2$. The function f is surjective because if for any $y \in Y$ with x = h(y), it follows that f(x) = f(h(y)) = y. Therefore, f is bijective.

Inversion Theorem

Proof

Conversely, suppose that f is bijective. We define the function $h: Y \to X$ as follows.

Inversion Theorem

Proof

Conversely, suppose that f is bijective. We define the function $h: Y \to X$ as follows. For any $y \in Y$, there exists $x \in X$ with y = f(x). Since f is injective, there is only one such element x.

Inversion Theorem

Proof

Conversely, suppose that f is bijective. We define the function $h: Y \to X$ as follows. For any $y \in Y$, there exists $x \in X$ with y = f(x). Since f is injective, there is only one such element x. Define h(y) = x. This function h is an inverse of f because f(h(y)) = f(x) = y and h(f(x)) = h(y) = x.

Group Theory

 Isomorphic Binary Structures

Isomorphic Binary Structures

= Let us consider a binary algebraic structure $\langle S, * \rangle$ to be a set S together with a binary operation * on S.

- Let us consider a binary algebraic structure (S,*) to be a set S together with a binary operation* on S.
- Two binary structures (S,*) and (S',*') are said to be isomorphic if there is a one-to-one correspondence between the elements x of S and the elements x' of S' such that x ↔ x' and y ↔ y' ⇒ x* y ↔ x'*' y'.
- A one-to-one correspondence exists if the sets S and S' have the same number of elements.

Isomorphic Binary Structures

Definition

= Let $\langle S, * \rangle$ and $\langle S', *' \rangle$ be binary algebraic structures. An isomorphism of S with S' is a one-to-one function ϕ mapping S onto S' such that

 $\phi(x*y) = \phi(x)*'\phi(y) \ \forall \ x, y \in S.$

Isomorphic Binary Structures

How to show binary structures are isomorphic
Step 1. Define the function *φ* that gives the isomorphism of *S* and *S'*.

Isomorphic Binary Structures

- How to show binary structures are isomorphic
- Step 1. Define the function φ that gives the isomorphism of S and S'.
- Step 2. Show that φ is one-to-one.

Isomorphic Binary Structures

How to show binary structures are isomorphic

- Step 1. Define the function ϕ that gives the
- isomorphism of S and S'.
- Step 2. Show that \u03c6 is one-to-one.
- Step3. Show that \$\phi\$ is onto \$S'\$.

Isomorphic Binary Structures

How to show binary structures are isomorphic

- Step 1. Define the function φ that gives the isomorphism of S and S'.
- Step 2. Show that ϕ is one-to-one.
- Step3. Show that φ is onto S'.
- Step 4. Show that

 $\phi(x * y) = \phi(x) *' \phi(y) \ \forall \ x, y \in S.$

Example

We show that the binary structure ⟨ℝ, +⟩ is isomorphic to the structure ⟨ℝ⁺,.⟩.

Isomorphic Binary Structures

Example

- We show that the binary structure ⟨ℝ,+⟩ is isomorphic to the structure ⟨ℝ⁺,.⟩.
- Step 1. $\phi : \mathbb{R} \to \mathbb{R}^+, \ \phi(x) = e^x$

Example

- We show that the binary structure $\langle \mathbb{R}, + \rangle$ is
- isomorphic to the structure $\langle \mathbb{R}^+, . \rangle$. • Step 1.
- $\phi: \mathbb{R} \to \mathbb{R}^+, \ \phi(x) = e^x$
- Step 2. $\phi(x) = \phi(y) \Longrightarrow e^x = e^y \Longrightarrow x = y.$

Isomorphic Binary Structures

Example

- We show that the binary structure $\langle \mathbb{R}, + \rangle$ is isomorphic to the structure $\langle \mathbb{R}^+, \cdot \rangle$.
- Step 1.
 - $\phi: \mathbb{R} \to \mathbb{R}^+, \ \phi(x) = e^x$
- Step 2. $\phi(x) = \phi(y) \Longrightarrow e^x = e^y \Longrightarrow x = y.$
- Step3. If $r \in \mathbb{R}^+$, then $\ln(r) \in \mathbb{R}$ and $\phi(\ln r) = e^{\ln r} = r.$

Isomorphic Binary Structures Example • We show that the binary structure $\langle \mathbb{R}, + \rangle$ is isomorphic to the structure $\langle \mathbb{R}^+, . \rangle$. • Step 1. $\phi : \mathbb{R} \to \mathbb{R}^+, \ \phi(x) = e^x$ • Step 2. $\phi(x) = \phi(y) \Rightarrow e^x = e^y \Rightarrow x = y$. • Step3. If $r \in \mathbb{R}^+$, then $\ln r \in \mathbb{R}$ and $\phi(\ln r) = e^{\ln r} = r$. • Step 4. $\phi(x+y) = e^{x+y} = e^x e^y = \phi(x)\phi(y) \forall x, y \in \mathbb{R}$.

Group Theory

```
    Isomorphic Binary
Structures
```

Example

We show that the binary structure (ℤ, +) is isomorphic to the structure (2ℤ, +).

Isomorphic Binary Structures

Example

- We show that the binary structure (ℤ, +) is isomorphic to the structure (2ℤ, +).
- Step 1. $\phi: \mathbb{Z} \to 2\mathbb{Z}, \ \phi(m) = 2m$

Isomorphic Binary Structures

Example

- We show that the binary structure $\langle \mathbb{Z},+
 angle$ is
- isomorphic to the structure $\langle 2\mathbb{Z}, + \rangle$.
- Step 1. $\phi: \mathbb{Z} \to 2\mathbb{Z}, \ \phi(m) = 2m$
- Step 2. $\phi(m) = \phi(n) \Longrightarrow 2m = 2n \Longrightarrow m = n$.

Isomorphic Binary Structures

Example

- We show that the binary structure $\langle \mathbb{Z}, + \rangle$ is
- isomorphic to the structure $\langle 2\mathbb{Z}, + \rangle$. • Step 1. $\phi: \mathbb{Z} \to 2\mathbb{Z}, \ \phi(m) = 2m$
- Step 2. $\phi(m) = \phi(n) \Rightarrow 2m = 2n \Rightarrow m = n.$
- Step3. If $n \in 2\mathbb{Z}$, then $m = n/2 \in \mathbb{Z}$ and

 $\phi(m) = 2(n/2) = n.$

Isomorphic Binary Structures

Example

- We show that the binary structure $\langle \mathbb{Z},+
 angle$ is
- isomorphic to the structure $\langle 2\mathbb{Z}, + \rangle$.
- Step 1. $\phi: \mathbb{Z} \to 2\mathbb{Z}, \ \phi(m) = 2m$ • Step 2. $\phi(m) = \phi(n) \Rightarrow 2m = 2n \Rightarrow m = n.$
- Step 2. $\psi(m) \psi(n) \rightarrow 2m 2n \rightarrow m n$. • Step 3. If $n \in 2\mathbb{Z}$, then $m = n/2 \in \mathbb{Z}$ and
 - $\phi(m) = 2(n/2) = n.$

Step 4.

 $\phi(m+n)=2\left(m+n\right)=2m+2n=\phi(m)+\phi(n) \ \forall \ m,n\in\mathbb{Z}.$

- How to show binary structures are not isomorphic
- How do we demonstrate that two binary structures
- $ig \langle S, st ig
 angle$ and $ig \langle S', st' ig
 angle$ are not isomorphic?
- There is no one-to-one function \u03c6 from S onto S' with the property
 - $\phi(x * y) = \phi(x) *' \phi(y) \ \forall \ x, y \in S.$

Isomorphic Binary Structures

- How to show binary structures are not isomorphic
- How do we demonstrate that two binary structures
- ⟨S,*⟩ and ⟨S',*'⟩ are not isomorphic?
 There is no one-to-one function φ from S onto S' with the property

 $\phi(x * y) = \phi(x) *' \phi(y) \ \forall \ x, y \in S.$

 In general, it is not feasible to try every possible one-to-one function mapping S onto S' and test whether it has homomorphism property.

Isomorphic Binary Structures

How to show binary structures are not isomorphic
 A structural property of a binary structure is one that must be shared by any isomorphic structure.

Isomorphic Binary Structures

How to show binary structures are not isomorphic

- A structural property of a binary structure is one that must be shared by any isomorphic structure.
- It is not concerned with names or some other nonstructural characteristics of the elements.

Isomorphic Binary Structures

How to show binary structures are not isomorphic

- A structural property of a binary structure is one that must be shared by any isomorphic structure.
- It is not concerned with names or some other nonstructural characteristics of the elements.
- A structural property is not concerned with what we consider to be the name of the binary operation.

Isomorphic Binary Structures

How to show binary structures are not isomorphic

- A structural property of a binary structure is one that must be shared by any isomorphic structure.
- It is not concerned with names or some other nonstructural characteristics of the elements.
- A structural property is not concerned with what we consider to be the name of the binary operation.
- The number of elements in the set S is a structural property of $\big< S, * \big>.$

- How to show binary structures are not isomorphic
- In the event that there are one-to-one mappings of S onto S', we usually show that $\langle S, * \rangle$ is not isomorphic to $\langle S', *' \rangle$ by showing that one has some structural property that the other does not possess.

Isomorphic Binary Structures

Possible Structural

- Properties
- The set has four elements.

Isomorphic Binary Structures

Possible Structural Properties

- The set has four elements.
- The operation is
 - commutative.

Isomorphic Binary Structures

Possible Structural Properties

- The set has four elements.
- The operation is
- commutative.
- x * x = x for all $x \in S$.

Isomorphic Binary Structures

Possible Structural Properties

- The set has four elements.
- The operation is
 - commutative.
- x * x = x for all $x \in S$.
- The equation a * x = b has a solution x in S for all a, b ∈ S.

113

Isomorphic Binary Structures

Possible Nonstructural

- Properties
- The number 4 is an element.

.

Possible Nonstructural

- Properties The number 4 is an
- element.
- The operation is called "addition".

Isomorphic Binary Structures

Possible Nonstructural

- Properties
- The number 4 is an element.
- The operation is called
- "addition". The elements of S are
- matrices.

Isomorphic Binary Structures

Possible Nonstructural

- Properties The number 4 is an
- element.
- The operation is called "addition".
- The elements of S are matrices.
- S is a subset of $\mathbb C$.

Isomorphic Binary Structures

Example

 The binary structures $\big<\mathbb{Q},+\big>$ and $\big<\mathbb{R},+\big>$ are not isomorphic because ${\mathbb Q}$ has cardinality $\aleph_{_0}$ (aleph-null) while $|\mathbb{R}| \neq \aleph_0.$

Isomorphic Binary Structures

Example

• We prove that the binary structures $\langle \mathbb{Q}, + \rangle$ and $\langle \mathbb{Z},+ \rangle$ under the usual addition are not isomorphic.

Isomorphic Binary Structures

- We prove that the binary structures $\langle \mathbb{Q}, + \rangle$ and $\langle \mathbb{Z},+ \rangle$ under the usual addition are not isomorphic.
- Both ${\mathbb Q}\,$ and ${\mathbb Z}\,$ have cardinality $\aleph_{_0},$ so there are . lots of one-to-one functions mapping ${\mathbb Q}$ onto ${\mathbb Z}.$

Example

- We prove that the binary structures $\langle \mathbb{Q}, + \rangle$ and $\langle \mathbb{Z}, + \rangle$ under the usual addition are not isomorphic.
- Both \mathbb{Q} and \mathbb{Z} have cardinality \aleph_0 , so there are
- lots of one-to-one functions mapping \mathbb{Q} onto \mathbb{Z} . • The equation x + x = c has a solution x for all $c \in \mathbb{Q}$ but this is not the case in \mathbb{Z} .

Isomorphic Binary Structures

Example

- We prove that the binary structures $\langle \mathbb{Q}, + \rangle$ and $\langle \mathbb{Z}, + \rangle$ under the usual addition are not isomorphic.
- Both \mathbb{Q} and \mathbb{Z} have cardinality \aleph_0 , so there are lots of one-to-one functions mapping \mathbb{Q} onto \mathbb{Z} .
- The equation x + x = c has a solution x for all c ∈ Q but this is not the case in Z.
- For example, the equation x + x = 3 has no solution in \mathbb{Z} .

Isomorphic Binary Structures

Example

• The binary structures $\langle \mathbb{C}, \cdot \rangle$ and $\langle \mathbb{R}, \cdot \rangle$ under usual multiplication are not isomorphic because the equation x.x = chas solution x for all $c \in \mathbb{C}$ but x.x = -1 has no solution in \mathbb{R} .

Isomorphic Binary Structures

Example

• The binary structures $\langle M_2(\mathbb{R}),. \rangle$ and $\langle \mathbb{R},. \rangle$ under usual matrix multiplication and number multiplication, respectively because multiplication of numbers is commutative, but multiplication of matrices is not.

Group Theory

 Isomorphic Binary Structures

Isomorphic Binary Structures

Example

• Is $\phi: \mathbb{Z} \to \mathbb{Z}$, $\phi(n) = 3n$ for $n \in \mathbb{Z}$ an isomorphism?

Example

- Is $\phi: \mathbb{Z} \to \mathbb{Z}$, $\phi(n) = 3n$ for $n \in \mathbb{Z}$ an isomorphism?
- $\phi: \mathbb{Z} \to \mathbb{Z}, \ \phi(n) = 3n$

Isomorphic Binary Structures

Example

- Is $\phi: \mathbb{Z} \to \mathbb{Z}$, $\phi(n) = 3n$ for $n \in \mathbb{Z}$ an isomorphism?
- $\phi: \mathbb{Z} \to \mathbb{Z}, \ \phi(n) = 3n$
- $\phi(m) = \phi(n) \Longrightarrow 3m = 3n \Longrightarrow m = n$

Isomorphic Binary Structures

Example

- Is $\phi: \mathbb{Z} \to \mathbb{Z}$, $\phi(n) = 3n$ for $n \in \mathbb{Z}$ an isomorphism?
- $\phi: \mathbb{Z} \to \mathbb{Z}, \ \phi(n) = 3n$
- $\phi(m) = \phi(n) \Longrightarrow 3m = 3n \Longrightarrow m = n$
- Choose $5 \in \mathbb{Z}$, $\phi(m) = 3m = 5$ but $m = 5/3 \notin \mathbb{Z}$

Isomorphic Binary Structures

Example

- Is $\phi: \mathbb{Z} \to \mathbb{Z}$, $\phi(n) = 3n$ for $n \in \mathbb{Z}$ an isomorphism?
- $\phi: \mathbb{Z} \to \mathbb{Z}, \ \phi(n) = 3n$
- $\phi(m) = \phi(n) \Longrightarrow 3m = 3n \Longrightarrow m = n$
- Choose $5 \in \mathbb{Z}$, $\phi(m) = 3m = 5$ but $m = 5/3 \notin \mathbb{Z}$

• Is $\phi: \mathbb{Z} \to \mathbb{Z}$, $\phi(n) = 3n$ homomorphism?

 $\phi(m+n)=3\big(m+n\big)=3m+3n=\phi(m)+\phi(n)\ \forall\ m,n\in\mathbb{Z}$

Isomorphic Binary Structures

Example

- Is $\phi: \mathbb{Z} \to \mathbb{Z}$, $\phi(n) = 3n$ for $n \in \mathbb{Z}$ an isomorphism?
- $\phi: \mathbb{Z} \to \mathbb{Z}, \ \phi(n) = 3n$
- $\phi(m) = \phi(n) \Longrightarrow 3m = 3n \Longrightarrow m = n$
- Choose $5 \in \mathbb{Z}$, $\phi(m) = 3m = 5$ but $m = 5/3 \notin \mathbb{Z}$
- Is $\phi: \mathbb{Z} \to \mathbb{Z}, \phi(n) = 3n$ homomorphism?
- $\phi(m+n)=3\big(m+n\big)=3m+3n=\phi(m)+\phi(n) ~\forall~ m,n\in\mathbb{Z}$
- $\langle \mathbb{Z}, + \rangle \cong \langle 3\mathbb{Z}, + \rangle$

Isomorphic Binary Structures

Example

• Is $\phi : \mathbb{Z} \to \mathbb{Z}$, $\phi(n) = n + 1$ for $n \in \mathbb{Z}$ an isomorphism?

Example

- Is $\phi: \mathbb{Z} \to \mathbb{Z}, \phi(n) = n + 1$ for $n \in \mathbb{Z}$ an isomorphism?
- $\phi: \mathbb{Z} \to \mathbb{Z}, \ \phi(n) = n+1$

Isomorphic Binary Structures

Example

- Is $\phi: \mathbb{Z} \to \mathbb{Z}, \phi(n) = n + 1$ for $n \in \mathbb{Z}$ an isomorphism?
- $\phi: \mathbb{Z} \to \mathbb{Z}, \ \phi(n) = n+1$
- $\phi(m) = \phi(n) \Longrightarrow m + 1 = n + 1 \Longrightarrow m = n$

Isomorphic Binary Structures

Example

- Is $\phi : \mathbb{Z} \to \mathbb{Z}$, $\phi(n) = n + 1$ for $n \in \mathbb{Z}$ an isomorphism?
- $\phi: \mathbb{Z} \to \mathbb{Z}, \ \phi(n) = n+1$
- $\phi(m) = \phi(n) \Longrightarrow m + 1 = n + 1 \Longrightarrow m = n$
- For every $n \in \mathbb{Z}$, there exists $n-1 \in \mathbb{Z}$ such that $\phi(n-1) = n-1+1 = n$.

Isomorphic Binary Structures

Example

- Is $\phi : \mathbb{Z} \to \mathbb{Z}$, $\phi(n) = n + 1$ for $n \in \mathbb{Z}$ an isomorphism?
- $\phi: \mathbb{Z} \to \mathbb{Z}, \ \phi(n) = n+1$
- $\phi(m) = \phi(n) \Longrightarrow m + 1 = n + 1 \Longrightarrow m = n$
- For every $n \in \mathbb{Z}$, there exists $n-1 \in \mathbb{Z}$ such that $\phi(n-1) = n-1+1 = n$.
- $\phi(m+n) = m+n+1 \neq \phi(m) + \phi(n) = m+n+2$

Isomorphic Binary Structures

Example

• Is $\phi : \mathbb{Q} \to \mathbb{Q}$, $\phi(x) = x/2$ for $x \in \mathbb{Q}$ isomorphism?

Example Is $\phi: \mathbb{Q} \to \mathbb{Q}, \phi(x) = x/2$ for $x \in \mathbb{Q}$ isomorphism?

• $\phi: \mathbb{Q} \to \mathbb{Q}, \ \phi(x) = x/2$

Example

- Is $\phi : \mathbb{Q} \to \mathbb{Q}, \phi(x) = x/2$ for $x \in \mathbb{Q}$ isomorphism?
- $\phi: \mathbb{Q} \to \mathbb{Q}, \ \phi(x) = x/2$
- $\phi(x) = \phi(y) \Longrightarrow x/2 = y/2 \Longrightarrow x = y$

Isomorphic Binary Structures

Example

- Is $\phi : \mathbb{Q} \to \mathbb{Q}, \phi(x) = x / 2$ for $x \in \mathbb{Q}$ isomorphism?
- $\phi: \mathbb{Q} \to \mathbb{Q}, \ \phi(x) = x/2$
- $\phi(x) = \phi(y) \Longrightarrow x/2 = y/2 \Longrightarrow x = y$
- For every $y \in \mathbb{Q}$, there exists $2y \in \mathbb{Q}$ such that $\phi(2y) = 2y/2 = y$.

Isomorphic Binary Structures

Example

- Is $\phi : \mathbb{Q} \to \mathbb{Q}$, $\phi(x) = x/2$ for $x \in \mathbb{Q}$ isomorphism?
- $\phi: \mathbb{Q} \to \mathbb{Q}, \ \phi(x) = x/2$
- $\phi(x) = \phi(y) \Longrightarrow x/2 = y/2 \Longrightarrow x = y$
- For every $y \in \mathbb{Q}$, there exists $2y \in \mathbb{Q}$ such that $\phi(2y) = 2y/2 = y$.

$$\varphi(2y) = 2y/$$

$$\varphi(x+y) = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \varphi(x) + \varphi(y)$$

Isomorphic Binary Structures

Example

• We prove that the binary structures $\langle \mathbb{Z}, . \rangle$ and $\langle \mathbb{Z}^+, . \rangle$ under the usual multiplication are not isomorphic.

Isomorphic Binary Structures

Example

- We prove that the binary structures $\langle \mathbb{Z}, . \rangle$ and $\langle \mathbb{Z}^+, . \rangle$ under the usual multiplication are not isomorphic.
- Both \mathbb{Z} and \mathbb{Z}^+ have cardinality \aleph_0 , so there are lots of one-to-one functions mapping \mathbb{Z} onto \mathbb{Z}^+ .

Isomorphic Binary Structures

- We prove that the binary structures $\langle \mathbb{Z}, . \rangle$ and $\langle \mathbb{Z}^+, . \rangle$ under the usual multiplication are not isomorphic.
- Both \mathbb{Z} and \mathbb{Z}^+ have cardinality \aleph_0 , so there are lots of one-to-one functions mapping \mathbb{Z} onto \mathbb{Z}^+ .
- In ⟨ℤ,.⟩ there are two elements x such that x.x = x, namely, 0 and 1.

- We prove that the binary structures $\langle \mathbb{Z}, . \rangle$ and $\langle \mathbb{Z}^*, . \rangle$ under the usual multiplication are not isomorphic.
- Both $\mathbb Z$ and $\mathbb Z^+$ have cardinality \aleph_0 , so there are lots of one-to-one functions mapping $\mathbb Z$ onto $\mathbb Z^+$
- In $\langle \mathbb{Z}, . \rangle$ there are two elements *x* such that $x \cdot x = x$, namely, 0 and 1.
- However, in $\langle \mathbb{Z}^+, . \rangle$, there is only the single element 1.

- Can we solve 3 + x = 2in \mathbb{Z} ?
- add -3 on both sides -3+(3+x) = -3+2

Group(Definition)

A group (G, *) is a set G with binary operation * satisfying the following axioms for all $a, b, c \in G$:

1. For $a, b \in G$, $a * b \in G$ (closure)

<section-header><section-header><section-header><section-header><section-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

Group Theory

Group(Definition)

A group $\langle G, * \rangle$ is a set G with binary operation * satisfying the following axioms for all $a, b, c \in G$:

1. For $a, b \in G$, $a * b \in G$ 2. (a * b) * c = a * (b * c)3. There exists $e \in G$ such that

e * a = a * e = a

(closure) (associative) (identity)

Group Theory

Example

Can we solve equations of the form a*x = b in a group $\langle G, * \rangle$?

a'*(a*x) = a'*b(a'*a)*x = a'*b

Group Theory

Example

Can we solve equations of the form a * x = b in a group $\langle G, * \rangle$?

a'*(a*x) = a'*b(a'*a)*x = a'*be*x = a'*b

Example

Can we solve equations of the form a * x = b in a group $\langle G, * \rangle$?

a'*(a*x) = a'*b (a'*a)*x = a'*b e*x = a'*b x = a'*b

Group Theory Examples of Groups

Group Theory	
Example $\langle \mathbb{Z}, + \rangle$	
	167

Group Theory

Example $\langle \mathbb{Z}, + \rangle$

Closure $\forall m, n \in \mathbb{Z}, m+n \in \mathbb{Z}$

Example $\langle \mathbb{Z}, + \rangle$

- Closure $\forall m, n \in \mathbb{Z}, m+n \in \mathbb{Z}$ Associative
- $\forall m, n, p \in \mathbb{Z}, (m+n) + p = m + (n+p)$

Group Theory

Example

- $\langle \mathbb{Z}, + \rangle$
- Closure $\forall m, n \in \mathbb{Z}, m + n \in \mathbb{Z}$ -
 - Associative
- $\forall m, n, p \in \mathbb{Z}, (m+n) + p = m + (n+p)$ Identity
- For every $m \in \mathbb{Z}$, $0 \in \mathbb{Z}$, 0+m=m=m+0.

Group Theory

Example $\langle \mathbb{Z}, + \rangle$

- Closure $\forall m, n \in \mathbb{Z}, m+n \in \mathbb{Z}$
- Associative
- $\forall m, n, p \in \mathbb{Z}, (m+n) + p = m + (n+p)$
- Identity
- For every $m \in \mathbb{Z}$, $0 \in \mathbb{Z}$, 0 + m = m = m + 0. inverse
- For every $m \in \mathbb{Z} \exists m \in \mathbb{Z}$ such that m + (-m) = 0 = (-m) + m.

Example $\langle \mathbb{Z}, . \rangle$

- closure $\forall m, n \in \mathbb{Z}, m.n \in \mathbb{Z}$
- associative
 - $\forall m, n, p \in \mathbb{Z}, (m.n).p = m.(n.p)$

Group Theory

- $\langle \mathbb{Z}, . \rangle$ closure $\forall m, n \in \mathbb{Z}, m.n \in \mathbb{Z}$
- associative
- $\forall m, n, p \in \mathbb{Z}, (m.n). p = m.(n.p)$
- identity
 For every weight = 577 1 = 577 1 = 577
- For every $m \in \mathbb{Z}$, $1 \in \mathbb{Z}$, 1.m = m = m.1.

 $\begin{aligned} & \textbf{Example} \\ & \left< \mathbb{Q}, + \right> \\ & \textbf{s} \quad \text{Closure} \quad \forall \, r, s \in \mathbb{Q}, \, r + s \in \mathbb{Q} \end{aligned}$

Uniqueness of Identity and Inverse

Proof

1) Suppose e, e' are identity elements. So e*x = x*e = xe'*x = x*e' = x

An Interesting Example of Group

Solution Closure: Let $a, b \in G$, so $a \neq 1$ and $b \neq 1$. Suppose a * b = 1. Then ab - a - b + 2 = 1and so (a - 1)(b - 1) = 0which implies that a = 1or b = 1, a contradiction.

An Interesting Example of Group

Associative:

Associative: (a * b) * c = (a * b) c - (a * b) - c + 2 = (a b - a - b + 2)c - (ab - a - b + 2)c - c + 2 = abc - ac - bc + 2c - ab + a + b - 2 - c + 2 = abc - ab - ac - bc + a + b + cSimilarly $a * (b \cdot c)$ has the same value.

An Interesting Example of Group

Identity: An identity, e, would have to satisfy: e * x = x = x * e for all $x \in G$, that is, ex - e - x + 2 = x, or (e - 2)(x - 1) = 0 for all x. Clearly e = 2 works.

An Interesting Example of Group

Inverses: If x * y = 2, then xy - x - y + 2 = 2. So y(x - 1) = x and hence y = x/(x - 1).

An Interesting Example of Group

This exists for all $x \neq 1$, i.e. for all $x \in G$. But we must also check that it is itself an element of *G*. This is so because $x/(x-1) \neq 1$ for all $x \neq 1$.

Group Theory

Topic No. 14
Group Theory

Elementary Properties of Groups

Elementary Properties of Groups

Theorem

If G is a group with binary operation * then the left and right cancellation laws hold in G, that is, a * b = a * c implies b = c, and b * a = c * a implies b = c for all $a, b, c \in G$.

Elementary Properties of Groups

Proof

Suppose $a^* b = a^* c$. Then, there exists $a^c \in G$, and $a^{**}(a^* b) = a^{**}(a^* c)$. $(a^{**}a)^* b = (a^{**}a)^* c$. So, $e^* b = e^* c$ -implies b = c. Similarly, from $b^* a = c^* a$ one can deduce that b = cupon multiplication by $a^c \in G$ on the right.

219

Elementary Properties of Groups

Theorem

If G is a group with binary operation *, and if a and b are any elements of G, then the linear equations a * x=b and y * a=b have unique solutions x and y in G.

Elementary Properties of Groups

Proof

First we show the existence of at least one solution by just computing that a' * b is a solution of a * x = b. Note that

 $a^* (a'^* b) = (a^* a')^* b = e^* b = b.$ Thus $x = a'^* b$ is a solution of $a^* x = b$. In a similar fashion, $y = b^* a'$ is a solution of $y^* a = b$. **Group Theory**

Topic No. 15

Elementary Properties of Groups

Theorem

Let G be a group. For all $a, b \in G$, we have (a*b)' = b'*a'.

Elementary Properties of Groups

Proof

Note that in a group G, we have $(a^* b) * (b' * a')$ $= a^* (b * b') * a'$ $= (a^* e) * a'$ $= a^* a' = e.$

Elementary Properties of Groups

It shows that b' * a' is the unique inverse of a*b. That is, (a*b)' = b'*a'.

Elementary Properties of Groups

Theorem

For any $n \in \mathbb{N}$, $(a^n)^{-1} = (a^{-1})^n$.

Elementary Properties of Groups

 $\begin{array}{l} \label{eq:proof} \mbox{By definition, } (a^n)^{-1} \mbox{ is the unique element of G whose product with } a^n \mbox{ in any order is e.} \\ \mbox{But by associativity,} \\ \mbox{ } a^n * (a^{-1})^n = (a^{n-1} * a) * (a^{-1} * (a^{-1})^{n-1}) \end{array}$

$$\begin{split} &= a^{n-1} \, * (a * (a^{-1} * (a^{-1})^{n-1})) \\ &= a^{n-1} \, * ((a * a^{-1}) * (a^{-1})^{n-1}) \\ &= a^{n-1} \, * (e * (a^{-1})^{n-1})) \\ &= a^{n-1} \, * (a^{-1})^{n-1}, \end{split}$$

Elementary Properties of Groups

which by induction on n equals e (the cases n = 0 and n = 1 are trivial).

Similarly, the product of a^n and $(a^{-1}\,)^n$ in the other order is e.

This proves that $(a^{-1})^n$ is the inverse of a^n .

Groups of Matrices

Groups of Matrices

- $$\begin{split} & \text{Is } \langle \ \mathsf{M}_{\text{mn}}(\mathbb{R}), \, + \, \rangle \text{ group} ? \\ & \bullet \ \forall \ [a_{ij}], \ [b_{ij}] \in \mathsf{M}_{\text{mn}}(\mathbb{R}), \ [a_{ij}] + [b_{ij}] = [a_{ij} + b_{ij}] \in \mathsf{M}_{\text{mn}}(\mathbb{R}) \end{split}$$
- $\forall [a_{ij}], [b_{ij}], [c_{ij}] \in M_{mn}(\mathbb{R}),$ $([a_{ij}] + [b_{ij}]) + [c_{ij}] = [a_{ij} + b_{ij}] + [c_{ij}]$ $= [(a_{ij} + b_{ij}) + c_{ij}]$ $= [a_{ij} + (b_{ij} + c_{ij})]$ $= [a_{ij}] + [b_{ij} + c_{ij}]$
 - $= [a_{ij}] + ([b_{ij}] + [c_{ij}])$

• For every $[a_{ij}] \in M_{mn}(\mathbb{R})$ and $[0] \in M_{mn}(\mathbb{R})$,

- $[a_{ij}] + [0] = [a_{ij}+0] = [a_{ij}] = [0] + [a_{ij}]$
- For every $[a_{ij}] \in M_{mn}(\mathbb{R})$ there exists $[-a_{ij}] \in M_{mn}(\mathbb{R})$ such that $[a_{ij}] + [-a_{ij}] = [a_{ij}+(-a_{ij})] = [0] = [-a_{ij}] + [a_{ij}]$

Group Theory

Groups of Matrices

Groups of Matrices

$$\begin{split} & \forall \left[\alpha_{ij} \right], \left[b_{ij} \right] \in M_{mn}(\mathbb{R}), \\ & \left[\alpha_{ij} \right] + \left[b_{ij} \right] = \left[\alpha_{ij} + b_{ij} \right] \\ & = \left[b_{ij} + \alpha_{ij} \right] = \left[b_{ij} \right] + \left[\alpha_{ij} \right] \\ & \text{Therefore, } \left\{ M_{mn}(\mathbb{R}), + \right\} \text{ is abelian group.} \\ & \bullet \text{ Similarly, } \left\{ M_{mn}(\mathbb{Z}), + \right\}, \\ & \left\{ M_{mn}(\mathbb{Q}), + \right\} \text{ and} \\ & \left\{ M_{mn}(\mathbb{C}), + \right\} \text{ are also abelian groups.} \end{split}$$

Groups of Matrices

Field

- (F,+,.)
- ⟨F,+⟩ is abelian group
 ⟨F\{0},.⟩ is abelian
 - group
 - $\forall a, b, c \in F,$
- a(b+c)=ab+ac
- (a+b)c=ac+bc

Groups of Matrices					
	$ \langle \mathbb{Z}, + \rangle \\ \langle \mathbb{Q}, + \rangle \\ \langle \mathbb{Q} - \{0\}, . \rangle \\ \langle \mathbb{R}, + \rangle \\ \langle \mathbb{R} - \{0\}, . \rangle \\ \langle \mathbb{C}, + \rangle \\ \langle \mathbb{C} - \{0\}, . \rangle $				
		236			

Group Theory

 In general set of all $n \times n$ matrices is not a group under matrix multiplication.

Group Theory

- Axioms
- Let G = GL(n, F).
- Closure: For all $A, B \in G, AB \in G$.

Group Theory

Axioms

- Let G = GL(n, F).
- Closure: For all $A, B \in G, AB \in G$. Associative property also holds in G.

Group Theory Axioms • Let G = GL(n, F). Closure: For all $A, B \in G, AB \in G$. Associative property also holds in G. • I_n is the identity matrix.

Group Theory

- Axioms
- Let G = GL(n, F).
- Closure: For all $A, B \in G, AB \in G$.
- Associative property also holds in G.
- = I_n is the identity matrix.
- Since both A and A⁻¹ are invertible so inverse exists.

Example • Let $G = GL(2, \mathbb{R})$ and $A, B \in G$ such that $A = \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

Group Theory		
Examples		
$\langle \mathbb{R}, + angle$		
$\langle \mathbb{C}, + \rangle$		
	255	

Group Theory		
Examples		
$\langle \mathbb{R},+ angle$		
$\langle \mathbb{C}, + \rangle$		
$\langle \mathbb{R}-\{0\},. angle$		
	256	
	256	

Group Theory		
Examples		
$\langle \mathbb{R},+ angle$		
$\langle \mathbb{C}, + \rangle$		
$\langle \mathbb{R} - \{0\}, . angle$		
$\langle \mathbb{C} - \{0\}, . angle$		
	257	

Abelian Groups

If n<0, then by the positive case and commutativity,

 $(a *b)^{n} = (b *a)^{n} = ((b *a)^{-n})^{-1} = ((b *a)^{-n})^{-1} = (a^{-n} * a^{-n})^{-1} = (a^{-n})^{-1} * (b^{-n})^{-1} = a^{n} * b^{n}$

Modular Arithmetic

Definition

Let n be a fixed positive integer and a and b any two integers. We say that a is congruent to b modulo n if n divides a-b. We denote this by $a \equiv b \mod n$.

Modular Arithmetic

Theorem Show that the congruence relation modulo n is an equivalence relation on Z.

Modular Arithmetic

Proof

Write "n |m" for " n divides m," which means that there is some integer k such that m = nk. Hence a \equiv b mod n if and only if n |(a-b). (i) For all a $\in \mathbb{Z}$, n |(a-a), so a \equiv a mod n and the relation is reflexive.

Modular Arithmetic

 $\begin{array}{l} (ii) \mbox{ if } a \equiv b \mbox{ mod } n, \mbox{ then } n \mid (a-b), \\ so \ n \mid (a-b), \\ so \ n \mid (a-b) \ and \ b \equiv a \ mod \ n. \\ (iii) \ l \ a \equiv b \ mod \ n \ and \ b \equiv c \\ mod \ n, \ then \ n \mid (a-b) \ and \\ n \mid (b-c), \ so \ n \mid (a-b) \ and \\ n \mid (b-c). \\ Therefore, \ n \mid (a-c) \ and \ a \equiv c \\ mod \ n. \\ \mbox{ Hence congruence modulo } n \ is \\ an \ equivalence \ relation \ on \ Z. \end{array}$

Modular Arithmetic

The set of equivalence classes is called the set of integers modulo n and is denoted by \mathbb{Z}_n .

Modular Arithmetic

In the congruence relation modulo 3, we have the following equivalence classes:

 $\label{eq:constraint} \begin{array}{l} [0]{=}\{...,{=}3,0,3,6,9,...\} \quad [1]{=}\{...,{=}2,1,4,7,10,...\} \ [2]{=}\{...,{=}1,2,5,8,11,...\} \\ [3]{=}\{...,0,3,6,9,12,...]{=}[0] \\ Any equivalence class must be one of [0], [1], or [2], so \\ \mathbb{Z}_3 = [[0], [1], [2]]. \end{array}$

In general, $\mathbb{Z}_n = \{[0], [1], [2], ..., [n-1]\}$, since any integer is congruent modulo n to its remainder when divided by n.

Group Theory Order of a Group

Order of a Group

Definition

The number of elements of a group G is called the order of G.

We denote it as |G|. We call G finite if it has only finitely many elements; otherwise we call G infinite.

Order of a Group

Definition

Let G be a group and $a \in G$. If there is a positive integer n such that $a^n = e$, then we call the smallest such positive integer the order of a. If no such n exists, we say that a has infinite order. The order of a is denoted by |a|.

Order of a Group

In the congruence relation modulo 4, we have the following equivalence classes: $[0]=\{...,-4,0,4,8,12,...\} [1]=\{...,-3,1,5,9,13,...\} [2]=\{...,-2,2,6,10,14,...\} [3]=\{...,-1,3,7,11,15,...\}$ Any equivalence class must be one of [0], [1], [2] or [3], so $\mathbb{Z}_4 = \{[0], [1], [2], [3]\}.$

Let $+_4$ be addition modulo 4. Then, $2 +_4 3 = 1$.

Order of a Group				
$ \langle \mathbb{Z}, + \rangle $ $ \langle \mathbb{Q}, + \rangle $ $ \langle \mathbb{Q} - \{0\}, \cdot \rangle $ $ \langle \mathbb{R}, + \rangle $ $ \langle \mathbb{R} - \{0\}, \cdot \rangle $ $ \langle \mathbb{C}, + \rangle $ $ \langle \mathbb{C}, -\{0\}, \rangle $				
229				

Finite Groups

Is $\langle U_4, . \rangle \cong \langle \mathbb{Z}_4, +_4 \rangle$?
■1↔[0]
- 1↔[2]
∎i ↔[1]
∎-i ↔[3]

Group Theory Finite Groups

Finite Groups

Since a group has to have at least one element, namely, the identity, a minimal set that might give rise to a group is a one-element set { e}. The only possible binary operation on { e} is defined by e * e = e. The three group axioms hold. The identity element is always its own inverse in every group.

Finite Groups

Let us try to put a group structure on a set of two elements.

Since one of the elements must play the role of identity element, we may as well let the set be $\{e, o\}$.

Let us attempt to find a table for a binary operation * on { e, a} that gives a group structure on { e, a}.

Finite Groups

Since *e* is to be the identity, so e*x=x*e=xfor all $x \in \{e, a\}$. Also, *a* must have an inverse *a'* such that a * a' = a' * a = e. In our case, *a'* must be either e or *a*. Since *a'* = e obviously does not work, we must have a' = a.

Finite G	roups			
	So, we the tab	have to le as fo	complete	2
	٠	e	а	
	e	e	а	
	а	а	e	
				289

Finite Groups

There are two different types of group structures of order 4.

- The group $\langle \mathbb{Z}_4, +_4 \rangle$ is isomorphic to the group $U_4 = \{ 1, i, -1, -i \}$ of fourth roots of unity under multiplication.
- The group V=(a,b | a²=b²=(ab)²=e) is the Klein 4-group, and the notation V comes from the German word Vier for four.

Finite (We its g	G rou desc group	ips ribe tabl	Klein e.	4-gr	oup I	ру	
	•	e	а	b	с		
	e	e	а	b	с		
	а	а	e	с	b		
	b	b	с	e	а		
	с	с	b	а	e		
							296

Finite Groups

Is $\langle \mathbb{Z}_6 \setminus \{[0]\}, ._6 \rangle$ a group?

.₆ [1] [2] [3] [4] [5]

 6
 11
 12
 31
 14
 15

 [1]
 [1]
 [2]
 [3]
 [4]
 [5]

 [2]
 [2]
 [4]
 [0]
 [2]
 [4]

 [3]
 [3]
 [0]
 [3]
 [0]
 [3]

 [4]
 [4]
 [2]
 [0]
 [4]
 [2]

 [5]
 [5]
 [4]
 [3]
 [2]
 [1]

Subgroups

Subgroups Let $\langle G, * \rangle$ be a group. A subgroup of G is a subset of G which is

itself a group under *.

Subgroups

Examples $= \langle \mathbb{Z}, + \rangle \text{ is a subgroup of } \langle \mathbb{R}, + \rangle$

Subgroups

- Examples
- = $\langle \mathbb{Z}, + \rangle$ is a subgroup of $\langle \mathbb{R}, + \rangle$
- = $\langle \mathbb{Q} \{0\}, . \rangle$ is not a subgroup of $\langle \mathbb{R}, + \rangle$

Subgroups

- = $\langle \mathbb{Z}, + \rangle$ is a subgroup of $\langle \mathbb{R}, + \rangle$
- $\langle \mathbb{Q} \{0\}, . \rangle$ is not a subgroup of $\langle \mathbb{R}, + \rangle$
- $\langle \{1, -1\}, . \rangle$ is a subgroup of $\langle \{1, -1, i, -i\}, . \rangle$

Subgroups

Examples

- $\langle \mathbb{Z}, + \rangle$ is a subgroup of $\langle \mathbb{R}, + \rangle$
- = $\langle \mathbb{Q} \{0\}, . \rangle$ is not a subgroup of $\langle \mathbb{R}, + \rangle$
- = $\langle \{1, -1\}, . \rangle$ is a subgroup of $\langle \{1, -1, i, -i\}, . \rangle$
- $\begin{array}{l} & \left<\{1, \ i\}, .\right> \text{ is not a subgroup of} \\ & \left<\{1, \ -1, i, -i\}, .\right> \end{array}$

305

Subgroups

Proposition

• Let G be a group. Let $H \subseteq G$. Then H is a subgroup of G if the following are true:

Proposition

- Let G be a group. Let $H \subseteq G$. Then H is a subgroup of G if the following are true:
- 1) $e \in H$

Groups of Matrices

Diagonal matrices D(n, F). It's closed under multiplication, identity and inverses simply because each of $T^+(n, F)$ and $T^-(n, F)$ are.

This is a special case of the general fact that: The intersection of any collection of subgroups is itself a subgroup.

```
\begin{bmatrix} a_{11} & 0 & 0 & \dots & 0 \\ 0 & a_{22} & 0 & \dots & 0 \\ 0 & 0 & a_{33} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & a_{nn} \end{bmatrix}
```


Another interesting subgroup of $T^{+}(n, F)$ is the group of **uni-upper-triangular matrices UT**⁺(n, F). These are the upper-triangular matrices with 1's down the diagonal:

$$\begin{bmatrix} 1 & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & 1 & a_{23} & \dots & a_{2n} \\ 0 & 0 & 1 & \dots & a_{3n} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}$$

Groups of Matrices

And inside $T^{-}(n, F)$ we have the **uni-lower-triangular** matrices $UT^{-}(n, F)$.

[1	0	0	 0
a ₁₂	1	0	 0
<i>a</i> ₁₃	a_{23}	1	 0
a_{1n}	a_{2n}	a_{3n}	 1

The Two Step Subgroup Test

Theorem

A subset H of a group G is a subgroup of G if and only if

1. H is closed under the binary operation * of G,

2. for all $a \in H$ it is true that $a^{-1} \in H$ also.

The Two Step Subgroup Test

Proof

The fact that if H is subgroup of G then conditions 1 and 2 must hold follows at once from the definition of a subgroup. Conversely, suppose H is a subset of a group G such that conditions 1 and 2 hold. By 1 we have at once that closure property is satisfied. The inverse law is satisfied by 2. Therefore, for every a \in H there exists a⁻¹ \in H such that e=a*a⁻¹ \in H by 1. So, e*a=a*e=a by 1.

The Two Step Subgroup Test

It remains to check the associative axiom. But surely for all $a, b, c \in$ H it is true that (ab)c = a(bc) in H, for we may actually view this as an equation in G, where the associative law holds.

32

Group Theory

Topic No. 29

Group Theory

Examples on Subgroup Test

Examples on Subgroup Test

Recall Let **G** be a group and **H** a nonempty subset of **G**. If a*b is in **H** whenever a and b are in **H**, and a^2 is in **H** whenever a is in **H**, then **H** is

a subgroup of G.

Examples on Subgroup Test

Example

Show that $\mathbf{3Q}^{*}$ is a subgroup of $\mathbf{Q}^{*},$ the non-zero rational numbers.

 $\begin{array}{l} 3Q^* \ \mbox{is non-empty because 3 is an element of Q^*.}\\ \mbox{For a, b in Q^*, a=3i and b=3j where i, j are in Q^*.\\ \mbox{Then } ab=3i3j=3(3i), an element of Q^* (closed)\\ \mbox{For a in Q^*, a=3i for i an element in Q^*.\\ \mbox{Then } a^*=(i^{-1}3^{-1}), an element of Q^*. (Inverses)\\ \mbox{Therefore Q^* is a subgroup of Q^*.} \end{array}$

Group Theory		
Topic No. 30		
	335	

Group Theory

The One Step Subgroup Test

The one Step Subgroup Test

Theorem

If S is a subset of the group G, then S is a subgroup of G if and only if S is nonempty and whenever a, $b \in S$, then $ab^{-1} \in S$.

The one Step Subgroup Test

Proof

If S is a subgroup, then of course S is nonempty and whenever $a, b \in S$, then $ab^{-1} \in S$.

The one Step Subgroup Test

Conversely suppose S is a nonempty subset of the Group G such that whenever a, $b \in S$, then ab⁻¹∈ S. Let $a \in S$, then $e = aa^{-1} \in S$ and so $a^{-1} = ea^{-1} \in S$. Finally, if a, b \in S, then b $^{\text{-1}} \in$ S by the above and so $ab = a(b^{-1})^{-1} \in S$.

Group Theory

Topic No. 31

Group Theory

Examples on Subgroup Test

Examples on Subgroup Test

Recall Suppose G is a group and H is a non-empty subset of **G**. If, whenever a and b are in **H**, ab⁻¹ is also in **H**, then **H** is a subgroup of **G**.

Or, in additive notation: If, whenever a and b are in H, a - b is also in H, then H is a subgroup of **G**.

- To apply this test: Note that **H** is a non-empty subset of **G**.
- of G.
 Show that for any two elements a and b in H, ab⁻¹ is also in H.
 Conclude that H is a cuberoup of G.

- subgroup of G.

Examples on Subgroup Test

Example For a, b in **3Q**^{*}, a=3i and b=3j where i, j are in **Q**^{*} Then $ab^{-1}=3i(3))^{-1}=3i(j^{-1}3^{-1})=3(ij^{-1}3^{-1})$, an element of **3Q**^{*}

Group Theory

Topic No. 32

Group Theory

The Finite Subgroup Test

The finite Subgroup Test

Theorem

If S is a subset of the finite group G, then S is a subgroup of G if and only if S is nonempty and whenever $a, b \in S$,

then $ab \in S$.

The finite Subgroup Test

Proof

If S is a subgroup then obviously S is nonempty and whenever a, b \in S, then $ab \in$ S. Conversely suppose S is nonempty and whenever a, b \in S, then $ab \in$ S. Then let a \in S. The above property says that $a^2{=}aa{\in}S$ and so $a^3{=}aa^2{\in}S$ and so $a^4{=}aa^3{\in}S$ and so on and on and on.

The finite Subgroup Test

That is $a^n \in S$ for all integers n > 0. But G is finite and thus so is S. Consequently the sequence, $a, a^2, a^3, a^4, \dots, a^n, \dots$ cannot continue to produce new elements. That is there must exist m<n such that $a^m = a^n$. Thus $e = a^{n-m} \in S$.

The finite Subgroup Test

Therefore for all a \in S, there is a smallest integer k > 0 such that a^k = e. Moreover, a⁻¹ = a^{k-1} \in S. Finally if a, b \in S, then b⁻¹ \in S by the above and so by the assume property we have a b⁻¹ \in S. Therefore S is a subgroup as desired. **Group Theory**

Topic No. 33

Group Theory

Examples on Subgroup Test Examples on Subgroup Test Example • ({1,-1, i,-i}, •) • {1,i} • {1,-i} • {1,-1} • {1,-1,i} • {1,-1,-i}

Examples on Subgroup Test

Example

- $\bullet (\{[0], [1], [2], [3], [4], [5]\}, +_6) \\$
- {[0], [1]} or {[0], [4]} or {[0], [5]} or {[0], [2]}
- {[0], [3]}
- **•** {[0], [2], [4]}
- {[0], [2], [3], [4]}

Cyclic Groups

Definition

Let G be a group and let $a \in G$. Then the subgroup $H=\{a^n \mid n \in \mathbb{Z}\}$ of G is called the cyclic subgroup of G generated by a, and denoted by (a).

368

Elementary Properties of Cyclic Groups

Proof

- Let G be a cyclic group and let a be a generator of G so that $G = \langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}.$
- If g₁ and g₂ are any two elements of G, there exists integers r and s such that g₁=a^r and g₂=a^s.
- Then
 - $g_1g_2 = a^r a^s = a^{r+s} = a^{s+r} = a^s a^r = g_2g_1.$
- So, G is abelian.

367

Elementary Properties of Cyclic Groups

Elementary Properties of Cyclic Groups $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{2} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{-2} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$ 369

Elementary Properties of Cyclic Groups

Example

$$\begin{split} U_6 &= < \omega \mid \omega^6 = 1 > = \{ \omega, \omega^2, \, \omega^3, \, \omega^4, \, \omega^5, 1 \} \text{ with } \omega = e^{i(2\pi r/6)} \\ (\omega^5)^2 &= \, \omega^{10} = \, \omega^6 \omega^4 = \, \omega^4 \\ (\omega^3)^3 = \, \omega^{15} = \, (\omega^6)^3 \omega^2 = \, \omega^3 \\ (\omega^5)^5 = \, \omega^{20} = \, (\omega^6)^4 \omega = \, \omega \\ (\omega^5)^5 &= \, \omega^{20} = \, (\omega^6)^4 = 1 \\ U_6 &= < \omega^5 > = \{ \omega^5, \, \omega^4, \, \omega^3, \, \omega^2, \omega, 1 \} \end{split}$$

373

Elementary Properties of Cyclic Groups

Example

$$\begin{split} &U_6\!\!=\!\!<\omega\mid\!\omega^6\!\!=\!\!1\!\!>\!\!\{\omega,\omega^2,\omega^3,\omega^4,\omega^5,1\} \text{ with } \omega\!=\!\!e^{i(2\pi/6)} \\ &<\omega^2\!\!>\!\!=\!\!\{\omega^2,\omega^4,1\}< U_6 \\ &<\omega^3\!\!>\!\!=\!\!\{\omega^3,1\}< U_6 \\ &<\omega^4\!\!>\!\!=\!\!\{\omega^4,\omega^2,1\}=<\omega^2\!\!> \end{split}$$

374

Group Theory

 Elementary Properties of Cyclic Groups

Elementary Properties of Cyclic Groups

Theorem 1 If |a| = n, then $|a| < a^{k} = \langle a^{gcd(n,k)} \rangle$ $|a^{k}| = n/gcd(n,k)$

376

Elementary Properties of Cyclic Groups To prove the $|a^k| = n/gcd(n,k)$, we begin with a little lemma. **Prove:** If d | n = |a|, then $|a^d| = n/d$. **Proof:** Let n = dq. Then $e = a^n = (a^d)^q$. So $|a^d| \le q$. If 0 < i < q, then 0 < di < dq = n = |a|so $(a^d)^j \neq e$ Hence, $|a^d| = q$ which is n/d as required.

Elementary Properties of Cyclic Groups

Example

- Suppose G = <a> with |a| = 30.
- Find $|a^{21}|$ and $<a^{21}>$. • By Theorem 1, $|a^{21}| = 30/gcd(30,21) = 10$
- Also <a²¹> = <a³>
- $= \{a^3, a^6, a^9, a^{12}, a^{15}, a^{18}, a^{21}, a^{24}, a^{27}, e\}$

379

Elementary Properties of Cyclic Groups

Theorem 1

 $\begin{array}{l} \text{If } |\alpha| = n, \mbox{then } < a^{k_2} = < a^{\gcd(n,k)} > \mbox{and } |\alpha^k| = n/\gcd(n,k). \end{array} \\ \label{eq:constant} \begin{array}{l} \textbf{Corollaries to Theorem 1} \\ 1.\mbox{In a finite cyclic group, the order of an element divides the order of the group.} \\ 2.\mbox{Let } |\alpha| = n \mbox{ in any group. Then} \\ \mbox{a) } < a^{i_2} = < a^{i_2} > \mbox{iff } \gcd(n,i) = \gcd(n,j) \\ \mbox{b) } |\alpha^i| = |\alpha^i| \mbox{ iff } \gcd(n,i) = \gcd(n,j) \end{array}$

381

Elementary Properties of Cyclic Groups

Corollaries to Theorem 1

- 3. Let |*a*| = n.
 - $\mathsf{Then} < a^i > = a^j \mathsf{iff} \gcd(\mathsf{n},\mathsf{i}) = \gcd(\mathsf{n},\mathsf{j})$
- 4. An integer k in \boldsymbol{Z}_n is a generator of \boldsymbol{Z}_n iff gcd(n,k)
- =1

382

Elementary Properties of Cyclic Groups

Example

Find all the generators of U(50) = $\langle 3 \rangle$. U(50) ={1,3,7,9,11,13,17,19,21,23,27,29,31,33, 37,39,41,43,47,49} |U(50)| = 20The numbers relatively prime to 20 are 1, 3, 7, 9, 11, 13, 17, 19 The generators of U(50) are therefore 3¹, 3³, 3⁷, 3⁹, 3¹¹, 3¹³, 3¹⁷, 3¹⁹ i.e. 3, 27, 37, 33, 47, 23, 13, 17

Fundamental Theorem of Cyclic Groups

Fundamental Theorem of Cyclic Groups

- a) Every subgroup of a cyclic group is cyclic.
- b) If |a| = n, then the order of any subgroup of $\langle a \rangle$ is a divisor of n
- c) For each positive divisor k of n, the group <a> has exactly one subgroup of order k, namely <a^{n/k}>

385

Fundamental Theorem of Cyclic Groups

Subgroups are cyclic

Proof: Let $G = \langle a \rangle$ and suppose $H \leq G$. If H is trivial, then H is cyclic. Suppose H is not trivial. Let m be the smallest positive integer with a^m in H. (Does m exist?)

Fundamental Theorem of Cyclic Groups

By closure, $<a^m>$ is contained in H. We claim that H = $<a^m>$. To see this, choose any b = a^k in H. There exist integers q,r with $0 \le r < m$ such that $a^k = a^{qm+r}$ (Why?)_____

387

Fundamental Theorem of Cyclic Groups

Since $b = a^k = a^{qm}a^r$, we have $a^r = (a^m)^q b$ Since b and a^m are in H, so is a^r . But r < m (the smallest power of a in H) so r = 0. Hence $b = (a^m)^q$ and b is in H. It follows that $H = <a^m >$ as required.

388

386

Fundamental Theorem of Cyclic Groups

|H| is a divisor of |a|

Proof: Given $|\langle a \rangle| = n$ and $H \le \langle a \rangle$. We showed $H = \langle a^m \rangle$ where m is the smallest positive integer with a^m in H. Now $e = a^n$ is in H, so as we just showed, n = mq for some q. Now $|a^m| = q$ is a divisor of n as required.

389

Fundamental Theorem of Cyclic Groups

Exactly one subgroup for each divisor k of n

- (Existence) Given |<*a*>| = n. Let k | n.
- Say n = kq. Note that gcd(n,q) = q
- So $|a^{q}| = n/gcd(n,q) = n/q = k$.
- Hence there exists a subgroup of order k, namely $\langle a^{n/q} \rangle$

Fundamental Theorem of Cyclic Groups

• (Uniqueness) Let H be any subgroup of <a> with order k. We claim H = $<\!\!a^{n/k}\!\!>$

From (a), $H = \langle a^m \rangle$ for some m. From (b), m | n so gcd(n,m) = m. So k = $|a^m| = n/gcd(n,m)$ by Theorem 1 = n/m Hence m = n/k So H = $\langle a^n/k \rangle$ as required.

391

Subgroups of Finite Cyclic Groups

Theorem

Let G be a cyclic group with n elements and generated by a. Let $b \in G$ and let $b=a^k$. Then b generates a cyclic subgroup H of G containing n/d elements, where d = gcd (n, k).

Also $\langle a^k \rangle = \langle a^s \rangle$ if and only gcd (k, n) = gcd (s, n).

393

Subgroups of Finite Cyclic Groups

Example

using additive notation, consider in $\mathbb{Z}_{\mbox{\tiny 12}}$, with the

- generator *a*=1. • 3 = 3·1, gcd(3, 12)=3, so $\langle 3 \rangle$ has 12/3=4 elements.
- $\langle 3 \rangle = \{0, 3, 6, 9\}$
- Furthermore, $\langle 3 \rangle = \langle 9 \rangle$ since gcd(3, 12)=gcd(9, 12).

Subgroups of Finite Cyclic Groups

Example

- 8= 8·1, gcd (8, 12)=4, so \langle 8 \rangle has 12/4=3 elements.
- ⟨ 8 ⟩={0, 4, 8}
- 5= 5·1, gcd (5, 12)=1, so \langle 5 \rangle has 12 elements. \langle 5 \rangle = $\mathbb{Z}_{12.}$

398

Subgroups of Finite Cyclic Groups

Example

- Find all subgroups of \mathbb{Z}_{18} and give their subgroup diagram.
- All subgroups are cyclic
- $\hfill By above Corollary is the generator of <math display="inline">Z_{18},$ so is 5, 7, 11, 13, and 17.
- Starting with 2, \langle 2 \rangle ={0, 2, 4, 6, 8, 10, 12, 14, 16 }is of order 9, and gcd(2, 18)=2=gcd(k, 18) where k is 2, 4, 8, 10, 14, and 16. Thus 2, 4, 8, 10, 14, and 16 are all generators of (2).

397

Subgroups of Finite Cyclic Groups

Example

- (3)={0, 3, 6, 9, 12, 15} is of order 6, and gcd(3,
- 18)=3=gcd(k, 18) where k=15 • (6)={0, 6, 12} is of order 3, so is 12
- (9)={0,9} is of order 2

Subgroups of Finite Cyclic Groups

Theorem on Cyclic Group

Case 1

Hence every element of G can be expressed as a^m for a unique m $\in \mathbb{Z}$. The map $\varphi : G \rightarrow \mathbb{Z}$ given by $\varphi(a^i) = i$ is thus well defined, one to one, and onto \mathbb{Z} .

403

Theorem on Cyclic Group

Case 2

$$\begin{split} a^m &= e \text{ for some positive integer } m. \\ \text{Let } n \text{ be the smallest positive integer such that } \\ a^n &= e. \\ \text{If } s \in \mathbb{Z} \text{ and } s = nq + r \text{ for } 0 < r < n, \text{ then } \\ a^s = a^{nq+r} = (a^n)^q a^r = e^q a^r = a^r. \\ \text{As in Case 1, if } 0 < k < h < n \text{ and } \\ a^h = a^s, \text{ then } a^{h\cdot k} = e \text{ and } 0 < h < k < n, \\ \text{ contradicting our choice of } n. \end{split}$$

Permutation Groups	
Array Notation • Let A = {1, 2, 3, 4} • Here are two permutations of A:	
$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} \qquad \beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$	43)
$\alpha(2) = 3$ $\beta(4) = 3$ $\alpha(4) = 4$ $\beta(1) = 2$	
$\beta\alpha(2) = \beta(3) = 4$	410

Group Theory

Permutation Groups

Permutation Groups

Definition

Let $f : A \rightarrow B$ be a function and let H be a subset of A. The **image** of H **under** f is {f (h) I h \in H} and is denoted by f[H].

428

Permutation Groups

Lemma

Let G and G' be groups and let $\varphi : G \rightarrow G'$ be a one-to-one function such that $\varphi(xy) = \varphi(x) \varphi(y)$ for all $x, y \in G$. Then $\varphi[G]$ is a subgroup of G' and φ provides an isomorphism of G with $\varphi[G]$.

429

Permutation Groups

Proof

Let $x', y' \in \phi[G]$. Then there exist $x, y \in G$ such that $\phi(x) = x'$ and $\phi(y) = y'$. By hypothesis, $\phi(xy) = \phi(x)\phi(y) = x'y'$, showing that $x'y' \in \phi[G]$. We have shown that $\phi[G]$ is closed under the operation of G'.

Permutation Groups

Note that ϕ provides an isomorphism of G with $\phi[G]$ follows at once because ϕ provides a one-to-one map of G onto $\phi[G]$ such that $\phi(xy) = \phi(x)\phi(y)$ for all $x, y \in G$.

433

Cayley's Theorem

Theorem

Every group is isomorphic to a group of permutations.

435

Cayley's Theorem		
	Proof	
	Let G be a group.	
	We show that G is isomorphic to a subgroup of S _G .	
	We Need only to define a one-to-one function	
	$\phi: G \rightarrow S_G$ such that	
	$\varphi(xy) = \varphi(x)\varphi(y)$	
	for all $x, y \in G$.	436

 $\begin{array}{l} \mbox{For } x \in G, \mbox{let } \lambda_x: \ G \rightarrow G \mbox{ be defined } by \ \lambda_x(g) = xg \\ \mbox{for all } g \in G. \ (\mbox{We think } of \ \lambda_x \mbox{ as performing left} \\ \mbox{multiplication } by \ x.) \\ \mbox{The equation } \lambda_x(x^{1}c) = x(x^{-1}c) = c \ \mbox{ for all } c \in G \\ \mbox{shows that } \lambda_x \mbox{ maps } G \ \mbox{onto } G. \ \mbox{if } \lambda_x(a) = \lambda_x(b), \\ \mbox{then } xa = xb \ \mbox{ so a = b } by \ \mbox{cancellation. Thus } \lambda_x \ \ \mbox{is a also one to one, and is a permutation of } G. \end{array}$

437

Cayley's Theorem

We now define $\varphi: G \rightarrow S_G$ by defining $\varphi(x) = \lambda_x$ for all $x \in G$. To show that φ is one to one, suppose that $\varphi(x) = \varphi(y)$. Then $\lambda_x = \lambda_y$ as functions mapping G into G. In particular $\lambda_x(e) = \lambda_y(e)$, so xe = ye and x = y. Thus φ is one to one.

Cayley's Theorem

It only remains to show that $\phi(xy) = \phi(x) \phi(y)$, that is, $\lambda_{xy} = \lambda_x \lambda_y$. Now for any $g \in G$, we have $\lambda_{xy}(g) = (xy)g$. Permutation multiplication is function composition, so $(\lambda_x \lambda_y)(g) = \lambda_x (\lambda_y(g)) = \lambda_x (yg) = x_y(yg)$. Thus by associativity, $\lambda_{xy} = \lambda_x \lambda_y$.

Examples of Permutation Groups

Recall

We form the dihedral group D_4 of permutations corresponding to the ways that two copies of a square with vertices 1, 2, 3, and 4 can be placed, one covering the other with vertices on top of vertices.

D₄ is the group of symmetries of the square.It is also called the octic group.

Orbits	
• Look at what happens to elements as a permutation is applied. • $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix}$	
$\alpha(1)=2, \alpha^2(1)=3, \alpha^3(1)=1 $ {1,2,3}	
$\alpha(4)=5, \alpha^2(4)=4$ {4,5}	
	451

Cycle Decomposition

Theorem

Every permutation can be written as a product of transpositions. **Proof**

Use the lemma plus the previous theorem.

469

Parity of a Permutation

The parity of a permutation is even or odd, but not both.

472

Parity of a Permutation

Proof

We show that for any positive integer n, parity is a homomorphism from S_n to the group \mathbb{Z}_2 , where 0 represents **even**, and 1 represents **odd**. These are alternate names for the equivalence classes $2\mathbb{Z}$ and $2\mathbb{Z}+1$ that make up the group \mathbb{Z}_2 . There are several ways to define the parity map. They tend to use the group $\{1, \cdot1\}$ with multiplicative notation instead of $\{0, 1\}$ with additive notation.

Parity of a Permutation

Another way uses the action of the permutation on the polynomial $P(x_1,x_2,...,x_n) = Product\{(x_i \text{-} x_j) \mid i < j\}.$ Each permutation changes the sign of P or leaves it

alone. This determines the parity: change sign = odd parity,

leave sign = even parity.

475

Alternating Group

Definition

The alternating group on n letters consists of the even permutations in the symmetric group of n letters.

477

Alternating Group

Definition

The alternating group on n letters consists of the even permutations in the symmetric group of n letters.

Let G_1, \dots, G_n be groups, and let us use multiplicative notation for all the group operations. Regarding the G as sets, we can form $\prod_{i=1}^n G_i$. Let us show that we can make $\prod_{i=1}^n G_i$ into a group by means of a binary operation of multiplication by components.

484

Direct Products

Theorem

Let $G_1, ..., G_n$ be groups. For $(a_1, ..., a_n)$ and $(b_1, ..., b_n)$ in $\prod_{i=1}^n G_i$, define $(a_1, ..., a_n)(b_1, ..., b_n)$ to be the element $(a_1 b_1, ..., a_n b_n)$. Then $\prod_{i=1}^n G_i$ is a group, the direct product of the groups G_i , under this binary operation.

485

The associate law in $\prod_{i=1}^{n} G_i$ is thrown back onto the associative law in each component as follows: $(a_1, \cdots, a_n)[(b_1, \cdots, b_n)(c_1, \cdots, c_n)]$

= $(a_1, \dots, a_n)(b_1c_1, \dots, b_nc_n)=(a_1(b_1c_1), \dots, a_n(b_nc_n))$

= $((a_1b_1)c_1, \cdots, (a_nb_n)c_n)=(a_1b_1, \dots, a_nb_n)(c_1, \dots, c_n)$

=[($a_1,...,a_n$)($b_1,...,b_n$)]($c_1,...,c_n$)

487

Group Theory Direct Products

Direct Products	
In the event that the operation of each G_i is commutative, we sometimes use additive notation in $\prod_{i=1}^n G_{i'}$ and refer to $\prod_{i=1}^n G_i$ as the	
direct sum of the groups G _i . The notation	
$\bigoplus_{i=1}{}^nG_i$ is sometimes used in this case in place of	
$\prod_{i=1}{}^nG_i,$ especially with abelian groups with	
operation +. The direct sum of abelian groups G_1 ,	
G_2, \cdots, G_n may be written as $G_1 \oplus \oplus G_n$.	
	490

If the S_i has r_i elements for i = 1,...,n, then $\prod_{i=1}^{n} S_i$ has $r_1...r_n$ elements, for in an n-tuple, there are r_1 choices for the first component from S₁, and for each of these there are r_2 choices for the next component from S₂, and so on.

493

Direct Products

Example

Consider the group $\mathbb{Z}_2 \times \mathbb{Z}_3$, which has 2·3=6 elements, namely (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), and (1, 2). We claim that $\mathbb{Z}_2 \times \mathbb{Z}_3$ is cyclic. It is only necessary to find a generator. Let us try (1, 1). Here the operations in \mathbb{Z}_2 and \mathbb{Z}_3 are written additively, so we do the same in the direct product $\mathbb{Z}_2 \times \mathbb{Z}_3$.

495

1(1, 1) = (1, 1) 2(1, 1) = (1, 1) + (1, 1) = (0, 2) 3(1, 1) = (1, 1) + (1, 1) + (1, 1) = (1, 0)

 $\begin{array}{l} \bullet \ 4(1,\ 1) = 3(1.\ 1) + (1,\ 1) = (1,\ 0) + (1.\ 1) = (0,\ 1) \\ \bullet \ 5(1,\ 1) = 4(1,\ 1) + (1,\ 1) = (0,\ 1) + (1,\ 1) = (1,\ 2) \\ \bullet \ 6(1,\ 1) = 5(1.\ 1) + (1,\ 1) = (1,\ 2) + (1,\ 1) = (0,\ 0) \\ Thus \ (1,\ 1) \ generates all \ of \ \mathbb{Z}_2 \ x \ \mathbb{Z}_3. \ Since there \ is, up to isomorphism, only one cyclic group structure of a given order, we see that \ \mathbb{Z}_2 \ x \ \mathbb{Z}_3$ is isomorphic to \ \mathbb{Z}_6. \end{array}

Direct Products

Theorem

The group $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic and is isomorphic to \mathbb{Z}_{mn} if and only if m and n are relatively prime, that is, the gcd of *m* and *n* is 1.

499

Direct Products

Proof

Proof Consider the cyclic subgroup of $\mathbb{Z}_m \times \mathbb{Z}_n$ generated by (1,1). The order of this cyclic subgroup is the smallest power of (1,1) that gives the identity (0,0). Here taking a power of (1,1) in our additive notation will involve adding (1,1) to itself repeatedly. Under addition by components, the first component $1 \in \mathbb{Z}_m$ yields 0 only after m summands, 2m summands, and so on, and the second component $1 \in \mathbb{Z}_n$ vials 0 only after n summands, 2n summands, and so on.

500

Direct Products

For them to yield 0 simultaneously, the number of summands must be a multiple of both m and n. The smallest number that is a multiple of both m and nwill be mn if and only if the gcd of m and n is 1; in this case, (1,1) generates a cyclic subgroup of order mn, which is the order of the whole group. This shows that $\mathbb{Z}_m \, x \, \mathbb{Z}_n$ is cyclic of order mn, and hence isomorphic to \mathbb{Z}_{mn} if m and n are relatively prime.

501

For the converse, suppose that the gcd of m and n is d > 1. The mn/d is divisible by both m and n. Consequently, for any (r, s) in $\mathbb{Z}_m x \, \mathbb{Z}_n$, we have $(r,s) + \cdots + (r,s) = (0,0).$

. mn/d summa

Hence no element (r, s) in $\mathbb{Z}_m \times \mathbb{Z}_n$ can generate the entire group, so $\mathbb{Z}_m \times \mathbb{Z}_n$ is not cyclic and therefore not isomorphic to \mathbb{Z}_{mn} .

502

Direct Products

Corollary

The group $\prod_{i=1}^{n} \mathbb{Z}_{m_i}$ is cyclic and isomorphic to $\mathbb{Z}_{m_1...m_n}$ if and only if the numbers m_i for i = 1,..., n are such that the gcd of any two of them is 1.

503

Direct Products

Example

If *n* is written as a product of powers of distinct prime numbers, as in $n = p_1^{n_1} \dots p_r^{n_r}$ then \mathbb{Z}_n is isomorphic to $\mathbb{Z}_{p_1^{n_1}\mathsf{X}}\dots\mathsf{X}\mathbb{Z}_{p_r^{n_r}}$ In particular, \mathbb{Z}_{72} is isomorphic to $\mathbb{Z}_8 \times \mathbb{Z}_9$.

Direct Products

We remark that changing the order of the factors in a direct product yields a group isomorphic to the original one. The names of elements have simply been changed via a permutation of the components in the ntuples.

506

508

Direct Products

It is straightforward to prove that the subset of $\mathbb Z$ consisting of all integers that are multiples of both r and s is a subgroup of $\mathbb Z$, and hence is cyclic group generated by the least common multiple of two positive integers r and s. Likewise, the set of all common multiples of n positive integers r_1, \cdots, r_n is a subgroup of $\mathbb Z$, and hence is cyclic group generated by the least common multiple of n positive integers r_1, \cdots, r_n .

507

Direct Products

Definition

Let r_1, \cdots, r_n be positive integers. Their least common multiple (abbreviated lcm) is the positive generator of the cyclic group of all common multiples of the r_{ν} that is, the cyclic group of all integers divisible by each r_{ν} for i = 1,…, n.

Direct Products

Theorem

Let $(a_1, \cdots, a_n) \in \prod_{i=1}^n G_i$. If a_i is of finite order r_i in G_i , then the order of (a_1, \cdots, a_n) in $\prod_{i=1}^n G_i$ is equal to the least common multiple of all the r_i .

509

Direct Products

Proof

This follows by a repetition of the argument used in the proof of previous Theorem. For a power of (a_1, \cdots, a_n) to give (e_1, \cdots, e_n) , the power must simultaneously be a multiple of r_1 so that this power of the first component a_1 will yield e_1 , a multiple of r_2 , so that this power of the second component a_2 will yield e_2 , and so on.

Group Theory

Direct Products

Direct Products

Example

Find the order of (8, 4, 10) in the group $\mathbb{Z}_{12}\,x\,\mathbb{Z}_{6o}\,x$ $\mathbb{Z}_{24}.$

Solution

Since the gcd of 8 and 12 is 4, we see that 8 is of order 3 in \mathbb{Z}_{12} . Similarly, we find that 4 is of order 15 in \mathbb{Z}_{60} and 10 is of order 12 in \mathbb{Z}_{24} . The lcm of 3, 15, and 12 is 3:5:4 = 60, so (8, 4,10) is of order 60 in the group $\mathbb{Z}_{12} \times \mathbb{Z}_{60} \times \mathbb{Z}_{24}$.

512

Direct Products

Example

The group $\mathbb{Z} \times \mathbb{Z}_2$ is generated by the elements (1, 0) and (0, 1). More generally, the direct product of n cyclic groups, each of which is either \mathbb{Z} or \mathbb{Z}_m for some positive integer m, is generated by then n-tuples

 $(1,0,\cdots,0), (0,1,\cdots,0),...,(0,0,\cdots,1).$ Such a direct product might also be generated by fewer elements. For example, $\mathbb{Z}_3 \times \mathbb{Z}_4 \times \mathbb{Z}_{35}$ is generated by the single element (1,1,1).

Fundamental Theorem of Finitely Generated Abelian Groups	
Theorem	
Every finitely generated abelian group G is isomorphic to a direct product of cyclic groups in the form	
$\mathbb{Z}_{p_1^{r_1}X} \dots X \mathbb{Z}_{p_n^{r_n}} X \mathbb{Z} X \dots X \mathbb{Z}$	
where the p_i are primes, not necessarily distinct, and the r_i are positive integers. The direct product is unique except for possible rearrangement of the factors; that is, the number (Betti number of G) of factors \mathbb{Z} is unique and the prime powers $p_t^{r_t}$ are unique	
MINNAG.	

Fundamental Theorem of Finitely Generated Abelian Groups

Solution

Since our groups are to be of the finite order 360, no factors Z will appear in the direct product shown in the statement of the fundamental theorem of finitely generated abelian groups. First we express 360 as a product of prime powers 2³, 3⁴.5.

517

Fundamental Theorem of Finitely Generated Abelian Groups Then, we get as possibilities 1. $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_5$ 2. $\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_3 \times \mathbb{Z}_5 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_9 \times \mathbb{Z}_5$ 3. $\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_9 \times \mathbb{Z}_5$ 5. $\mathbb{Z}_8 \times \mathbb{Z}_3 \times \mathbb{Z}_5$ Thus there are six different abelian groups (up to isomorphism) of order 360.

Applications

Theorem

The finite indecomposable abelian groups are exactly the cyclic groups with order a power of a prime.

Group Theory	Applications
Applications	Theorem If m is a square free integer, that is, m is not divisible by the square of any prime, then every abelian group of order m is cyclic.
127	

Applications

Proof

Let G be an abelian group of square free order m. Then, G is isomorphic to

 $\mathbb{Z}_{p_1^{r_1}\mathsf{X}}\dots\mathsf{X}\,\mathbb{Z}_{p_n^{r_n}},$

 $\begin{array}{l} -\mu_1\cdot\ldots\ldots \wedge x^{p_n,n},\\ \text{where } m=p_1^{r_1}\ldots p_n^{r_n}. \text{ Since } m \text{ is square free},\\ \text{we must have all } r_i=1 \quad \text{and all } p_i \text{ distinct}\\ \text{primes. Then, G is isomorphic to } \mathbb{Z}_{p_1\ldots p_n}, \text{ so G}\\ \text{ is cyclic.} \end{array}$

529

Cosets

Definition

Let H be a subgroup of a group G, which may be of finite or infinite order and a in G. The left coset of H containing a is the set

 $aH = \{ah \mid h in H\}$

The right coset of H containing a is the set

 $Ha = {ha | h in H}$

In additive groups, we use a+H and H+a for left and right cosets, respectively.

531

Cosets

Example

We exhibit the left cosets and the right cosets of the subgroup $3\mathbb{Z}$ of \mathbb{Z} . $0{+}3\mathbb{Z}{=}\ 3\mathbb{Z}=\{...,\,{-}6,\,{-}3,\,0,\,3,\,6,\,\dots\,\}$ 1+3Z={..., -5, -2, 1, 4, 7, ... } 2+3Z={..., -4, -1, 2, 5, 8, ...} $\mathbb{Z}{=}\,3\mathbb{Z}{\sqcup}1{+}3\mathbb{Z}{\sqcup}\,2{+}3\mathbb{Z}$ So, these three left cosets constitute the partition of $\mathbb Z$ into left cosets of $3\mathbb Z.$

Let H be a subgroup of a group G, which may be of finite or infinite order. We exhibit two partitions of G by defining two equivalence relations, \sim_{L} and \sim_{R} on G.

537

Partitions of Groups

Theorem

Let H be a subgroup of a group G. Let the relation \sim_{L} be defined on G by $a \sim_{L}$ b iff a^{-1} b \in H. Let \sim_{R} be defined by $a \sim_{R}$ b iff a^{b-1} \in H. Then \sim_{L} and \sim_{R} are both equivalence relations on G.

538

Partitions of Groups

Proof

Reflexive Let $a \in G$. Then $a^{-1}a = e \in H$ since H is a subgroup. Thus $a \sim _{L}a$.

539

Partitions of Groups

Symmetric

Suppose $a \sim \lfloor b$. Then $a^{-1}b \in H$. Since H is a subgroup, $(a^{-1}b)^{-1}=b^{-1}a \in H$. It implies that $b \sim \lfloor a$.

Partitions of Groups

Transitive

Let $a \sim_{L} b$ and $b \sim_{L} c$. Then $a^{-1} b \in H$ and $b^{-1} c \in H$. Since H is a subgroup, $(a^{-1}b)(b^{-1}c)=a^{-1}c \in H$. So, $a \sim_{L} c$.

541

Examples of Cosets

 $\begin{array}{l} \mbox{Cosets of } H=\{\{2t,t) \ | \ t\in \mathbb{R}\}\\ (a,b)+H=\{\{a+2t,b+t\}\}\\ \mbox{Set } x=a+2t, \ y=b+t \ and \ eliminate \ t:\\ y=b+(x-a)/2\\ \mbox{The subgroup } H \ is \ the \ line \ y=x/2.\\ \mbox{The cosets are lines parallel to } y=x/2 \ ! \end{array}$

547

Group Theory Examples of Cosets

Examples of Cosets

 $\begin{array}{l} \mbox{Right Cosets of <(23)> in S_3} \\ \mbox{Let H = <(23)> {ϵ, (23)}$} \\ \mbox{H ϵ = {ϵ, (23)}$=H$} \\ \mbox{H(123) = {(123), (13)}$} \\ \mbox{H(132) = {(132), (12)}$} \\ \mbox{S}_3 = H \sqcup $H(123) \sqcup $H(132)$} \end{array}$

553

Examples of Cosets

554

Group Theory

Examples of Cosets

Group Theory

Topic No. 70

Group TheoryProperties of CosetsProperties of CosetsEt H be a subgroup of G, and a bin G.
a. d beings to aH
H21Statement
Statement22Statement
Statement

560

Properties of Cosets

a belongs to aH
 Proof: a = ae belongs to aH.
 aH=H iff a in H
 Proof: (⇒) Given aH = H.
 By (1), a is in aH = H.

559

Properties of Cosets

(\Leftarrow) Given *a* belongs to H. Then (i) *a*H is contained in H by closure. (ii) Choose any h in H. Note that a^{-1} is in H since *a* is. Let b = $a^{-1}h$. Note that b is in H. So h = ($aa^{-1}h$) = $a(a^{-1}h) = ab$ is in *a*H It follows that H is contained in *a*H By (i) and (ii), aH = H

Group Theory

Properties of Cosets

Group Theory

Topic No. 71

Group Theory

Properties of Cosets

Properties of Cosets

Proposition

- Let H be a subgroup of G, and a,b in G.
- 3. *a*H = bH iff *a* belongs to bH
- 4. aH and bH are either equal or disjoint
- 5. $aH = bH \text{ iff } a^{-1}b \text{ belongs to } H$

Properties of Cosets

3. aH = bH iff a in bH **Proof:** (\Rightarrow) Suppose aH = bH. Then a = ae in aH = bH. (\Leftarrow) Suppose a is in bH. Then a = bh for some h in H. so aH = (bh)H = b(hH) = bH by (2).

565

Properties of Cosets

4. aH and bH are either disjoint or equal. **Proof:** Suppose aH and bH are not disjoint. Say x is in the intersection of aH and bH. Then aH = xH = bH by (3). Consequently, aH and bH are either disjoint or equal, as required.

566

Properties of Cosets

5. aH = bH iff $a^{-1}b$ in H **Proof:** aH = bH $\Leftrightarrow b \text{ in } aH \text{ by } (3)$ $\Leftrightarrow b = ah$ for some h in H $\Leftrightarrow a^{-1}b = h$ for some h in H $\Leftrightarrow a^{-1}b \text{ in } H$

Group Theory		
Topic No. 72		
	569	

Properties of Cosets

Proposition

Let H be a subgroup of G, and a in G. 6. |aH| = |bH|7. aH = Ha iff $H = aHa^{-1}$ 8. $aH \le G$ iff a belongs to H

571

Properties of Cosets

6. |aH| = |bH| **Proof:** Let \emptyset : $aH \rightarrow bH$ be given by $\emptyset(ah) = bh$ for all h in H. We claim \emptyset is one to one and onto. If $\emptyset(ah_1) = \emptyset(ah_2)$, then $bh_1 = bh_2$ so $h_1 = h_2$. Therefore $ah_1 = ah_2$. Hence \emptyset is one-to-one. \emptyset is clearly onto. It follows that |aH| = |bH| as required.

572

574

Properties of Cosets

Group Theory

Properties of Cosets

7. aH = Ha iff $H = aHa^{-1}$ **Proof:** aH = Ha \Leftrightarrow each ah = h'a for some h' in H $\Leftrightarrow aha^{-1} = h'$ for some h' in H $\Leftrightarrow H = aHa^{-1}$.

573

Properties of Cosets

8. $aH \le G$ iff a in H **Proof:** (\Rightarrow) Suppose $aH \le G$. Then e in aH. But e in eH, so eH and aH are not disjoint. By (4), aH = eH =H. (\Leftarrow) Suppose a in H. Then $aH = H \le G$.

Group Theory Lagrange's Theorem

578

Lagrange's Theorem

Lagrange's Theorem

Statement

If G is a finite group and H is a subgroup of G, then |H| divides |G|.

Lagrange's Theorem

Proof

The right cosets of H in G form a partition of G, so G can be written as a disjoint union $G = Ha_1 \cup Ha_2 \cup \cdots \cup Ha_k$ for a finite set of elements $a_1, a_2, \ldots, a_k \in G$. The number of elements in each coset is |H|. Hence, counting all the elements in the disjoint union above, we see that |G| = k|H|. Therefore, |H| divides |G|.

Lagrange's Theorem

Subgroups of \mathbb{Z}_{12}

$$\begin{split} \|\mathbb{Z}_{12}\| = &12 \\ \text{The divisors of 12 are 1, 2, 3,} \\ &4, 6 \text{ and 12.} \\ \text{The subgroups of } \mathbb{Z}_{12} \text{ are } \\ &H_1 = & \{[0]\} \\ &H_2 = & \{[0], [d], [d]\} \\ &H_3 = & \{[0], [d], [d]\} \\ &H_3 = & \{[0], [d], [d]\} \\ &H_4 = & \{[0], [d], [d], [d]\} \\ &H_5 = & \{[0], [2], [d], [d], [d]\} \\ \end{split}$$

579

581

Group Theory

Applications of Lagrange's Theorem

Applications of Lagrange's Theorem

Corollary

Every group of prime order is cyclic.

Applications of Lagrange's Theorem

Proof

Let G be of prime order p, and let a be an element of G different from the identity. Then the cyclic subgroup <a> of G generated by a has at least two elements, a and e. But the order m \ge 2 of <a> must divide the prime p. Thus we must have m = p and <a>=G, so G is cyclic.

Applications of Lagrange's Theorem

Since every cyclic group of order p is isomorphic to \mathbb{Z}_p , we see that there is only one group structure, up to isomorphism, of a given prime order p.

583

Applications of Lagrange's Theorem

Theorem

The order of an element of a finite group divides the order of the group.

584

Applications of Lagrange's Theorem

Proof

Remembering that the order of an element is the same as the order of the cyclic subgroup generated by the element, we see that this theorem follows directly from Lagrange's Theorem.

585

Indices of Subgroups

Definition

Let H be a subgroup of a group G. The number of left (or right) cosets of H in G is the index (G:H) of H in G.

587

Indices of Subgroups

The index (G:H) just defined may be finite or infinite. If G is finite, then obviously (G:H) is finite and (G:H)=IGI/IHI, since every coset of H contains IHI elements.

Indices of Subgroups

Example

$$\begin{split} & \mu = (1,2,4,5)(3,6) \\ & \mu^2 = (2,5)(1,4) \\ & \mu^3 = (1,5,4,2)(3,6) \\ & \mu^4 = \varepsilon \\ & <\mu > < S_6 \\ & (S_6:<\mu >) = |S_6|/|<\mu>| \\ & = 6!/4 = 6.5.3.2 = 180. \end{split}$$

589

Example

Find the right cosets of
$$\begin{split} &H=\{e,\,g^4,\,g^8\}\ in\\ &C_{12}=\{e,\,g,\,g^2,\,\ldots\,,\,g^{11}\}. \end{split}$$

Indices of Subgroups

Solution

$$\begin{split} \mathsf{H}{=}\{e, g^4, g^8\} \text{ itself is one coset.} \\ \text{Another is }\mathsf{Hg}{=}\{g, g^5, g^9\}. \\ \text{These two cosets have not exhausted all the elements of C_{12}, so pick an element, say g^2, which is not in H or Hg. \\ \text{A third coset is }\mathsf{Hg}^2{=}\{g^2, g^6, g^{10}\} \text{ and a fourth is } Hg^3{=}\{g^3, g^7, g^{11}\}. \\ \text{Since $\mathsf{C}_{12} = \mathsf{H} \cup \mathsf{Hg} \cup \mathsf{Hg}^2 \cup \mathsf{Hg}^3$, these are all the cosets. Therefore, $(\mathsf{C}_{12}{:}\mathsf{H}){=}12/3{=}4. \end{split}$$

591

Indices of Subgroups

Theorem

Suppose H and K are subgroups of a group G such that $K \le H \le G$, and suppose (H:K) and (G:H) are both finite. Then (G:K) is finite, and (G:K)=(G:H)(H:K).

592

590

Group Theory

Converse of Lagrange's Theorem

Converse of Lagrange's Theorem

Lagrange's Theorem shows that if there is a subgroup H of a finite group G, then the order of H divides the order of G.

Converse of Lagrange's Theorem

Is the converse true? That is, if *G* is a group of order n, and m divides n, is there always a subgroup of order m? We will see next that this is true for abelian groups.

595

Converse of Lagrange's Theorem

However, A_4 can be shown to have no subgroup of order 6, which gives a counterexample for nonabelian groups.

596

Converse of Lagrange's Theorem		
	$A_4 = \{(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3), (1, 2, 3), (1, 2, 3), (1, 3, 2), (1, 3, 4), (1, 4, 3), (1, 2, 4), (1, 4, 2), (2, 3, 4), (2, 4, 3)\}$	
		597

An Interesting Example

Example

A translation of the plane \mathbb{R}^2 in the direction of the vector (a, b) is a function $f:\mathbb{R}^2 \rightarrow \mathbb{R}^2$ defined by f(x, y) = (x + a, y + b).

599

An Interesting Example

The composition of this translation with a translation g in the direction of (c, d) is the function $f g: \mathbb{R}^2 \rightarrow \mathbb{R}^2$, where f g(x, y) = f (g(x, y))= f (x + c, y + d)= (x + c + a, y + d + b). This is a translation in the direction of (c + a, d + b).

An Interesting Example

It can easily be verified that the set of all translations in \mathbb{R}^2 forms an abelian group, under composition.

An Interesting Example

A translation of the plane \mathbb{R}^2 in the direction of the vector (0, 0) is an identity function $\mathbb{1}_{\mathbb{R}}^2:\mathbb{R}^2 \to \mathbb{R}^2$ defined by $\mathbb{1}_{\mathbb{R}}^2(x, y)=(x+0, y+0)=(x, y).$

602

604

606

601

An Interesting Example

The inverse of the translation of the plane \mathbb{R}^2 in the direction of the vector (a, b) is an inverse function f^{-1}: $\mathbb{R}^2 \rightarrow \mathbb{R}^2$ defined by f^{-1}(x, y) = (x - a, y - b) such that ff^{-1}(x, y)=f^{1} f(x, y).

603

An Interesting Example

The inverse of the translation in the direction (a, b) is the translation in the opposite direction (-a,-b).

Group Theory

Homomorphism of Groups **Homomorphism of Groups**

Structure-Relating Maps Let G and G' be groups. We are interested in maps from G to G' that relate the group structure of G to the group structure of G'. Such a map often gives us information about one of the groups from known structural properties of the other.

Homomorphism of Groups

Structure-Relating Maps

An isomorphism $\phi: G \rightarrow$ G', if one exists, is an example of such a structure-relating map. If we know all about the group G and know that ϕ is an isomorphism, we immediately know all about the group structure of G', for it is structurally just a copy of G.

Homomorphism of Groups

Structure-Relating Maps

We now consider more general structure-relating maps, weakening the conditions from those of an isomorphism by no longer requiring that the maps be one to one and onto. We see, those conditions are the purely *set-theoretic portion* of our definition of an isomorphism, and have nothing to do with the binary operations of G and of G¹.

608

Homomorphism of Groups

Definition

If (G, \cdot) and (H, *) are two groups, the function $f:G \rightarrow H$ is called a group homomorphism if $f(a \cdot b)=f(a)*f(b)$

for all a, $b \in G$.

600

607

Homomorphism of Groups

- We often use the notation $f: (G, \cdot) \rightarrow (H, *)$
- for such a homorphism.
- Many authors use morphism instead of homomorphism.

610

Homomorphism of Groups

Definition

A group isomorphism is a bijective group homomorphism. If there is an isomorphism between the groups (G, \cdot) and (H,*), we say that (G, \cdot) and (H,*) are isomorphic and write (G, \cdot) \equiv (H, *).

611

Homomorphism of Groups

Example

Let $\phi: G \rightarrow G'$ be a group homomorphism of G onto G'. We claim that if G is abelian, then G' must be abelian. Let a', b' \in G'. We must show that a' b' = b' a'. Since ϕ is onto G', there exist a, b \in G such that $\phi(a) = a'$ and $\phi(b) = b'$, Since G is abelian, we have ab = ba. Using homomorphism property,

we have $a'b' = \phi(a) \phi(b) = \phi(ab) = \phi(ba) = \phi(b) \phi(a) = b' a'$, so G' is indeed abelian.

Group Theory

Examples of Group Homomorphisms

Homomorphism of Groups

Example The function $f: \mathbb{Z} \rightarrow \mathbb{Z}_n$, defined by f(x) = [x] is the group homomorphism, for if i, $j \in \mathbb{Z}$, then f(i+j)=[i+j] $=[i]+_n[j]$

 $=f(i)+_{n}f(j).$

Examples of Group Homomorphisms

Example

Let be \mathbb{R} the group of all real numbers with operation addition, and let \mathbb{R}^* be the group of all positive real numbers with operation multiplication. The function $f: \mathbb{R} \to \mathbb{R}^*$, defined by $f(x) = e^x$, is a homomorphism, for if $x, y \in \mathbb{R}$, then $f(x + y) = e^{x + y} = e^x e^y = f(x) f(y)$.

615

Examples of Group Homomorphisms

Now f is an isomorphism, for its inverse function $g: \mathbb{R}^* \to \mathbb{R}$ is ln x. Therefore, the additive group \mathbb{R} is isomorphic to the multiplicative group \mathbb{R}^* . Note that the inverse function g is also an isomorphism: g(x y) = ln(x y) = lnx + lny = g(x) + g(y).

616

614

Group Theory

Examples of Group Homomorphisms

Examples of Group Homomorphisms

Example

Let S_n be the symmetric group on n letters, and let : $\varphi: S_n \rightarrow \mathbb{Z}_2$ be defined by $\varphi(\sigma) = 0$ if σ is an even permutation, = 1 if σ is an odd permutation. Show that φ is a homomorphism.

Examples of Group Homomorphisms

Solution

We must show that $\phi(\sigma, \mu) = \phi(\sigma) + \phi(\mu)$ for all choices of $\sigma, \mu \in S_n$. Note that the operation on the right-hand side of this equation is written additively since it takes place in the group \mathbb{Z}_2 . Verifying this equation amounts to checking just four cases:

- ${\scriptstyle \bullet}\, \sigma$ odd and μ odd,
- σ odd and μ even, • σ even and μ odd,
- σ even and μ even.

619

Examples of Group Homomorphisms

Checking the first case, if σ and μ can both be written as a product of an odd number of transpositions, then $\sigma\mu$ can be written as the product of an even number of transpositions. Thus $\varphi(\sigma,\mu) = 0$ and $\varphi(\sigma) + \varphi(\mu) = 1 + 1 = 0$ in \mathbb{Z}_2 . The other cases can be checked similarly.

Group Theory

Properties of Homomorphisms

Properties of Homomorphisms

Proposition

Let $\varphi : G \rightarrow H$ be a group morphism, and let e_G and e_H be the identities of G and H, respectively. Then (i) $\varphi (e_G) = e_H$. (ii) $\varphi (a^{-1}) = \varphi (a)^{-1}$ for all $a \in G$.

22

Theorems on Group Homomorphisms

Proof

(i) Since ϕ is a morphism, $\phi(e_G) \phi(e_G)$ $= \phi(e_G e_G)$ $= \phi(e_G)$ $= \phi(e_G)e_H$ Hence (i) follows by cancellation in H.

623

Theorems on Group Homomorphisms

$$\begin{split} & \text{Proof} \\ (\text{ii}) \varphi (a) \varphi (a^{-1}) \\ &= \varphi (a a^{-1}) \\ &= \varphi (e_G) \\ &= e_H by (i). \\ & \text{Hence } \varphi (a^{-1}) \text{ is the} \\ & \text{unique inverse of } \varphi (a); \\ & \text{that is } \varphi (a^{-1}) = \varphi (a)^{-1}. \end{split}$$

Group Theory

Properties of Homomorphisms

Properties of Homomorphisms

We turn to some structural features of G and G' that are preserved by a homomorphism $\varphi: G \rightarrow G'$. First we review settheoretic definitions.

626

Properties of Homomorphisms

Definition

Let ϕ be a mapping of a set X into a set Y, and let $A \subseteq X$ and $B \subseteq Y$. The image $\phi[A]$ of A in Y under ϕ is { $\phi(a) | a \in A$ }. The set $\phi[X]$ is the range of ϕ . The inverse image $\phi^{1}[B]$ of B in X is { $x \in X | \phi(x) \in B$ }.

627

Properties of Homomorphisms

Theorem

Let ϕ be a homomorphism of a group G into a group G'. 1. If H is a subgroup of G, then $\phi[H]$ is a subgroup of G'. 2. If K' is a subgroup of G', then $\phi^{-1}[K']$ is a subgroup of G.

628

Properties of Homomorphisms

Proof

(1) Let H be a subgroup of G, and let $\phi(a)$ and $\phi(b)$ be any two elements in $\phi[H]$. Then $\phi(a) \phi(b) = \phi(ab)$, so we see that $\phi(a) \phi(b) \in \phi[H]$; thus, $\phi[H]$ is closed under the operation of G'. The fact that $\phi(e_G) = e_G$ and $\phi(a^{-1}) = \phi(a)^{-1}$ completes the proof that $\phi[H]$ is a subgroup of G'.

629

Properties of Homomorphisms

Proof

(2) Let K' be a subgroup of G'. Suppose a and b are in $\varphi^{-1}[K']$. Then $\varphi(a)\varphi(b){\in}K'$ since K' is a subgroup. The equation $\varphi(ab)=\varphi(a)\varphi(b)$ shows that $ab{\in}\varphi^{-1}[K']$. Thus $\varphi^{-1}[K']$ is closed under the binary operation in G.

Properties of Homomorphisms

Also, K' must contain the identity element $e_{G'}= \varphi(e_G)$, so $e_G \in \varphi^{-1}[K']$. If a $\in \varphi^{-1}[K']$, then $\varphi(a) \in K'$, so $\varphi(a)^{-1} \in K'$. But $\varphi(a)^{-1} = \varphi(a^{-1})$, so we must have $a^{-1} \in \varphi^{-1}[K']$. Hence $\varphi^{-1}[K']$ is a subgroup of G.

Properties of Homomorphisms

Theorem: Let h be a homomorphism from a group G into a group G'. Let K be the kernel of h. Then a K = {x in G | h(x) = h(a)} = h⁻¹[{h(a)}] and also K a = {x in G | h(x) = h(a)} = h⁻¹[{h(a)}]

633

631

Properties of Homomorphisms

Proof

 $\begin{array}{l} h^{-1}[\{h(a)\}] = \{x \mbox{ in } G \mid h(x) = h(a)\} \mbox{ directly from the} \\ definition of inverse image. \\ Now we show that: a K = \{x \mbox{ in } G \mid h(x) = h(a)\} : \\ x \mbox{ in } a \ K \Leftrightarrow x = a \ k, \mbox{ for some } k \ mn \ K \\ \Leftrightarrow h(x) = h(a \ k) = h(a) \ h(k) = h(a), \mbox{ for some } k \ mn \ K \\ \Leftrightarrow h(x) = h(a) \\ \mbox{ model} h(k) = h(a), \mbox{ for some } k \ mn \ K \\ \Leftrightarrow h(x) = h(a) \\ \mbox{ model} h(x) = h(a). \\ \mbox{ Likewise, } K \ a = \{x \ mn \ G \mid h(x) = h(a)\}. \end{array}$

Properties of Homomorphisms

Suppose: h: X \rightarrow Y is any map of sets. Then h defines an equivalence relation \sim_h on X by: $x \sim_h y \Leftrightarrow h(x) = h(y)$ The previous theorem says that when h is a homomorphism of groups then the cosets (left or right) of the kernel of h are the equivalence classes of this equivalence relation.

635

Group Theory

Properties of Homomorphisms

Properties of Homomorphisms

Definition

If $\phi: G \to G'$ is a group morphism, the *kernel* of ϕ , denoted by Ker ϕ , is defined to be the set of elements of G that are mapped by f to the identity of G'. That is, Ker f ={g \in G | f (g) = e' }.

Properties of Homomorphisms

Corollary

Let $\varphi\colon G\to G'$ be a group morphism. Then, φ is injective if and only if Ker φ = {e}.

Properties of Homomorphisms

Proof

If Ker($\varphi)$ = {e}, then for every $a \in G$, the elements mapped into $\varphi(a)$ are precisely the elements of the left coset a { e} = {a}, which shows that φ is one to one.

Conversely, suppose ϕ is one to one. Now, we know that $\phi(e)=e'$, the identity element of G'. Since ϕ is one to one, we see that e is the only element mapped into e' by ϕ , so Ker(ϕ)= {e}.

639

637

Properties of Homomorphisms

Definition

To Show $\phi: G \rightarrow G'$ is an Isomorphism Step 1 Show ϕ is a homomorphism. Step 2 Show Ker(ϕ)= {e}. Step 3 Show ϕ maps G onto G'.

640

638

Group Theory

Normal Subgroups

Normal Subgroups

Normal Subgrops

Let G be a group with subgroup H. The *right cosets* of H in G are equivalence classes under the relation $a \equiv b \mod H$, defined by $ab^{-1} \in H$. We can also define the relation L on G so that a L b if and only if $b^{-1}a \in H$. This relation, L, is an equivalence relation, and the equivalence class containing a is the *left coset* aH = {ah|h \in H}. As the following example shows, the left coset of an element does not necessarily equal the right coset.

Normal Subgroups

Example

Find the left and right cosets of $H = A_3$ and $K = {(1), (12)}$ in S_3 .

Normal Subgroups

Solution

We calculated the right cosets of H = A₃. Right Cosets H = {(1), (123), (132)}; H(12) = {(12), (13), (23)} Left Cosets H = {(1), (123), (132); (12)H = {(12), (23), (13)} In this case, the left and right cosets of H are the same.

Normal Subgroups

However, the left and right cosets of K are not all the same. Right Cosets K = {{1}, {12}}; K{13} = {{13}, {132}}; K{23} = {{23}, {123}} Left Cosets K = {{1}, {12}}; {23}K = {{23}, {132}}; {13}K = {{13}, {123}} **Group Theory**

Normal Subgroups

Normal Subgroups

Definition

A subgroup H of a group G is called a normal subgroup of G if $g^{-1}hg \in H$ for all $g \in G$ and $h \in H$.

647

Normal Subgroups

Proposition Hg = gH, for all $g \in G$, if and only if H is a normal subgroup of G.
Normal Subgroups

Proof

Suppose that Hg = gH. Then, for any element $h \in$ H, hg \in Hg = gH. Hence hg = gh₁ for some $h_1 \in$ H and $g^{-1}hg = g^{-1}gh_1 = h_1 \in$ H. Therefore, H is a normal subgroup.

Normal Subgroups

$$\begin{split} & \text{Conversely, if } H \text{ is normal, let } hg \in Hg \text{ and } \\ & g^{-1}hg = h_1 \in H. \\ & \text{Then } hg = gh_1 \in gH \text{ and } Hg \subseteq gH. \\ & \text{Also, } ghg^{-1} = (g^{-1})^{-1}hg^{-1} = h_2 \in H, \text{ since } H \text{ is } \\ & \text{normal, so } gh = h_2g \in Hg. \text{ Hence, } gH \subseteq Hg, \\ & \text{and so } Hg = gH. \end{split}$$

Group Theory

Theorem on Normal Subgroup

Theorem on Normal Subgroup

If N is a normal subgroup of a group G, the left cosets of N in G are the same as the right cosets of N in G, so there will be no ambiguity in just talking about the cosets of N in G.

Theorem on Normal Subgroup

Theorem

If N is a normal subgroup of (G, ·), the set of cosets G/N = {Ng|g \in G} forms a group (G/N, ·), where the operation is defined by $(Ng_1) \cdot (Ng_2) = N(g_1 \cdot g_2)$. This group is called the quotient group or factor group of G by N.

Theorem on Normal Subgroup

Proof. The operation of multiplying two cosets, Ng₁ and Ng₂, is defined in terms of particular elements, g₁ and g₂, of the cosets. For this operation to make sense, we have to verify that, if we choose different elements, h₁ and h₂, in the same cosets, the product coset N(h₁ \cdot h₂) is the same as

 $N(g_1\cdot g_2).$ In other words, we have to show that multiplication of cosets is well defined.

Theorem on Normal Subgroup

Since h_1 is in the same coset as g_1 , we have $h_1 \equiv g_1 \mod N$. Similarly, $h_2 \equiv g_2 \mod N$. We show that $Nh_1h_2 = Ng_1g_2$. We have $h_1g_1^{-1} = n_1 \in N$ and $h_2g_2^{-1} = n_2 \in N$, so $h_1h_2(g_1g_2)^{-1} = h_1h_2g_2^{-1}g_1^{-1} = n_1g_1n_2g_2g_2^{-1}g_1^{-1} = n_1g_1n_2g_1n_2g_1^{-1} = n_1g_1n_2g_1n_2g_1^{-1} \in N$ and $n_1g_1n_2g_1^{-1} \in N$. Hence $h_1h_2 \equiv g_1g_2 \mod N$ and $Nh_1h_2 = Ng_1g_2$. Therefore, the operation is well defined.

655

Theorem on Normal Subgroup

- The operation is associative because $(Ng_1 \cdot Ng_2) \cdot Ng_3 = N(g_1g_2) \cdot Ng_3 = N(g_1g_2)g_3$ and also $Ng_1 \cdot (Ng_2 \cdot Ng_3) = Ng_1 \cdot N(g_2g_3) = Ng_1(g_2g_3) = N(g_1g_2)g_3$.
- Since Ng \cdot Ne = Nge = Ng and Ne \cdot Ng = Ng, the identity is Ne = N.
- The inverse of Ng is Ng⁻¹ because Ng \cdot Ng⁻¹ = N(g \cdot g⁻¹) = Ne = N and also Ng⁻¹ \cdot Ng = N.
- Hence (G/N, ·) is a group.

Group Theory

Example on Normal Subgroup

Example on Normal Subgroup

Example

 $\begin{array}{l} (\mathbb{Z}_n,\ +) \ is \ the \ quotient \\ group \ of \ (\mathbb{Z},+) \ by \ the \\ subgroup \\ n\mathbb{Z} = \ \{nz \, | \, z \in \mathbb{Z}\}. \end{array}$

Example on Normal Subgroup

Solution

Solution Since $(\mathbb{Z}, +)$ is abelian, every subgroup is normal. The set $n\mathbb{Z}$ can be verified to be a subgroup, and the relationship $a \equiv b \mod n\mathbb{Z}$ is equivalent to $a - b \in n\mathbb{Z}$ and to $n \mid a - b$. Hence $a \equiv b \mod n\mathbb{Z}$ is the same relation as $a \equiv b \mod n$. Therefore, \mathbb{Z}_n is the quotient group $\mathbb{Z}/n\mathbb{Z}$, where the operation on congruence classes is defined by [a] + [b] = [a + b].

Example on Normal Subgroup

$$\begin{split} (\mathbb{Z}_n, *) & \text{is a cyclic group} \\ \text{with 1 as a generator.} \\ \text{When there is no} \\ & \text{confusion, we write the} \\ & \text{elements of } \mathbb{Z}_n \text{ as 0, 1,} \\ & 2, 3, \ldots, n-1 \text{ instead} \\ & \text{of [0], [1], [2], [3], \ldots, } \\ & [n-1]. \end{split}$$

Group Theory

Morphism Theorem for Groups

Morphism Theorem for Groups

Theorem

Let K be the kernel of the group morphism $f: G \rightarrow H$. Then G/K is isomorphic to the image of f, and the isomorphism $\psi: G/K \rightarrow Im f$ is defined by $\psi(Kg) = f(g)$.

662

664

Morphism Theorem for Groups

This result is also known as the **first isomorphism** theorem.

 $\label{eq:proof.} \mbox{Proof. The function } \psi \mbox{ is defined on a coset by} \\ \mbox{using one particular element in the coset, so we} \\ \mbox{have to check that } \psi \mbox{ is well defined;} \\ \mbox{}$

that is, it does not matter which element we use.

663

Morphism Theorem for Groups

$$\begin{split} &\psi\colon G/K \to \mathrm{Im}\ f,\ \psi(Kg){=}f(g).\\ &\mathrm{If}\ Kg'{=}Kg,\ then\ g'{\equiv}g\ mod\ K\\ &\mathrm{so}\ g'g^{-1}{=}k\in K{=}Ker\ f.\\ &\mathrm{Hence}\ g'{=}kg\ and\ so\\ &f(g'){=}f(kg)\\ &=f(k)f(g)\\ &=e_{h}f(g){=}f(g).\\ &\mathrm{Thus}\ \psi\ is\ well\ defined\ on\\ &\mathrm{cosets}. \end{split}$$

Morphism Theorem for Groups The function ψ is a morphism because $\psi(Kg_1Kg_2)$ $= \psi(Kg_1g_2)$ $= f(g_1g_2)$ $= f(g_1f(g_2))$ $= \psi(Kg_1)\psi(Kg_2).$

665

Morphism Theorem for Groups

$$\begin{split} & \text{If } \psi(Kg) = e_{\mu}, \, \text{then} \\ & f(g) = e_{\mu} \, \text{and} \, g \in K. \\ & \text{Hence the only element} \\ & \text{in the kernel of } \psi \text{ is the} \\ & \text{identity coset } K, \, \text{and} \\ & \psi \text{ is injective.} \end{split}$$

Morphism Theorem for Groups

Finally, Im $\psi = \text{Im } f$, that is, $\psi^{-1}(f(g))=Kg$, by the definition of ψ . Therefore, ψ is the required isomorphism between G/K and Im f.

667

Application of Morphism Theorem

Example

Show that the quotient group \mathbb{R}/\mathbb{Z} is isomorphic to the circle group $W = \{e^{i\theta} \in \mathbb{C} \mid \theta \in \mathbb{R} \}.$

669

Application of Morphism Theorem

Solution

The set $W = \{e^{i\theta} \in \mathbb{C} \mid \theta \in \mathbb{R} \}$ consists of points on the circle of complex numbers of unit modulus, and forms a group under multiplication. Define the function $f : \mathbb{R} \to W$ by $f(x) = e^{2\pi i x}$. This is a morphism from $(\mathbb{R},+)$ to (W, \cdot) because $f(x + y) = e^{2\pi i (x + y)}$ $= e^{2\pi i x} \cdot e^{2\pi i y}$ $= f(x) \cdot f(y)$.

Application of Morphism Theorem

The morphism $f : \mathbb{R} \to W$ is clearly surjective, and its kernel is $\{x \in \mathbb{R} \mid e^{2\pi i x} = 1\} = \mathbb{Z}$. Therefore, the morphism theorem implies that $\mathbb{R}/\mathbb{Z} \cong W$.

671

Group Theory

Normality of Kernel of a Homomorphism

Normality of Kernel of a Homomorphism

Right Cosets

Let (G, \cdot) be a group with subgroup H. For a, $b \in G$, we say that a is *congruent to b modulo* H, and write $a \equiv b \mod$ H if and only if $ab^{-1} \in H$.

Normality of Kernel of a Homomorphism

Proposition

The relation $a \equiv b \mod H$ is an equivalence relation on G. The equivalence class containing a can be written in the form Ha = {ha} |h \in H, and it is called a right coset of H in G. The element a is called a representative of the coset Ha.

Normality of Kernel of a Homomorphism

Theorem

Let ϕ be a homomorphism function from group (G, *) to group (G',.). Then, (Ker ϕ ,*) is a normal subgroup of (G,*).

675

Normality of Kernel of a Homomorphism

 $\begin{array}{l} \mbox{Proof} \\ i) \mbox{Ker}\phi, \mbox{is a subgroup of } G \\ \forall a, b \in \mbox{Ker}\phi, \mbox{$\phi(a)$} = e_{G^{\circ}}, \\ \phi(b) = e_{G^{\circ}}, \\ Then, \mbox{$\phi(a^{*}b)$} = \phi(a), \\ \phi(b) = e_{G^{\circ}}, \\ a^{*}b \in \mbox{Ker}\phi, \\ a^{*}b \in \mbox{Ker}\phi, \\ Inverse element: \\ \forall a \in \mbox{Ker}\phi, \mbox{$\phi(a)$} = e_{G^{\circ}}, \\ Then, \\ \phi(a^{-1}) = \phi(a^{-1}), \\ = e_{G^{\circ}}, \\ Therefore, a^{-1} \in \mbox{Ker}\phi. \end{array}$

676

Normality of Kernel of a Homomorphism ii) $\forall g \in G, a \in Ker\phi, \phi(a)=e_{G^{c}}$. Then, $\phi(g^{-1*}a^{*}g)$ $= \phi(g^{-1})\phi(a)\phi(g)$ $= \phi(g^{-1})e_{G^{c}}\phi(g)$ $= e_{G^{c}}$. Therefore, $g^{-1*}a^{*}g \in Ker\phi$.

680

Example of Normal Group

Definition

A subgroup H of a group is a normal subgroup if gH=Hg for ∀g∈G.

679

Example of Normal Group

Example

- Any subgroups of Abelian group are normal subgroups
- $S_3 = \{(1), (1,2,3), (1,3,2), (2,3), (1,3), (1,2)\}.$
- $H_1=\{(1), (2,3)\}; H_2=\{(1), (1,3)\}; H_3=\{(1), (1,2)\};$
- $(1,3)H_1 = \{(1,3), (1,2)\}$ $H_1(1,3) = \{(1,3), (1,2)\}$
- $(1,2,3)H_1=\{(1,2,3),(1,2)\}$ $H_1(1,2,3)=\{(1,2,3),(1,3)\}$

 Example of Normal Group

 • H₄={(1), (1,2,3), (1,3,2)} are subgroups of S₃.

 • H₄ is a normal subgroup.

Factor Group	
$ \begin{array}{l} \mbox{Consider S_1: Let $H = \{\rho_0, \rho_1, \rho_2\}$. The left cosets are $(\rho_0, \rho_1, \rho_2), (\mu_1, \mu_2, \mu_3)$ \\ \hline $(\rho_0, \rho_1, \rho_2), (\mu_1, \mu_2, \mu_3) = \{\rho_0, \mu_0, \rho_1, \mu_2, \rho_1, \mu_2, \rho_1, \mu_2, \rho_1, \mu_2, \rho_1, \mu_2, \rho_2, \mu_3, \rho_2, \mu_3, \rho_2, \mu_3, \rho_3, \mu_3, \rho_3, \mu_3, \rho_4, \mu_2, \mu_3, \mu_3, \mu_3, \mu_3, \mu_3, \mu_3, \mu_3, \mu_3$	
form a group isomorphic to $\mathbb{Z}_2.$	688

Coset Multiplication and Normality

Theorem

Let H be a subgroup of a group G. Then H is normal if and only if (a H)(b H) = (a b) H, for all a, b in G

691

Coset Multiplication and Normality

Proof

Suppose (a H)(b H) = (a b) H, for all a, b in G. We show that aH = H a, for all a in H. We do this by showing: $a H \subseteq H a$ and $Ha \subseteq aH$, for all a in G.

692

Coset Multiplication and Normality

 $\begin{array}{l} a \mathrel{H} \subseteq H a \colon \text{First observe that } a \mathrel{Ha^{-1}} \subseteq (a \mathrel{H})(a^{-1} \mathrel{H}) \\ = (aa^{-1}) \mathrel{H} = \mathrel{H}. \\ \text{Let } x \mathrel{be in a} \mathrel{H}. \\ \text{Then } x \mathrel{a^{-1}} a \mathrel{ha^{-1}}, \\ \text{which is in } = a \mathrel{Ha^{-1}}, \\ \text{thus in H. } \text{Thus } x \mathrel{a^{-1}} is in \mathrel{H}. \\ \text{Thus } x \mathrel{hi in H. } \\ \text{Thus } x \mathrel{a^{-1}} a \mathrel{Ha^{-1}} (a \mathrel{H}) = (a \mathrel{Ha^{-1}}) \\ \text{Ha } \subseteq a \mathrel{H: } \\ \text{Ha } \subseteq a \mathrel{H: } \\ \text{Ha } \subseteq a \mathrel{Ha^{-1}} (a \mathrel{Ha^{-1}}) (a \mathrel{Ha^{-1}}) = (a \mathrel{Ha^{-1}}) \\ \text{This establishes normality.} \end{array}$

693

Coset Multiplication and Normality

For the converse, assume H is normal. (a H)(b H) \subseteq (a b) H: For a, b in G, x in (a H)(b H) implies that x = a h₁ b h₂, for some h₁ and h₂ in H. But h₁ b is in H b, thus in b H. Thus h₁ b = b h₃ for some h₃ in H. Thus x = a b h₃ h₂ is in a b H. (a b) H \subseteq (a H)(b H): x in (a b) H \Rightarrow x = a e b h, for some h in H. Thus x is in (a H) (b H).

694

Group Theory

Examples on Kernel of a Homomorphism

Examples on Kernel of a Homomorphism

Let h: $G \rightarrow G'$ be a homomorphism and let e' be the identity element of G'. Now {e'} is a subgroup of G', so h⁻¹[{e'}] is a subgroup K of G. This subgroup K of G. This subgroup is critical to the study of homomorphisms.

Examples on Kernel of a Homomorphism

Definition

Let h: $G \rightarrow G'$ be a homomorphism of groups. The subgroup h⁻¹{{e'}]={x \in G | h(x)=e'} is the **kernel** of h, denoted by Ker(h).

697

Examples on Kernel of a Homomorphism

Example

Let \mathbb{R}^n be the additive group of column vectors with n real-number components. (This group is of course isomorphic to the direct product of \mathbb{R} under addition with itself for n factors.) Let A be an m x n matrix of real numbers. Let $\phi: \mathbb{R}^n \rightarrow \mathbb{R}^m$ be defined by $\phi(v) = Av$ for each column vector $v \in \mathbb{R}^n$.

698

Examples on Kernel of a Homomorphism

Example

Then φ is a homomorphism, since v, $w \in \mathbb{R}^n, matrix algebra \\ shows that \\ \varphi(v+w) = A(v+w) \\ = Av+Aw = \varphi(v) + \varphi(w) \\ In linear algebra, such a \\ map computed by \\ multiplying a column \\ vector on the left by a \\ matrix A is known as a \\ linear transformation.$

699

Examples on Kernel of a Homomorphism

Ker(h) is called the null space of A. It consists of all $v \in \mathbb{R}^n$ such that Av = 0, the zero vector.

700

Group Theory

Examples on Kernel of a Homomorphism

Examples on Kernel of a Homomorphism

Example

Let $GL(n, \mathbb{R})$ be the multiplicative group of all invertible n x n matrices. Recall that a matrix A is invertible if and only if its determinant, det(A), is nonzero.

Examples on Kernel of a Homomorphism

Recall also that for matrices A, $B \in GL(n, \mathbb{R})$ we have det(AB)=det(A)det(B). This means that det is a homomorphism mapping GL(n, \mathbb{R}) into the multiplicative group \mathbb{R}^* of nonzero real numbers. Ker(det) = {A \in GL(n, \mathbb{R}) | det(A)=1}.

703

Examples on Kernel of a Homomorphism

Homomorphisms of a group G into itself are often useful for studying the structure of G. Our next example gives a nontrivial homomorphism of a group into itself.

Examples on Kernel of a Homomorphism

Example

Let $r \in \mathbb{Z}$ and let $\varphi_r: \mathbb{Z} \to \mathbb{Z}$ be defined by $\varphi_r(n)=rn$ for all $n \in \mathbb{Z}$. For all m, $n \in \mathbb{Z}$, we have $\varphi_r(m+n)=r(m+n)$ $=rm+rn=\varphi_r(m)+\varphi_r(n)$ so φ_r is a homomorphism.

705

Examples on Kernel of a Homomorphism

Note that φ_0 is the trivial homomorphism, φ_1 is the identity map, and φ_1 maps \mathbb{Z} onto \mathbb{Z} . For all other r in \mathbb{Z} , the map φ_r is not onto \mathbb{Z} . Ker (φ_0) = \mathbb{Z} Ker (φ_r) = $\{0\}$ for $r\neq 0$

706

704

Group Theory

Examples on Kernel of a Homomorphism

Examples on Kernel of a Homomorphism

Example (Reduction Modulo n)

Let y be the natural map of \mathbb{Z} into \mathbb{Z}_n given by y(m) = r, where r is the remainder given by the division algorithm when m is divided by n. Show that y is a homomorphism. Find Ker(y).

710

Examples on Kernel of a Homomorphism

Solution

We need to show that y(s+t)=y(s)+y(t) for $s, t \in \mathbb{Z}$. Using the division algorithm, we let the division agointim, we let $seq_n n+r_1$ (1) and $t=q_2 n+r_2$ (2) where $0 \le r_i < n$ for i=1, 2. If $r_i + r_2 = q_3 n+r_3$ (3) for $0 \le r_s < n$ then adding Eqs. (1) and (2) we see that $s + t = (q_1 - q_2 + q_3) n + r_3$ so that $y(s+t)=r_3$. From Eqs. (1) and (2) we see that $y(s+t)=r_3$. From Eqs. (1) and (2) we see that $y(s) = r_1$ and $y(t) = r_2$. Equation (3) shows that the sum r_1+r_2 in \mathbb{Z}_n is equal to r_3 also.

Examples on Kernel of a Homomorphism

Consequently y(s+t)=y(s)+y(t), so we do indeed have a homomorphism. Ker(y)=nℤ

Group Theory

Kernel of a Homomorphism

Kernel of a Homomorphism			
	Theorem		
	Let h be a		
	homomorphism from a		
	group G into a group G'.		
	Let K be the kernel of h.		
	Then		
	a K = {x in G h(x) = h(a)}		
	= h ⁻¹ [{h(a)}] and also		
	$K = \{x \text{ in } G \mid h(x) = h(a)\}$		
	= h ⁻¹ [{h(a)}]		
		712	

Kernel of a Homomorphism

We view h as projecting the elements of G, which are in the shaded rectangle, straight down onto elements of G', which are on the horizontal line segment at the bottom. Notice the downward arrow labeled h at the left, starting at G and ending at G'. Elements of K=Ker(h) thus lie on the solid vertical line segment in the shaded box lying over e', as labeled at the top of the figure.

Kernel of a Homomorphism

Example

We have $|z_1z_2| = |z_1| |z_2|$ for complex numbers z_1 and z_2 . This means that the absolute value function || is a homomorphism of the group C* of nonzero complex numbers under multiplication onto the group R* of positive real numbers under multiplication.

717

Kernel of a Homomorphism

Since {1} is a subgroup of \mathbb{R}^* , the complex numbers of magnitude 1 form a subgroup U of \mathbb{C}^* . Recall that the complex numbers can be viewed as filling the coordinate plane, and that the magnitude of a complex number is its distance from the origin. Consequently, the cosets of U are circles with center at the origin. Each circle is collapsed by this homomorphism onto its point of intersection with the positive real axis.

Kernel of a Homomorphism

Above theorem shows that the kernel of a group homomorphism $h:G \rightarrow G'$ is a subgroup K of G whose left and right cosets coincide, so that gK=Kg for all g \in G. When left and right cosets coincide, we can form a coset group G/K. Furthermore, we have seen that K then appears as the kernel of a homomorphism of G onto this coset group in a very natural way. Such subgroups K whose left and right cosets coincide are very useful in studying normal group.

721

Kernel of a Homomorphism

Example

Let D be the additive group of all differentiable functions mapping \mathbb{R} into \mathbb{R} , and let F be the additive group of all functions mapping \mathbb{R} into \mathbb{R} then differentiation gives us a map $\varphi\colon D\to F$, where $\varphi(f)=f'$ for f\in F. We easily see that φ is a homomorphism, for $\varphi(f+g)=f+g'=\varphi(f)+\varphi(g)$; the derivative of a sum is the sum of the derivatives.

722

Kernel of a Homomorphism

Now Ker(φ) consists of all functions f such that fⁱ=0. Thus Ker(φ) consists of all constant functions, which form a subgroup C of F. Let us find all functions in G mapped into x² by φ , that is, all functions whose derivative is x². Now we know that x³/3 is one such function. By previous theorem, all such functions form the coset x³/3+C.

723

Group Theory

Examples of Group Homomorphisms

Examples of Group Homomorphisms

Example (Evaluation Homomorphism)

Let F be the additive group of all functions mapping \mathbb{R} into \mathbb{R} , let \mathbb{R} be the additive group of real numbers, and let c be any real number. Let $\varphi\colon F\to\mathbb{R}$ be the **evaluation homomorphism** defined by $\varphi,(f)=f(c)$ for fef. Recall that, by definition, the sum of two functions f and g is the function f+g whose value at x is f(x) + g(x). Thus we have $\varphi_c(f_F)=f(g)=f(c)+g_c(c)-\varphi_c(f)+\varphi_c(g)$, so we have a homomorphism.

725

Examples of Group Homomorphisms

Composition of group homomorphisms is again a group homomorphism. That is, if $\varphi: G \to G'$ and $y: G' \to G''$ are both group homomorphisms then their composition $(\gamma \circ \varphi): G \to G''$, where $(\gamma \circ \varphi)(g) = y(\varphi(g))$ for $g \in G$, is also a homomorphism.

Group Theory

Examples of Group Homomorphisms

Examples of Group Homomorphisms

Example

Let $G=G_1 x \cdots x G_i x \cdots x G_n$ be a direct product of groups. The **projection map** $\pi_i: G \rightarrow G_i$ where $\pi_i(g_1, \cdots, g_i, \cdots, g_n) = g_i$ is a homomorphism for each $i=1, \cdots$, n.

This follows immediately from the fact that the binary operation of G coincides in the ith component with the binary operation in G_i .

728

Examples of Group Homomorphisms

Example

Let F be the additive group of continuous functions with domain [0, 1] and let \mathbb{R} be the additive group of real numbers. The map $\sigma:F \to \mathbb{R}$ defined by $\sigma(f)=\int_0^1 f(x)dx$ for $f \in F$ is a homomorphism, for $\sigma(f+g)=\int_0^1 (f+g)(x)dx=\int_0^1 [f(x)+g(x)]dx=\int_0^1 f(x)dx+\int_0^1 g(x)dx=\sigma(f)+\sigma(g)$ for all $f, g \in F$.

729

Examples of Group Homomorphisms

Each of the homomorphisms in the preceding two examples is a many-to-one map. That is, different points of the domain of the map may be carried into the same point. Consider, for illustration, the homomorphism $\pi_1:\mathbb{Z}_2\times\mathbb{Z}_4\to\mathbb{Z}_2$ we have $\pi_1(0,0)=\pi_1(0,1)=\pi_1(0,2)=\pi_1(0,3)=0,$ so four elements in $\mathbb{Z}_2\times\mathbb{Z}_4$ are mapped into 0 in \mathbb{Z}_2 by π_1 .

730

Group Theory

Factor Groups from Homomorphisms

Factor Groups from Homomorphisms

Let G be a group and let S be a set having the same cardinality as G. Then there is a one-to-one correspondence \leftrightarrow between S and G. We can use \leftrightarrow to define a binary operation on S, making S into a group isomorphic to G. Naively, we simply use the correspondence to rename each element of G by the name of its corresponding (under \leftrightarrow) element in S. We can describe explicitly the computation of xy for x, y \in S as follows:

 $\text{if } x \leftrightarrow g_1 \text{ and } y \leftrightarrow g_2 \text{ and } z \leftrightarrow g_1 g_2 \text{, then } xy \text{=} z \qquad (1)$

Factor Groups from Homomorphisms

The direction \rightarrow of the one-to-one correspondence $s \leftrightarrow g$ between $s \in S$ and $g \in G$ gives us a one-to-one function μ mapping S onto G. The direction \leftarrow of \leftrightarrow gives us the inverse function μ^{-1} . Expressed in terms of μ , the computation (1)*of xy for x, y \in S becomes if $\mu(x)=g_1$ and $\mu(y)=g_2$ and $\mu(z)=g_1g_2$, then xy=z (2) The map μ : S \rightarrow G now becomes an isomorphism mapping the group S onto the group G. Notice that from (2), we obtain $\mu(xy)=\mu(z)=g_1g_2=\mu(x)\mu(y)$, the required homomorphism property.

722

Let G and G' be groups, let h: $G \rightarrow G'$ be a homomorphism, and let K=Ker(h). The previous

Factor Groups from Homomorphisms

theorem shows that for $a\in G$, we have $h^{-1}[\{h(a)\}]=aK = Ka$. We $h^{-1}[\{h(a)\}]=aK = Ka$. We have a one-to-one correspondence $aK \leftrightarrow h(a)$ between cosets of K in G and elements of the subgroup h[G] of G'.

735

Factor Groups from Homomorphisms

Remember that if $x \in aK$, so that x=ak for some $k \in K$, then h(x)=h(ak)=h(a)h(k)=h(a)e'=h(a), so the computation of the element of h[G]

corresponding to the coset aK=xK is the same whether we compute it as h(a) or as h(x). Let us denote the set of all cosets of K by G/K. (We read G/K as "G over K" or as "G modulo K" or as "G mod K," but never as "G divided by K.")

736

Factor Groups from Homomorphisms

We started with a homomorphism h: $G \rightarrow G'$ having kernel K, and we finished with the set G/K of cosets in one-to-one correspondence with the elements of the group h[G]. In our work above that, we had a set S with elements in one-to-one correspondence with a those of a group G, and we made S into a group isomorphic to G with an isomorphism μ .

737

Factor Groups from Homomorphisms Replacing S by G/H and replacing G by h[G] in that construction, we can consider G/K to be a

that construction, we can consider G/K to be a group isomorphic to h[G] with that isomorphism μ . In terms of G/K and h[G], the computation (2) of the product (xK)(yK) for xK, yK \in G/K becomes if $\mu(xK)=h(x)$ and $\mu(yK)=h(y)$ and $\mu(zK)=h(x)h(y)$, then

(xK)(yK)=zK. (3)

Factor Groups from Homomorphisms

But because h is a homomorphism, we can easily find zeG such that $\mu(zK)=h(x | h(y); namely, we take z=xy in G, and find that <math display="inline">\mu(zK)=h(xy)=h(x)h(y)$. This shows that the product (xK)(yK) of two cosets is the coset (xy)K that contains the product xy of x and y in G. While this computation of (xK)(yK) may seem to depend on our choices x from xK and y from yK, our work above shows it does not. We demonstrate it again here because it is such an important point. If k₁, k₂ \in K so that xk₁ is an element of xK and yk₂ is an element of yK, then there exists h₃ \in K such that k₁ y= yk₃ because Ky= yK by previous Theorem.

739

Factor Groups from Homomorphisms

Thus we have

 $(xk_1)(yk_2)=x(k_1y)k_2=x(yk_3)k_2=(xy)(k_3k_2) \in (xy)K$, so we obtain the same coset. Computation of the product of two cosets is accomplished by choosing an element from each co3et and taking, as product of the cosets, the coset that contains the product in G of the choices. Any time we define something (like a product) in terms of choices, it is important to show that it is well defined, which means that it is independent of the choices made.

740

Group Theory

Factor Groups from Homomorphisms

Factor Groups from Homomorphisms

Theorem

Let h: $G \rightarrow G'$ be a group homomorphism with kernel K. Then the cosets of K form a factor group, G/K. where (aK)(bK)=(ab)K. Also, the map μ : $G/H \rightarrow h[G]$ defined by $\mu(aK)=h(a)$ is an isomorphism. Both coset multiplication and μ are well defined, independent of the choices a and b from the cosets.

742

Factor Groups from Homomorphisms

Example

Consider the map $y: \mathbb{Z} \to \mathbb{Z}_n$, where y(m) is the remainder when m is divided by n in accordance with the division algorithm. We know that y is a homomorphism. Of course, $Ker(y) = n\mathbb{Z}$. By above Theorem, we see that the factor group $\mathbb{Z}/n\mathbb{Z}$ is isomorphic to \mathbb{Z}_n . The cosets of $n\mathbb{Z}$ are the residue classes modulo n.

743

Factor Groups from Homomorphisms

For example, taking n = 5, we see the cosets of 5Z are $SZ = \{..., -10, -5, 0, 0, 5, 10, ...\}$ 1 + $SZ = \{..., -9, -4, 1, 6, 11, ...\}$, 2 + $SZ = \{..., -8, -3, 2, 7, 12, ...\}$, 3 + $SZ = \{..., -7, -2, 3, 8, 13, ...\}$ 4 + $SZ = \{..., -6, -1, 4, 9, 14, ...\}$. Note that the isomorphism $\mu: \mathbb{Z}/SZ \to \mathbb{Z}_5$ of previous Theorem assigns to each coset of SZ its smallest nonnegative element. That is, $\mu(SZ) = 0, \mu(1 + 5Z) = 1$, etc.

Group Theory

Factor Groups from Homomorphisms

Factor Groups from Homomorphisms

It is very important that we learn how to compute in a factor group. We can multiply (add) two cosets by choosing any two representative elements, multiplying (adding) them and finding the coset in which the resulting product (sum) lies.

Factor Groups from Homomorphisms

Example

Consider the factor group $\mathbb{Z}/5\mathbb{Z}$ with the cosets shown in precious example. We can add $(2+5\mathbb{Z})+(4+5\mathbb{Z})$ by choosing 2 and 4, finding 2+4=6, and noticing that 6 is in the coset 1+5 \mathbb{Z} . We could equally well add these two cosets by choosing 27 in 2+5 \mathbb{Z} and -16 in 4+5 \mathbb{Z} ; the sum 27+(-16)=11 is also in the coset 1+5 \mathbb{Z} .

747

Factor Groups from Homomorphisms

The factor groups $\mathbb{Z}/n\mathbb{Z}$ in the preceding example are classics. Recall that we refer to the cosets of $n\mathbb{Z}$ as residue classes modulo n. Two integers in the same coset are congruent modulo n. This terminology is carried over to other factor groups. A factor group G/H is often called the factor group of G modulo H. Elements in the same coset of H are often said to be congruent modulo H. By abuse of notation, we may sometimes write $\mathbb{Z}/n\mathbb{Z}=\mathbb{Z}_n$ and think of \mathbb{Z}_n as the additive group of residue classes of \mathbb{Z} modulo n.

Factor Groups from Normal Subgroups

Suppose we try to define a binary operation on left cosets by defining (aH)(bH)=(ab)H as in the statement of previous theorem. The above equation attempts to define left coset multiplication by choosing representatives and b from the cosets. The above equation is meaningless unless it gives a well-defined operation, independent of the representative elements a and b chosen from the cosets. In the following theorem, we have proved that the above equation gives a well-defined binary operation if and only if H is a normal subgroup of G.

754

Factor Groups from Normal Subgroups

Theorem

Let H be a subgroup of a group G. → Then H is normal if and only if (a H)(b H) = (a b) H, for all a, b in G

752

Factor Groups from Normal Subgroups

Theorem

If N is a normal subgroup
of (G, ·), the set of cosets
, G/N = {Ng|g ∈ G} forms a
group (G/N, ·), where the
operation is defined by
(Ng₁)·{Ng₂}=N(g₁·g₂).

754

Group Theory

Factor Groups from Normal Subgroups

758

Factor Groups from Normal Subgroups

Example

Consider the abelian group \mathbb{R} under addition, and let $c \in \mathbb{R}^+$. The cyclic subgroup <c> of \mathbb{R} contains as elements \cdots -3c, -2c, -c, 0, c, 2c,

3c,….

Factor Groups from Normal Subgroups

Every coset of <c> contains just one element of x such that $0 \le x < c$. If we choose these elements as representatives of the cosets when computing in $\mathbb{R}/$ <c>, we find that we are computing their sum modulo c in \mathbb{R}_c . For example, if c = 5.37, then the sum of the cosets 4.65+<c.37> and 3.42+<c.37> is the cosets 4.07+<c.37>, which contains 8.07-<c.37 = 2.7, which is 4.65+<c.33>.42.

Factor Groups from Normal Subgroups

Working with these coset elements x where $0 \leq x < c$, we thus see that the group \mathbb{R}_c is isomorphic to $\mathbb{R} / < c$ under an isomorphism μ where $\mu(x)$ =x+<c> for all $x \in \mathbb{R}_c$. Of course, $\mathbb{R} / < c$ is then also isomorphic to the circle group U of complex numbers of magnitude 1 under multiplication.

759

Group Theory

Kernel of an Injective Homomorphism

Kernel of an Injective Homomorphism

Theorem

A homomorphism h: $G \rightarrow G'$ is injective if and only if Ker h={e}.

761

Kernel of an Injective Homomorphism

Proof

Suppose h is injective, and let $x \in \text{Ker h}$. Then h(x)=e'=h(e). Hence x=e.

Kernel of an Injective Homomorphism

Conversely, suppose Ker h={e}. Then h(x)=h(y) \Rightarrow h(xy⁻¹)=h(x)h(y⁻¹) =h(x)h(y)⁻¹=e' \Rightarrow xy⁻¹=e \Rightarrow xy⁻¹=e \Rightarrow x=y. Hence, h is injective.

763

Factor Groups from Normal Subgroups

Theorem

Let K be a normal subgroup of G. Then y: $G \rightarrow G/K$ given by y(g)=gK is a homomorphism with kernel K.

765

Factor Groups from Normal Subgroups

Proof

Let $g_1, g_2 \in G$. Then
$$\begin{split} & y(g_1g_2) = (g_1g_2) K \\ & = (g_1K)(g_2K) = y(g_1)y(g_2), \\ & \text{so } y \text{ is a homomorphism.} \\ & \text{Since } g_1K = K \text{ if and only if} \\ & g_1 \in K, \text{ we see that the} \\ & \text{kernel of } y \text{ is indeed } K. \end{split}$$

Group Theory

Example on Morphism Theorem of Groups

Example on Morphism Theorem of Groups

Theorem

Let K be the kernel of the group morphism	
h :G → G'. Then G/K is isomorphic to the image of h, h[G], and the isomorphism	
μ : G/K \rightarrow Im h	
is defined by	
μ(Kg) = h[g].	
	770

Example on Morphism Theorem of Groups

Example

Classify the group $(\mathbb{Z}_4 \times \mathbb{Z}_2) / (\{0\} \times \mathbb{Z}_2)$ according to the fundamental theorem of finitely generated abelian groups.

771

Example on Morphism Theorem of Groups

Solution

The projection map $\begin{aligned} \pi_1\colon \mathbb{Z}_4x\mathbb{Z}_2 \to \mathbb{Z}_4 & \text{given by} \\ \pi_1(x,y) &= x \text{ is } a \\ \text{hommorphism of } \mathbb{Z}_4x\mathbb{Z}_2 & \text{onto } \mathbb{Z}_4x\mathbb{Z}_2 \\ \text{onto } \mathbb{Z}_4 & \text{with kernel} \\ \{0\}x\mathbb{Z}_2 & \text{By fundamental} \\ \text{theorem of} \\ \text{hommorphism, we} \\ \text{know that the given} \\ \text{factor group is} \\ \text{isomorphic to } \mathbb{Z}_4. \end{aligned}$

772

Example on Morphism Theorem of Groups

The projection map $\pi_1: \mathbb{Z}_4 \times \mathbb{Z}_2 \to \mathbb{Z}_4$ given by $\pi_1(x,y) = x.$ $K = Ker \pi_1 = \{0\} \times \mathbb{Z}_2$ $= \{(0,0), (0,1)\}.$ $(1,0) + K = \{(1,0), (1,1)\}$ $(2,0) + K = \{(2,0), (2,1)\}$ $(3,0) + K = \{(3,0), (3,1)\}$

773

Group Theory

Normal Groups and Inner Automorphisms

Normal Groups and Inner Automorphisms

We derive some alternative characterizations of normal subgroups, which often provide us with an easier way to check normality than finding both the left and the right coset decompositions.

775

Normal Groups and Inner Automorphisms

Theorem

The following are three	
equivalent conditions	
for a subgroup H of a	
group G to be a normal	
subgroup of G.	
 ghg⁻¹∈H for all g∈G 	
and h∈H.	
 gHg⁻¹=H for all g∈G. 	
 gH=Hg for all g∈G. 	
	776

Normal Groups and Inner Automorphisms

Condition (2) of above Theorem is often taken as the definition of a normal subgroup H of a group G.

777

Normal Groups and Inner Automorphisms

Proof

Suppose that gH = Hg for all $g \in G$. Then $gh = h_1g$, so $ghg^{-1} \in H$ for all $g \in G$ and all $h \in H$. Then $gHg^{-1} = \{ghg^{-1} \mid h \in H\} \subseteq H$ for all $g \in G$. We claim that actually $gHg^{-1} = H$. We must show that $H \subseteq gHg^{-1}$ for all $g \in G$. Let $h \in H$. Replacing g by g^{-1} in the relation $ghg^{-1} \in H$, we obtain $g^{-1}h(g^{-1})^{-1} = g^{-1}hg = h_1$ where $h_1 \in H$. Consequently, $gHg^{-1} = H$ for all $g \in G$.

778

Normal Groups and Inner Automorphisms Conversely, if $gHg^{-1} = H$ for all $g \in G$, then $ghg^{-1} = h_1$ so $gh = h_1g \in Hg$, and $gH \subseteq Hg$. But also, $g^{-1}Hg = H$ giving $g^{-1}hg = h_2$, so that $hg = gh_2$ and $Hg \subseteq gH$.

779

Group Theory

Normal Groups and Inner Automorphisms

Normal Groups and Inner Automorphisms

Example

Every subgroup H of an abelian group G is normal. We need only note that gh = hg for all $h \in H$ and all $g \in G$, so, of course, $ghg^{1} = h \in H$ for all $g \in G$ and all $h \in H$.

781

Normal Groups and Inner Automorphisms

Example

The map $i_g: G \rightarrow G$ defined by $i_g(x) = gxg^{-1}$ is a homomorphism of G into itself. $i_g(xy)=gxyg^{-1}$ $= (gxg^{-1})(gyg^{-1})$ $= i_g(x)i_g(y)$

Inner Automorphisms

782

Normal Groups and Inner Automorphisms We see that $i_g(x)=i_g(y)$ $\Rightarrow gxg^{-1} = gyg^{-1}$ $\Rightarrow x = y$, so i_g is injective. Since for any x in G $i_g(g^{-1}xg) = g(g^{-1}xg)g^{-1} = x$, we see that i_g is onto G, so it is an isomorphism of G with itself.

Inner Automorphisms

Theorem

The following are three equivalent conditions for a subgroup H of a group G to be a normal subgroup of G.

1. $ghg^{-1} \in H$ for all $g \in G$ and $h \in H$.

2. gHg⁻¹=H for all g \in G. **3.** gH=Hg for all g \in G.

The equivalence of conditions (2) and (3) shows that gH=Hg for all g \in G if and only if i_{g} [H]=H for all g \in G, that is, if and only if H is **invariant** under all inner automorphisms of G.

Inner Automorphisms

It is important to realize that $i_g[H]$ = H is an equation in sets; we need not have $i_g(h)$ = h for all $h \in H.$

That is ${\rm i}_{\rm g}\,$ may perform a nontrivial permutation of the set H.

We see that the normal subgroups of a group G are precisely those that are invariant under all inner automorphisms.

A subgroup K of G is a **conjugate subgroup** of H if $K = i_g[H]$ for some $g \in G$.

787

Inner Automorphisms

Lemma

The set of all inner automorphisms of G is a subgroup of Aut(G).

789

Inner Automorphisms

Proof

Inner Automorphisms

Solution

An automorphism $\phi : \mathbb{Z}_n \to \mathbb{Z}_n$ is determined by $\phi(1)$ as for any integer k, $\phi(k) = \phi(1+...+1) = \phi(1) + ...+\phi(1) = k\phi(1).$ Since isomorphisms preserve order, $\phi(1)$ must be a generator of \mathbb{Z}_n . We have proved that the generators of \mathbb{Z}_n are those integers $k \in \mathbb{Z}_n$ for which gcd(k, n) = 1. But these k are precisely the elements of

 $\mathsf{U}_{n}\!\!=\!\!\{1,\,\omega,\!...,\,\omega^{n\cdot 1}\mid\omega\!=\!e^{2\pi i/n}\}.$

Group Theory

Theorem on Factor Group 793

Theorem on Factor Group

Theorem A factor group of a cyclic group is cyclic.

796

Theorem on Factor Group

Proof

Let G be cyclic with generator a, and let N be a normal subgroup of G. We claim the coset aN generates G / N. We must compute all powers of aN. But this amounts to computing, in G, all powers of the representative a and all these powers give all elements in G. Hence the powers of aN certainly give all cosets of N and G / N is cyclic.

797

Group Theory

Example on Factor Group

Example on Factor Group

Example

Let us compute the factor group $(\mathbb{Z}_4 \times \mathbb{Z}_6)/((0, 2))$. Now (0, 2) generates the subgroup $H=\{(0,0), (0, 2), (0,4)\}$ of $\mathbb{Z}_4 \times \mathbb{Z}_6$ of order 3.

799

Example on Factor Group

Here the first factor \mathbb{Z}_4 of $\mathbb{Z}_4 \times \mathbb{Z}_6$ is left alone. The \mathbb{Z}_6 factor, on the other hand, is essentially collapsed by a subgroup of order 3, giving a factor group in the second factor of order 2 that must be isomorphic to \mathbb{Z}_2 . Thus $(\mathbb{Z}_4 \times \mathbb{Z}_6)/((0, 2))$ is isomorphic to $\mathbb{Z}_4 \times \mathbb{Z}_2$.

800

 Group Theory

 Factor Group Computations

 Factor Group Computations

 text

 text

 Textor Group Computations

 Factor Group Computations

 text

 Factor Group Computations

 Let N be a normal subgroup of G. In the factor group G / N, the subgroup N acts as identity element. We may regard N as being collapsed to a single element, either to 0 in additive notation.

Recall that $y: G \rightarrow G/N$ defined by y(a)=aN for a \in G is a homomorphism of G onto G / N. We can view the "line" G / N at the bottom of the figure as obtained by collapsing to a point each coset of N in another copy of G. Each point of G / N thus corresponds to a whole vertical line segment in the shaded portion, representing a coset of N in G. It is crucial to remember that multiplication of cosets in G / N can be computed by multiplying in G, using any representative elements of the cosets.

805

Group Theory Factor Group Computations

Factor Group Computations

Example The trivial subgroup $N = \{0\}$ of \mathbb{Z} is, of course, a normal subgroup. Compute $\mathbb{Z} / \{0\}$.

808

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

Factor Group Computations Solution Actually $n\mathbb{R} = \mathbb{R}$,

because each xcR is of the form n(x/n) and x/ncR. Thus $\mathbb{R}/n\mathbb{R}$ has only one element, the subgroup nR. The factor group is a trivial group consisting only of the identity element.

811

Factor Group Computations As illustrated in above Examples for any group G, we have $G/\{e\} \cong G$ and $G/G\cong\{e\}$, where $\{e\}$ is the trivial group consisting only of the identity element e. These two extremes of factor groups are of little importance.

Factor Group Computations

We would like knowledge of a factor group G/N to give some information about the structure of G.

If N={e}, the factor group has the same structure as G and we might as well have tried to study G directly.

814

Factor Group Computations

If N = G, the factor group has no significant structure to supply information about G.

815

Factor Group Computations

If G is a finite group and N \neq {e} is a normal subgroup of G, then G/N is a smaller group than G, and consequently may have a more simple structure than G.

The multiplication of cosets in G/N reflects the multiplication in G, since products of cosets can be computed by multiplying in G representative elements of the cosets.

817

Factor Group Computations

In next module, we give example showing that even when G/N has order 2, we may be able to deduce some useful results. If G is a finite group and G/N has just two elements, then we must have |G|=2|N|.

Fac	tor Gr	o <mark>up Co</mark> n	nputations	
Renaming t element σ shown in Ta	he elem , "odd," able bec	ent A _n "ev ' the mult omes	ven" and the iplication in S _n /A _n	
(even)(even (odd)(even	n)=even,)=odd, (ø	(even)(oc odd)(odd)	ld)=odd, =even.	
Thus the fa multiplicati	ctor gro	up reflects erties for a	these Il the permutatio	ons
in S _n .		An	σA _n	
	An	An	σAn	
	σAn	σAn	An	
				823

But in A_4 , we have $(1, 2, 3) = (1, 3, 2)^2$ and $(1, 3, 2) = (1, 2, 3)^2$ so (1, 2, 3) and (1, 3, 2) are in H. A similar computation shows that (1, 2, 4), (1, 4, 2), (1, 3, 4), (1, 4, 3), (2, 3, 4), and (2, 4, 3)are all in H. This shows that there must be at least 8 elements in H, contradicting the fact that H was supposed to have order 6.

829

Factor Group Computations

We now turn to several examples that compute factor groups. If the group we start with is finitely generated and abelian, then its factor group will be also. Computing such a factor group means classifying it according to the fundamental theorem of finitely generated abelian groups.

831

Eactor Group Computations Example We scompute the factor group $(\mathbb{X}_{n} \mathbb{X}_{n}^{c})/((0, 1))$ is the cyclic subgroup 16 of $\mathbb{Z}_{n} \mathbb{X}_{n}^{c}$ generated by (0, 1). Thus $\mu \in (0, 0, 1), (0, 2), (0, 3), (0, 4), (0, 5))$. The $\mathbb{Z}_{n} \mathbb{X}_{n}^{c}$ has 24 elements and H has 6 elements, all cosets of H must have 6 elements, all cosets of H must have 6 dements, all cosets of H must have 6 dements, a factor group by means of representatives a factor group by means of representatives from the original group.

Factor Group Computations

In additive notation, the cosets are H=(0, 0)+H, (1,0)+H, (2, 0)+H, (3, 0)+H.

Since we can compute by choosing the representatives (0, 0), (1, 0), (2, 0), and (3, 0), it is clear that ($\chi_e X E_e$)/H is isomorphic to χ_e . Note that this is what we would expect, since in a factor group modulo H, everything in H becomes the identity element; that is, we are essentially setting everything in H equal to zero. Thus the whole second factor χ_e of $\chi_e X \chi_e^{-1}$ is collapsed, leaving just the first factor Z_4 .

833

Group Theory

Factor Group Computations

The last example is a special case of a general theorem that we now state and prove. We should acquire an intuitive feeling for this theorem in terms of collapsing one of the factors to the identity element.

835

Factor Group Computations

Theorem

Let G = H x K be the direct product of groups H and K. Then $\overline{H}{=}\{(h, e) \mid h \in H\}$ is a normal subgroup of G. Also G/\overline{H} is isomorphic to K in a natural way. Similarly, G / $\overline{K} \simeq H$ in a natural way.

836

Factor Group Computations

Proof

Consider the map $\pi_2\colon$ H x K \to K given by $\pi_2(h,k)$ = k. The map π_2 is homomorphism since $\pi_2(h_1h_2,k_1k_2)$ =k_1k_2 = $\pi_2(h_1,k_1)$ $\pi_2(h_2,k_2)$. Because Ker(π_2) = \overline{H} , we see that \overline{H} is a normal subgroup of H x K. Because π_2 is onto K, Fundamental Theorem of Homomorphism tells us that (H x K)/ \overline{H} \simeq K.

837

Group Theory

Factor Group Computations

Factor Group Computations

Example

Let us compute the factor group $(\mathbb{Z}_4 \times \mathbb{Z}_6)/((2, 3))$. Be careful! There is a great temptation to say that we are setting the 2 of \mathbb{Z}_4 and the 3 of \mathbb{Z}_6 both equal to zero, so that \mathbb{Z}_4 is collapsed to a factor group isomorphic to \mathbb{Z}_2 and \mathbb{Z}_6 to one isomorphic to \mathbb{Z}_2 and \mathbb{Z}_6 to repuis to the set of the set of

Note that $H = \langle (2, 3) \rangle = \{(0, 0), (2, 3)\}$ is of order 2, so $(\mathbb{Z}_4 \times \mathbb{Z}_6)/\langle (2, 3) \rangle$ has order 12, not 6.

We claim that the coset (1, 0) + H is of order 4 in the factor group $(\mathbb{Z}_4 \times \mathbb{Z}_6)/H$.

To find the smallest power of a coset giving the identity in a factor group modulo H, we must, by choosing representatives, find the smallest power of a representative that is in the subgroup H. Now, 4(1,0)=(1,0)+(1,0)+(1,0)+(1,0)=(0,0) is the first time that (1,0) added to itself gives an element of H. Thus ($\mathbb{Z}_{4} \times \mathbb{Z}_{6}$)/((2, 3)) has an ____ element of order 4 and is isomorphic to $\mathbb{Z}_4 \times \mathbb{Z}_3$ or \mathbb{Z}_{12} .

841

Factor Group Computations

Example

Let us compute (that is, classify as in Fundamental Theorem of Abelian Groups the group ($\mathbb{Z}x\mathbb{Z})/$ $\langle (1, 1) \rangle$. We may visualize $\mathbb{Z} \times \mathbb{Z}$ as the points in the plane with both coordinates integers, as indicated by the dots in Fig. below. The subgroup ((1, 1)) consists of those points that lie on the

45° line through the origin, indicated in the figure. The coset $(1, 0) + \langle (1, 1) \rangle$ consists of those dots on the 45° line through the point (1, 0), also shown in the figure.

Simple Groups

For example, Lagrange's Theorem shows that a group of prime order can have no nontrivial proper subgroups of any sort.

847

Simple Groups

Definition

A group is **simple** if it is nontrivial and has no proper nontrivial normal subgroups.

848

Simple Groups

Example

The cyclic group $G=\mathbb{Z}/5\mathbb{Z}$ of congruence classes modulo 5 is simple. If H is a subgroup of this group, its order must be a divisor of the order of G which is 5. Since 5 is prime, its only divisors are 1 and 5, so either H is G, or H is the trivial group.

849

Simple GroupsSimple GroupsExample
The cyclic group 6=Z/pZ
of congruence classes
modulo p is simple,
where p is a prime
number.Do the other hand, the
group 6=Z/12Z is not
single.
Difference classes of 0,
and 8 modulo 21 is a
subgroup of order 3, and
t is a normal subgroup of
an abelian group is
normal.81Simple Groups

Simple Groups

Example

The additive group $\ensuremath{\mathbb{Z}}$ of integers is not simple; the set of even integers $2\mathbb{Z}$ is a non-trivial proper normal subgroup.

853

Simple Groups

Also, if N' is a normal subgroup of $\varphi[G],$ then $\phi(g)n'\phi(g) \in \mathsf{N}'$ for every $\phi(g) \in \phi[G]$ By definition, there exist $n\in N$ such that $\varphi(n)=n'.$ Therefore, $\varphi(g)n'\varphi(g)^{-1}=\varphi(gng^{-1}).$ Hence $\phi^{-1}[N']$ is a normal subgroup of G.

Simple Groups

Example

For example, $\varphi\colon \mathbb{Z}_2\to S_3$, where
$$\begin{split} \varphi(0)&=\rho_0 \text{ and } \varphi(1)=\mu_1 \quad \text{is a homomorphism, and}\\ \mathbb{Z}_2 \text{ is a normal subgroup of itself, but } \{\rho_0,\mu_1\}\text{ is not}\\ \text{a normal subgroup of } S_3.\\ (1\ 3)(2\ 3)=(2\ 1\ 3)\\ (2\ 3)(1\ 3)=(1\ 2\ 3) \end{split}$$

861

Maximal Normal Subgroups

Theorem

M is a maximal normal subgroup of G if and only if G / M is simple.
Maximal Normal Subgroups

Proof

Let M be a maximal normal subgroup of G. Consider the canonical homomorphism

y: $G \rightarrow G/M$. Now y¹ of any nontrivial proper normal subgroup of G/M is a proper normal subgroup of G properly containing M. But M is maximal, so this can not happen. Thus G/M is simple.

865

Maximal Normal Subgroups

Conversely, if N is a normal subgroup of G properly containing M, then y[N] is normal in G/M. If also N≠G, then y[N]≠G/M and y[N]≠ {M}.

Thus, if G/M is simple so that no such y[N] can exist, no such N can exist, and M is maximal.

866

Group Theory

The Center Subgroup

The Center Subgroup

Definition

The center Z(G) is defined by $Z(G)=\{z\in G\mid zg=gz \text{ for all } g\in G\}.$

868

The Center Subgroup The Center Subgroup Exercise Solution For each $g\in G$ and Show that Z(G) is a normal and an abelian z∈Z(G) we have subgroup of G. gzg-1=zgg-1=ze=z, we see at once that Z(G) is a normal subgroup of G. It implies that gz=zg for g \in G and $z \in Z(G)$. 869 870

The Center Subgroup

If G is abelian, then Z(G) = G; in this case, the center is not useful.

871

873

Example on Center Subgroup $\begin{array}{c} \text{Example} \\ \rho_0 (123) = (123) \rho_0 \\ \rho_0 (132) = (132) \rho_0 \\ \rho_0 (23) = (23) \rho_0 \\ \rho_0 (13) = (13) \rho_0 \\ \rho_0 (12) = (12) \rho_0 \end{array}$

Example on Center Subgroup

Example

$$\begin{split} & \mathsf{S}_3 \times \mathbb{Z}_5 {=} \{(\rho_0, 0), \, (\rho_0, 1), \, (\rho_0, 2), \, (\rho_0, 3), \, (\rho_0, 4), \\ & (\rho_1, 0), \, (\rho_1, 1), \, (\rho_1, 2), \, (\rho_1, 3), \, (\rho_1, 4), \\ & (\rho_2, 0), \, (\rho_2, 1), \, (\rho_2, 2), \, (\rho_2, 3), \, (\rho_2, 4), \\ & (\mu_1, 0), \, (\mu_1, 1), \, (\mu_1, 2), \, (\mu_1, 3), \, (\mu_1, 4), \\ & (\mu_2, 0), \, (\mu_2, 1), \, (\mu_2, 2), \, (\mu_2, 3), \, (\mu_2, 4), \\ & (\mu_3, 0), \, (\mu_3, 1), \, (\mu_3, 2), \, (\mu_3, 3), \, (\mu_3, 4)\} \end{split}$$

877

 Group Theory
 The Commutator Subgroup

 The Commutator Subgroup
 Every nonabelian group G has two inproved has two inproved has two inproved has two inproved has subgroups, the center Z(G) of G and the commutator subgroup C of G.

 #
 #80

The Commutator Subgroup

To require that ab=ba is to say that $aba^{-1}b^{-1}=e$ in our new group.

An element aba-1b-1 in a group is a commutator of the group.

Thus we wish to attempt to form an abelianized version of G by replacing every commutator of G by e.

We should then attempt to form the factor group of G modulo the smallest normal subgroup we can find that contains all commutators of G.

883

The Commutator Subgroup

Theorem

Let G be a group. The set of all commutators $aba^{-1}b^{-1}$ for a, $b \in G$ generates a subgroup C of G.

884

The Commutator Subgroup

Proof

Let a, b \in G. Then, (aba⁻¹b⁻¹)(aba⁻¹b⁻¹)⁻¹ =aba⁻¹b⁻¹bab⁻¹a⁻¹ =e \in C since e = eee⁻¹e⁻¹ is a commutator.

885

The Commutator Subgroup

Definition

The set of all commutators $aba^{-1}b^{-1}$ for $a, b \in G$ generates a subgroup C of G is called the **commutator subgroup**.

We see that any subgroup containing a and b must contain aⁿ and b^m for all m, n $\in \mathbb{Z}$, and consequently must contain all finite products of such powers of a and b.

889

Generating Sets

For example, such an expression might be $a^2b^4a^{\cdot3}b^2a^5. \label{eq:abs}$

Note that we cannot "simplify" this expression by writing first all powers of a followed by the powers of b, since G may not be abelian. However, products of such expressions are again expressions of the same type.

Furthermore, $e = a^0$ and the inverse of such an expression is again of the same type.

890

Generating Sets

For example, the inverse of $a^2b^4a^{-3}b^2a^5$ is $a^{-5}b^{-2}a^3b^{-4}a^{-2}$.

This shows that all such products of integral powers of a and b form a subgroup of G, which surely must be the smallest subgroup containing both a and b. We call a and b generators of this subgroup.

If this subgroup should be all of G, then we say that $\{a,b\}$ generates G.

We could have made similar arguments for three, four, or any number of elements of G, as long as we take only finite products of their integral powers.

It is also generated by {3,4}, {2,3,4}, {1,3}, and {3,5}. But it is not generated by {2, 4} since <2> = {0, 2, 4} contains 2 and 4.

895

Generating Sets

Definition

Let $\{S_i | i \in I\}$ be a collection of sets. Here I may be any set of indices. The intersection $\bigcap_{i \in I} S_i$ of the sets S_i is the set of all elements that are in all the sets S_i ; that is, $\bigcap_{i \in I} S_i = \{x | x \in S_i \text{ for all } i \in I\}$. If I is finite, I= $\{1, 2, ..., n\}$, we may denote $\bigcap_{i \in I} S_i$ by $S_1 \cap ... \cap S_n$.

897

Generating Sets

Theorem

The intersection of some subgroups H_i of a group G for $i \in I$ is again a subgroup of G.

899

Generating Sets

Proof

Let us show closure. Let $a \in \bigcap_{i \in I} H_i$ and $b \in \bigcap_{i \in I} H_i$, so that $a \in H_i$ for all $i \in I$ and $b \in H_i$ for all $i \in I$. Then $ab \in H_i$ for all $i \in I$, since H_i is a group. Thus $ab \in \bigcap_{i \in I} H_i$. Since H_i is a subgroup for all $i \in I$, we have $e \in H_i$ for all $i \in I$, and hence $e \in \bigcap_{i \in I} H_i$. Finally, for $a \in \bigcap_{i \in I} H_i$, we have $a \in H_i$ for all $i \in I$, so $a^{*1} \in H_i$ for all $i \in I$, which implies that $a^{*1} \in \bigcap_{i \in I} H_i$.

Let G be a group and let $a_i \in G$ for $i \in I$. There is at least one subgroup of G containing all the elements a_i for $i \in I$, namely G is itself. The above theorem assures us that if we take the intersection of all subgroups of G containing all a_i for $i \in I$, we will obtain a subgroup H of G. This subgroup H is the smallest subgroup of G

containing all the a_i for $i \in I$.

901

Proof

Let K denote the set of all finite products of integral powers of the a, Then K⊆H. We need only observe that K is a subgroup and then, since H is the smallest subgroup containing a, for i ∈ I, we will be done. Observe that a product of elements in K is again in K. Since (a)⁰=e, we have $e \in K$.

907

Group Theory

The Commutator Subgroup The Commutator Subgroup

Theorem

Let G be a group. Then, the commutator subgroup C of G is a normal subgroup of G.

The C	ommutator subgroup	
	Proof	
	We must show that C is normal in G.	
	The last theorem then shows that C consists precisely of all finite products of commutators.	
	For $x \in C$, we must show that $g^{-1}xg \in C$ for all $g \in G$, or that if x is a product of commutators, so is	
	$g^{-1}xg$ for all $g \in G$.	911

Group Theory

The Commutator Subgroup

The Commutator Subgroup

Theorem

If N is a normal subgroup of G, then G/N is abelian if and only if $C \leq N$.

914

The Commutator Subgroup

Proof

 $\label{eq:starting} \begin{array}{l} If N \mbox{ is a normal} \\ subgroup \mbox{ of G} \mbox{ and G/N} \\ \mbox{ is abelian, then} \\ (a^{-1}N)(b^{-1}N)=(b^{-1}N)(a^{-1}N); \\ that \mbox{ is, ab}^{-1}b^{-1}=N, \\ \mbox{ so aba}^{-1}b^{-1}\in N, \mbox{ and } \\ C\leq N. \end{array}$

915

Group Theory

The Commutator Subgroup

The Commutator Subgroup

Example

For the group S₃, we find that one commutator is $\rho_1\mu_1 \rho_1^{-1}\mu_1^{-1} = \rho_1\mu_1 \rho_2\mu_1 = \mu_3\mu_2 = \rho_2.$ (12)(13)=(132) We similarly find that $\rho_2\mu_1 \rho_2^{-1}\mu_1^{-1} = \rho_2\mu_1 \rho_1\mu_1 = \mu_2\mu_3 = \rho_1.$ (13)(12)=(123)

The Commutator Subgroup

Thus the commutator subgroup C of S₃ contains A₃. Since A₃ is a normal subgroup of S₃ and S₃/A₃ is abelian, above theorem shows that $C=A_3$.

919

Automorphisms

Recall that an automorphism of a group G is an isomorphism of G onto G. The set of all automorphisms of G is denoted by Aut(G).

921

Automorphisms

We have seen that every $g \in G$ determines an automorphism i_g of G (called an inner automorphism)given by $i_g(x)=gxg^{-1}$. The set of all inner automorphisms of G is denoted by Inn(G).

922

Automorphisms

Theorem

The set Aut(G) of all automorphisms of a group G is a group under composition of mappings, and $lnn(G) \lhd Aut(G)$. Moreover, $G/Z(G) \simeq lnn(G)$.

923

Automorphisms

Proof

Clearly, Aut(G) is nonempty. Let $\sigma, \tau \in$ Aut(G). Then for all $x, y \in G$, $\sigma\tau(xy)=\sigma((\tau(x) \tau(y)) =$ $(\sigma\tau(x))(\sigma\tau(y))$. Hence, $\sigma\tau \in$ Aut(G). Again, $\sigma(\sigma^{-1}(x)\sigma^{-1}(y))=$ $\sigma\sigma^{-1}(x)\sigma\sigma^{-1}(y)=xy$. Hence $\sigma^{-1}(x)\sigma^{-1}(y)=\sigma^{-1}(xy)$. Therefore, $\sigma^{-1} \in$ Aut(G). This proves that Aut(G) is a subgroup of the symmetric group S_G and, hence, is itself a group.

Automorphisms

Automo	orphisms	
	Theorem The set Aut(G) of all automorphisms of a group G is a group under composition of mappings, and $lnn(G) \triangleleft Aut(G)$. Moreover, $G/Z(G) \cong lnn(G)$.	
		926

Automorphisms

Consider the mapping $\varphi\colon G\to Aut\ (G)$ given by $\begin{array}{l} \varphi(a)\!=\!i_a\!=\!ax^{-1}\ for\ all\ x\!\in G.\\ \mbox{For\ any\ }a,\ b\in G,\ i_{ab}(x)\!=\!abx(ab)^{-1}\!=\!a(bxb^{-1})^{a-1}\!=\!i_ai_b(x)\\ \mbox{for\ all\ }x\in G.\\ \mbox{Hence,\ }\varphi\ is\ a\\ \ homomorphism,\ and,\\ \mbox{therefore,\ }In(G)\!=\!m\ \varphi\ is\ a\\ \ subgroup\ of\ Aut(G). \end{array}$

927

Further, i_a is the identity automorphism if and only if $axa^{-1}=x$ for all $x\in G$. Hence, Ker φ = Z(G), and by the fundamental theorem of homomorphisms $G/Z(G)\simeq lnn(G)$. Finally, for any $\sigma\in$ Aut(G), $(\sigma i_a\sigma^{-1})(x)=\sigma(a\sigma^{-1}(x)a^{-1})=\sigma(a)x \sigma(a)^{-1}=i_{\sigma(a)} (x);$ hence $\sigma i_a\sigma^{-1}=i_{\sigma(a)}\in Inn(G).$ Therefore, $Inn(G) \lhd$ Aut(G).

Automorphisms Group Theory It follows from above theorem that if the center of a group G is trivial, then G ~ Inn(G). A group G is said to be complete if Z(G) = (e) and every automorphism of G is an inner automorphism; that is, G ~ Inn(G)=Aut(G). Examples on Automorphisms of of a group G, it is useful to remember that, for any x ∈ G, x and σ(x) must be of the same order.

Examples on Automorphisms

Example

The symmetric group S_3 has a trivial center {e}. Hence, $Inn(S_3) \simeq S_3$. We have seen that $S_3^{=} \{e,a,a^2,b,ab,a^2b\}$ with the defining relations $a^3 = e b^2$, $ba = a^2b$. The elements a and a^2 are of order 3, and b, ab, and a^2b are all of order 2.

. 931

Examples on Automorphisms

Hence, for any $\sigma \in$ Aut(S₃), $\sigma(a)$ = a or a^2 , $\sigma(b)$ = b, ab, or a^2b . Moreover, when $\sigma(a)$ and $\sigma(b)$ are fixed, $\sigma(x)$ is known for every $x \in S_3$. Hence, σ is completely determined.

932

Examples on Automorphisms

Thus, there cannot be more than six automorphisms of S₃. Hence Aut (S₃)=Inn(S₃) \simeq S₃. Therefore, S₃ is a complete group.

933

Group Theory

Examples on Automorphisms

Examples on Automorphisms

Example

Let G be a finite abelian group of order n, and let m be a positive integer relative prime to n. Then the mapping $\sigma: x \rightarrow x^m$ is an automorphism of G.

935

Examples on Automorphisms

Solution

 $\begin{array}{l} (m,n)=1 \Rightarrow there \ exist \\ integers \ u \ and \ v \ such \\ that \ mu+nv=1 \Rightarrow \\ for \ all \ x \in G, \\ x^{mu+nv}=x^{mu}x^{nv}=x^{xm} \ since \\ o(G)=n. \ Now \ for \ all \ x \in G, \\ x=(x^u)^m \ implies \ that \\ \sigma \ is \ onto. \ Further, \\ x^m=e \Rightarrow x^{mu}=e \Rightarrow x=e, \\ showing \ that \ \sigma \ is \ 1-1. \end{array}$

Examples on Automorphisms

That σ is a homomorphism follows from the fact that G is abelian. Hence, σ is an automorphism of G.

937

Examples on Automorphisms

Example

A finite group G having more than two elements and with the condition that $x^2 \neq e$ for some $x \in G$ must have a nontrivial automorphism.

939

Examples on Automorphisms

When G is abelian, then $\sigma: \mathbf{x} \mapsto \mathbf{x}^{-1}$ is an automorphism, and, clearly, σ is not an identity automorphism. When G is not abelian, there exists a nontrivial inner automorphism.

940

942

Examples on Automorphisms

Example

Let G = <a | a^n =e> be a finite cyclic group of order n. Then the mapping σ : a \rightarrow a^m is an automorphism of G iff (m,n) = 1.

941

Examples on Automorphisms Solution If (m,n) = 1, then it has been shown in Example of last module that σ is

of last module that σ is an automorphism. So let us assume now that σ is an automorphism. Then the order of σ (a) = a^m is the same as that of a, which is n.

Examples on Automorphisms

Further, if (m,n)=d, then $(a^m)^{n/d}=(a^n)^{m/d}=e$. Thus, the order of a^m divides n/d; that is, $n \mid n/d$. Hence, d = 1, and the solution is complete.

943

Group Action on a Set

We define a binary operation * on a set S to be a function mapping SxS into S. The function * gives us a rule for "multiplying" an element s_1 in S and an element s_2 in S to yield an element s_1 * s_2 in S.

945

Group Action on a Set

More generally, for any sets A, B, and C, we can view a map *: A x B \rightarrow C as defining a "multiplication," where any element a of A times any element b of B has as value some element c of C. Of course, we write a* b = c, or simply ab= c.

Group Action on a Set

Example

Let X be any set, and let H be a subgroup of the group S_x of all permutations of X. Then X is an H -set, where the action of $\sigma \in$ H on X is its action as an element of S_x so that $\sigma x = \sigma(x)$ for all $x \in X$.

949

Our next theorem will show that for every G-set X and each g \in G, the map σ_g : X \rightarrow X defined by σ_g = gx is a permutation of X, and that there is a homomorphism ϕ : G \rightarrow S, such that the action of G on X is essentially the above Example action of the image subgroup H = ϕ [G] of S_x on X.

Group Action on a Set

Proof

To show that σ_g is a permutation of X, we must show that it is a one-to-one map of X onto itself. Suppose that $\sigma_g(x_1) = \sigma_g(x_2)$ for $x_1, x_2 \in X$. Then $g_{X_1} = g_{X_2}$ Consequently, $g^{-1}(g_{X_1}) = g^{-1}(g_{X_2})$. Using Condition 2 in Definition, we see that $(g^{-1}g)_{X_1} = (g^{-1}g)_{X_2}$, so $e_X = ex_2$. Condition 1 of the definition then yields $x_1 = x_2$, so σ_g is one to one. The two conditions of the definition show that for $x \in X$, we have $\sigma_g(g^{-1}x) = g(g^{-1})x = (gg^{-1})x = ex_x$. So σ_g maps X onto X. Thus σ_g is indeed a permutation.

955

Group Action on a Set

To show that $\phi: G \rightarrow S_x$ defined by $\phi(g) = \sigma_g$ is a homomorphism, we must show that $\phi(g_1g_2) = \phi(g_1)$ $\phi(g_2)$ for all $g_1, g_2 \in G$. We show the equality of these two permutations in S_x by showing they both carry an $x \in X$ into the same element. Using the two conditions in above Definition and the rule for function composition, we obtain $\phi(\sigma, \sigma_y)(x) = \sigma_y$. $(x) = (\sigma, \sigma_x) = \sigma_y$. (x)

 $\begin{array}{l} \varphi(g_1g_2)(x) = \sigma_{g_1g_2}(x) = (g_1g_2)x = g_1(g_2x) = g_1 \ \sigma_{g_2}(x) \\ = \sigma_{g_1}(\sigma_{g_2}(x)) = (\sigma_{g_1} \circ \sigma_{g_2})(x) = (\sigma_{g_1} \sigma_{g_2})(x) = \\ (\ \varphi(g_1) \ \varphi(g_2) \ y(x). \end{array}$

958

Thus φ is a homomorphism. The stated property of φ follows at once since by our definitions, we have $\varphi(g)(x) = \sigma_g(x) = gx.$

959

Group Theory

Group Action on a Set

Group	Action on a Set	
	Definition	
	Let X be a set and G a group. An action of G on X is a map $*: G x X \rightarrow X$ such that	
	1. ex = x for all $x \in X$,	
	2. g ₁ (g ₂ x)=(g ₁ g ₂)(x) for all	
	$x \in X$ and all $g_1, g_2 \in G$. Under these conditions,	
	X is a G-set.	
		961

Group Action on a Set

Example

Let $G=D_4$ and X be the vertices 1, 2, 3, 4 of a square. X is a G-set under the action $g^* i = g(i), g \in D_4,$ $i \in \{1, 2, 3, 4\}.$

roup Acti	on on a Set	
	Example	
	Let G be a group.	
	Define	
	a*x =axa⁻¹, a∈G, x∈G.	
	We show that G is a G-set.	
	Let a, $b \in G$. Then	
	(ab)*x=(ab)x(ab)-1	
	= a(bxb ⁻¹)a ⁻¹ =a(b*x)a ⁻¹	
	=a*(b*x).	
	Also, e*x=x.	
		967

This proves G is a G-set. This action of the group G on itself is called conjugation.

968

Group Action on a Set

Example

Let G be a group and H<G. Then the set G/H of left cosets can be made into a G-set defining a*xH=axH, a∈G, xH∈G/H.

969

Group Action on a Set

Example Let G be a group and $H \lhd G$. Then the set G/H of let

Then the set G/H of left cosets is a G-set if we define $a^*xH=axa^{-1}H$, $a\in G$, $xH\in G/H$.

970

Group Action on a Set

To see this, let a, $b \in G$ and $xH \in G/H$. Then $(ab)^*xH = abxb^{-1}a^{-1}H$ $= a^*bxb^{-1}H = a^*(b^*xH)$. Also, $e^*xH = xH$. Hence, G/H is a G-set.

971

Group Theory

Group Action on a Set

-

Theorem

Let G be a group and let X be a set. (i) If X is a G-set, then the action of G on X induces a homomorphism $\varphi:G \rightarrow S_X$. (ii) Any homomorphism $\varphi:G \rightarrow S_X$ induces an action of G onto X.

973

Group Action on a Set		
Proof (i) We define φ :G→S _x by $(\varphi(a))(x)$ =ax, a∈G, x∈X. Clearly $\varphi(a)$ ∈S _x , a∈G. Let a, b∈G. Then $(\varphi(ab))(x)$ =(ab)x=a(t $\varphi(b)(x)$) = $(\varphi(a))((\varphi(b))(x))$ =($\varphi(a)\varphi(b)x$ for all x∈X. Hence, $\varphi(ab)$ = $\varphi(a)\varphi(b)$. (ii) Define a*x=($\varphi(a)$)(x); that is, ax=($\varphi(a)$)(x). Then $(ab)x = (\varphi(ab))(x)$ =($\varphi(a)\varphi(b)$)(x)= $\varphi(a)(\varphi(b)(x)$)= $\varphi(a)(bx)$ -a(bx). Also, ex=($\varphi(e)$)(x)=x. Hence, X is a G-set.		
	974	

Stabilizer

Example

Let G be a group. Define a*x =axa⁻¹, a∈G, x∈G. This action of the group G on itself is called conjugation. Then, for x ∈ G, G_x = {a∈G | axa⁻¹=x}=N(x), the normalizer of x in G. Thus, in this case the stabilizer of any element x in G is the normalizer of x in G.

977

Stabilizer

Example

Let G be a group and H<G. We define action of G on the set G/H of left cosets by a*xH=axH, a∈G, xH∈G/H. Here the stabilizer of a left coset xH is the subgroup $\{g\in G \mid gxH=xH\} = \{g\in G \mid x^1gx\in H\}$ = $\{g\in G \mid gexHx^1\} = xHx^1$

Orbits

Theorem

Let X be a G-set. For x_1 , $x_2 \in X$, let $x_1 \sim x_2$ if and only if there exists g=G such that $gx_1 = x_2$. Then ~ is an equivalence relation on X.

983

Orbits

Proof

For each xEX, we have ex=x, so $x \sim x$ and \sim is reflexive. Suppose $x_1 \sim x_2$, so $gx_1=x_2$ for some gEG. Then

 $g^{-1}x_2{=}g^{-1}(gx_1)=(g^{-1}g)x_1{=}ex_1{=}x_1, \mbox{ so } x_2{\sim}x_1, \mbox{ and } {\sim} \mbox{ is symmetric.}$

Finally, if $x_1 \sim x_2$ and $x_2 \sim x_3$, then $g_1x_1=x_2$ and $g_2x_2=x_3$ for some g_1 , $g_2\in G$. Then $(g_2g_1)x_1=g_2(g_1x_1)=g_2x_2=x_3$, so $x_1 \sim x_3$ and \sim is transitive.

Orbits

Definition

Let G be a group acting on a set X, and let $x \in X$. Then the set $Gx = \{ax \mid a \in G\}$ is called the orbit of x in G.

985

Orbits

Example

Let G be a group. Define $a^*x = axa^{-1}$, $a \in G$, $x \in G$. The orbit of $x \in G$ is $Gx = \{axa^{-1} \mid a \in G\}$, called the conjugate class of x and denoted by C(x).

987

Group Theory Conjugacy and G-Sets

Conjugacy and G-Sets

Theorem

Let X be a G-set and let xEX. Then $|Gx|=(G:G_x)$. If |G| is finite, then |Gx| is a divisor of |G|. If X is a finite set, $|X|=\sum_{x\in C}(G:G_x)$, where C is a subset of X containing exactly one element from each orbit.

Group Theory

Conjugacy and G-Sets

Conjugacy and G-Sets

Theorem

Let X be a G-set and let xEX. Then $|Gx|=(G:G_x)$. If |G| is finite, then |Gx| is a divisor of |G|. If X is a finite set, $|X|=\sum_{x\in C}(G:G_x)$, where C is a subset of X containing exactly one element from each orbit.

992

Conjugacy and G-Sets

To show the map ψ is one to one, suppose $x_1, x_2 \in Gx$, and $\psi(x_1) = \psi(x_2)$. Then there exist $g_1, g_2 \in G$ such that $x_1 = g_1 x, x_2 = g_2 x$, and $g_2 \in g_1 G_x$. Then $g_2 = g_1 g$ for some $g \in G_x$, so $x_2 = g_2 x = g_1(gx) = g_1 x = x_1$. Thus ψ is one to one. Finally, we show that each left coset of G_x in G is of the form $\psi(x_1)$ for some $x_1 \in Gx$. Let $g_1 G_x$ be a left coset. Then if $g_1 x = x_1$, we have $g_1 G_z = \psi(x_1)$. Thus ψ maps Gx one to one onto the collection of left coset so $|Gx| = (G:G_x)$.

993

$$\begin{split} & \text{If } |\mathsf{G}| \text{ is finite, then the} \\ & \text{equation} \\ & |\mathsf{G}| = |\mathsf{G}_x| (\mathsf{G}:\mathsf{G}_x) \text{ shows} \\ & \text{that } |\mathsf{G}x| = (\mathsf{G}:\mathsf{G}x) \text{ is a} \\ & \text{divisor of } |\mathsf{G}|. \\ & \text{Since X is the disjoint} \\ & \text{union of orbits } \mathsf{Gx}, \text{ it} \\ & \text{follows that if X is finite,} \\ & \text{then } |\mathsf{X}| = \sum_{x \in C} (\mathsf{G}:\mathsf{G}_x). \end{split}$$

Isomorphism Theorems

Theorem

Let $\phi: G \rightarrow G'$ be a homomorphism with kernel K, and let $\gamma_k: G \rightarrow G/K$ be the canonical homomorphism. There is a unique isomorphism $\mu: G/K \rightarrow \varphi[G]$ such that $\phi(x) = \mu(\gamma_k(x))$ for each $x \in G$.

997

Isomorphism Theorems

Lemma

Let N be a normal subgroup of a group G and let $y: G \to G/N$ be the canonical homomorphism. Then the map φ from the set of normal subgroups of G containing N to the set of normal subgroups of G/N given by $\varphi(L)=y[L]$ is one to one and onto.

999

Isomorphism Theorems

Proof

If L is a normal subgroup of G containing N, then $\varphi(L)=y[L]$ is a normal subgroup of G/N. Because N \leq L, for each $x \in$ L the entire coset xN in G is contained in L. Thus, $y^{-1}[\varphi(L)]=L$. Consequently, if L and M are normal subgroups of G, both containing N, and if $\varphi(L)=\varphi(M) = H$, then L= $y^{-1}[H]=M$. Therefore φ is one to one.

1000

Isomorphism Theorems	
If H is a normal subgrou of G/N, then y¹[H] is a normal subgroup of G. Because N∈H and	qı
y¹[{N}]=N, we see that N⊆y¹[H]. Then	
φ(y ⁻¹ [H])=γ[y ⁻¹ [H]]=H.	
This shows that ϕ is on the set of normal	to
subgroups of G/N.	
	1001

Group Theory Isomorphism Theorems

Isomorphism Theorems

If H and N are subgroups of a group G, then we let $HN=\{hn \mid h \in H, n \in N\}$. We define the join H V N of H and N as the intersection of all subgroups of G that contain HN; thus H V N is the smallest subgroup of G containing HN.

1003

Isomorphism Theorems

Of course H V N is also the smallest subgroup of G containing both H and N, since any such subgroup must contain HN. In general, HN need not be a subgroup of G.

1004

Isomorphism Theorems

Lemma

If N is a normal subgroup of G, and if H is any subgroup of G, then H V N=HN=NH.

Furthermore, if H is also normal in G, then HN is normal in G.

1005

Isomorphism Theorems

Proof

We show that HN is a subgroup of G, from which H V N=HN follows at once. Let h_1 , $h_2 \in H$ and n_1 , $n_2 \in N$. Since N is a normal subgroup, we have $n_1h_2=h_2n_3$ for some $n_3 \in N$. Then $(h_1n_1)(h_2n_2)=h_1(n_1h_2)n_2=h_1(h_2n_3)n_2=(h_1h_2)(n_1n_2)\in HN$, so I HN is closed under the induced operation in G. Clearly e=ee is in HN. For h e H and n e N, we have $(hn)^{-1}=n^{-1}h^{-1}=h^{-1}n_a$ for some $n_a \in N$, so ince N is a normal subgroup. Thus $(hn)^{-1}\in HN$, so HN $\leq G$.

1006

Isomorphism Theorems A similar argument shows that NH is a subgroup, so NH=H V N=HN. Now suppose that H is also normal in G, and let h H, n \in N, and g \in G. Then ghng⁻¹=(ghg⁻¹)(gng¹) \in HN, so HN is indeed normal in G.

Group Theory

Second Isomorphism Theorem

Second Isomorphism Theorem

Theorem

Let H be a subgroup of G and let N be a normal subgroup of G. Then $(HN)/N \simeq H/(H \cap N)$.

1009

Second Isomorphism Theorem

Proof

Let $y: G \rightarrow G/N$ be the canonical homomorphism and let $H \leq G$. Then y[H] is a subgroup of G/N. Now the action of y on just the elements of H (called y**restricted to** H) provides us with a homomorphism mapping H onto y[H], and the kernel of this restriction is clearly the set of elements of N that are also in H, that is, the intersection $H \cap N$. By first isomorphism theorem, there is an isomorphism $\mu_1: H/(HN) \rightarrow y[H]$.

1010

Second Isomorphism Theorem

On the other hand, y restricted to HN also provides a homomorphism mapping HN onto y[H], because y(n) is the identity N of G/N for all n EN. The kernel of y restricted to HN is N. The first isomorphism theorem then provides us with an isomorphism μ_{i} : (HN)/N = y(H).

 $\begin{array}{l} \mu_2\colon (HN)/N \to y[H].\\ \text{Because}\ (HN)/N\ \text{and}\ H/(H\cap N)\ \text{are both isomorphic to}\\ y[H],\ \text{they are isomorphic to each other. Indeed,}\\ \phi\colon (HN)/N \to H/(H\cap N)\ \text{where}\ \varphi=\mu_1^{-1}\mu_2\ \text{will be an} \end{array}$

isomorphism. More explicitly,

 $\Phi((hn)N)=\mu_1^{-1}(\mu_2((hn)N))=\mu_1^{-1}(hN)=h(H\cap N).$

1011

Isomorphism Theorems

Isomorphism Theorems

Example

Let G be a group such that for some fixed integer n > 1, (ab)ⁿ = aⁿbⁿ for all a, beG. Let G_n={aeG|aⁿ=e} and Gⁿ={aⁿ} |aeG}. Then G_n¬G, Gⁿ¬G, and G/G_n≃Gⁿ.

1013

Isomorphism Theorems

Solution

Let a, beG_n and xeG. Then $(ab^{-1})^n = a^n(b^n)^{-1} = e$, so $ab^{-1} \in G_n$. Also, $(xax^{-1})^n = (xax^{-1})...(xax^{-1}) = xa^nx^{-1} = e$ implies $xax^{-1} \in G_n$. Hence, $G_n \lhd G$. Let a, b, xeG. Then $a^n(b^n)^{-1} = (ab^{-1})^n \in G^n$. Also, $xa^nx^{-1} = (xax^{-1})...(xax^{-1}) = (xax^{-1})^n \in G^n$. Therefore, $G^n \lhd G$.

Group Theory

Isomorphism Theorems

Isomorphism Theorems

Example

Let G be a group such that for some fixed integer n > 1, $(ab)^n = a^nb^n$ for all a, beG. Let $G_n = \{a \in G \mid a^n = e\}$ and $G^n = \{a^n \mid a \in G\}$. Then $G_n = G$, $G^n \lhd G$, and $G/G_n \simeq G^n$.

1016

Isomorphism Theorems Define a mapping f: $G \rightarrow G^n$ by $f(a) = a^n$. Then, for all $a, b \in G$, $f(ab)=(ab)^{n}=a^{n}b^{n}=f(a)f(b)$. Thus, f is a homomorphism. Now Ker $f=\{a|a^n=e\}=G_n$. Therefore, by the first isomorphism theorem $G/G_n \approx G^n$.

Isomorphism Theorems

Example

 $\begin{array}{l} \mbox{Let } G=\mathbb{Z}x \ \mathbb{Z}x\mathbb{Z}, \\ H=\mathbb{Z}x\mathbb{Z}x\{0\}, \ \mbox{and} \\ N=\{0\}x\mathbb{Z}x\mathbb{Z}. \ \mbox{Then clearly} \\ HN=\mathbb{Z}x\mathbb{Z}x\mathbb{Z} \ \mbox{and} \\ H\cap N=\{0\}x\mathbb{Z}x\{0\}. \ \ \mbox{We have} \\ (HN)/N\simeq \ \mathbb{Z} \ \mbox{and we also} \\ have \ \ H/(H\cap N)\simeq \ \mathbb{Z}. \end{array}$

Third Isomorphism Theorem

Theorem

Let H and K be normal subgroups of a group G with K≤H.

Then $G/H \simeq (G/K)/(H/K)$.

1021

Third Isomorphism Theorem

Proof

Let $\varphi:G \rightarrow (G/K)/(H/K)$ be given by $\varphi(a) = (aK)(H/K)$ for $a \in G$. Clearly φ is onto (G/K)/(H/K), and for $a, b \in G$, $\varphi(ab) = [(ab)K](H/K)$ = [(aK)(bK)](H/K) $= [(aK)(H/K)][(bK)(H/K)] = \varphi(a) \varphi(b)$, so φ is a homomorphism.

1022

Third Isomorphism Theorem

The kernel consists of those x \in G such that $\phi(x)$ =H/K. These x are just the elements of H. Then first isomorphism theorem shows that G/H \simeq (G/K)/(H/K).

Group Theory Third Isomorphism Theorem

Theorem

Let H and K be normal subgroups of a group G with $K \leq H$. Then $G/H \simeq (G/K)/(H/K)$.

1030

Group Theory

Sylow Theorems

Sylow Theorems

The fundamental theorem for finitely generated abelian groups gives us complete information about all finite abelian groups. The study of finite nonabelian groups is much more complicated. The Sylow theorems give us some important information about them. 1034

Sylow Theorems

We know the order of a subgroup of a finite group G must divide |G|. If G is abelian, then there exist subgroups of every order dividing |G|. We showed that A_4 , which has order 12, has no subgroup of order 6.

Thus a nonabelian group G may have no subgroup of some order d dividing |G|; the "converse of the theorem of Lagrange" does not hold.

1035

Group Theory

Sylow Theorems

Sylow Theorems

Let X be a finite G-set. Recall that for xEX, the orbit of x in X under G is $Gx=\{gx \mid g\in G\}$. Suppose that there are r orbits in X under G, and let $\{x_1, x_2, \cdots, x_n\}$ contain one element from each orbit in X. Now every element of X is in precisely one orbit, so $|X|=\sum_{i=1}^{r} |Gxi|$.

1039

Sylow Theorems Here may be one-element orbits in X. $tat X_{a} = \{x \in X \mid y = x \text{ for all } y \in X \}$ Thus X_{a} is precisely the union of the one-element $tat X_{a}$ is precisely the union of the un

Sylow Theorems

 $\label{eq:constraints} \begin{array}{l} \mbox{Theorem} \\ \mbox{Let G be a group of order p^n} \\ \mbox{and let X be a finite G-set.} \\ \mbox{Then} \\ \mbox{|X| \equiv |X_G| (mod p).} \end{array}$

1041

Sylow Theorems

Proof

$$\begin{split} & \text{Recall } |X| = |X_G| + \sum_{i=s+1}^r |Gx_i|. \\ & \text{In the notation of above Equation, we know that} \\ & |Gx_i| \text{ divides } |G|. \\ & \text{Consequently p divides } |Gx_i| \text{ for } s+1 \leq i \leq r. \text{ Above equation then shows that } |X| - |X_G| \text{ is divisible by } p, \\ & \text{so } |X| \equiv |X_G| \pmod{p}. \end{split}$$

Cauchy's Theorem

Our goal in these modules is to show that a finite group G has a subgroup of every prime-power order dividing [G].

As a first step, we prove Cauchy's theorem, which says that if p divides |G|, then G has a subgroup of order p.

1045

Cauchy's Theorem

Cauchy's Theorem

Let p be a prime. Let G be a finite group and let p divide [G]. Then G has an element of order p and, consequently, a subgroup of order p.

1046

Cauchy's Theorem

Proof

We form the set X of all ptuples (g_1, g_2, \cdots, g_p) of elements of G having the property that the product of the coordinates in G is e. That is, $X = \{(g_1, g_2, \cdots, g_p) \mid g_i \in G \text{ and}$ $g_1g_2 \cdots g_p = e\}.$

1047

Cauchy's Theorem

We claim p divides |X|. In forming a p-tuple in X, we may let $g_1,g_2,..,g_{p-1}$ be any elements of G, and g_p is then uniquely determined as $(g_1g_2\ldots g_{p-1})^{-1}$. Thus $|X| = |G|^{p-1}$ and since p divides |G|, we see that p divides |X|. Let σ be the cycle (1, 2, 3,..., p) in S_p .

1048

Cauchy's Theorem

1049

Group Theory

Sylow Theorems

Sylow Theorems

Corollary

Let G be a finite group. Then G is a p-group if and only if |G| is a power of p.

1052

Sylow Theorems

Sylow Theorems

Proof

Let ${\mathcal L}$ be the set of left cosets of H in G, and let H act on \mathcal{L} by left translation, so that h(xH) = (hx)H. Then \mathcal{L} becomes an H-set. Note that $|\mathcal{L}| = (G:H)$.

Let us determine $\mathcal{L}_{\rm H^{\prime}}$ that is, those left cosets that are fixed under action by all elements of H. Now xH= h(xH) if and only if H=x⁻¹hxH, or if and only if $x^{-1}hx \in H$.

1057

Sylow Theorems

Thus xH=h(xH) for all $h\in H$ if and only if $x^{-1}hx$ $=x^{-1}h(x^{-1})^{-1}\in H$ for all $h\in H$, or if and only if $x^{-1}\in N[H]$, or if and only if $x \in N[H]$. Thus the left cosets in \mathcal{L}_{H} are those contained in N[H]. The number of such cosets is (N[H]:H), so $|\mathcal{L}_{H}| = (N[H]:H)$.

Since H is a p-group, it has order a power of p. Then $|\mathcal{L}| \equiv |\mathcal{L}_{H}|$ (mod p), that is, $(G:H) \equiv (N[H]:H) \pmod{p}$.

1058

Let H be a subgroup of order p^i . Since i < n, we see p divides (G:H). We then know p divides (N[H]:H).

If $y:N[H] \to M[H]/H$ is the canonical homomorphism, then $y^1[K] = \{K: N[H] \mid y(x) \in K\}$ is a subgroup of N[H]and hence of G. This subgroup contains H and is of order p^{H^2} .

First Sylow Theorem

2. We repeat the construction in part 1 and note that $H < y^{-1}[K] \le N[H]$ where $|y^{-1}[K]| = p^{i+1}$. Since H is normal in N[H], it is of course normal in the possibly smaller group $y^{-1}[K]$.

1063

First Sylow Theorem

Definition

A Sylow p-subgroup P of a group G is a maximal p-subgroup of G, that is, a p-subgroup contained in no larger p-subgroup.

1064

Group Theory

Second Sylow Theorem

Second Sylow Theorem

Let G be a finite group, where $|G|=p^nm$ as in first Sylow theorem.

The theorem shows that the Sylow p-subgroups of G are precisely those subgroups of order pⁿ.

If P is a Sylow psubgroup, every conjugate gPg⁻¹ of P is also a Sylow p-subgroup.

1066

Second Sylow Theorem

The second Sylow theorem states that every Sylow p-subgroup can be obtained from P in this fashion; that is, any two Sylow psubgroups are conjugate.

1067

Second Sylow Theorem

Theorem

Let P_1 and P_2 be Sylow psubgroups of a finite group G. Then P_1 and P_2 are conjugate subgroups of G.

Second Sylow Theorem

Proof

Here we will let one of the subgroups act on left cosets of the other. Let \mathcal{L} be the collection of left cosets of P_1 , and let P_2 act on \mathcal{L} by $z(xP_1)=(zx)P_1$ for $z\in P_2$. Then \mathcal{L} is a P_2 -set. We have $|L_{P_2}| \equiv |\mathcal{L}| \pmod{p}$, and $|\mathcal{L}| = (G:P_1)$ is not divisible by p_1 so $|L_{P_2}| \neq 0$. Let $XP_1 \subseteq L_{P_2}$.

Then zxP₁=xP₁ for all z∈P₂, so x¹zxP₁=P₁ for all z∈P₂. Thus x¹zxP₁ for all z∈P₂, so x¹P₂x≤P₁. Since $|P_1| = |P_2|$, we must have $P_1 = x^{-1}P_2x$, so P_1 and P_2 are indeed conjugate subgroups.

1069

Third Sylow Theorem

The final Sylow theorem gives information on the number of Sylow p-subgroups. **Theorem**If G is a finite group and p divides [G], then the number of Sylow p-subgroups is congruent to 1 modulo p and divides [G].

Sylow Theorems

Example

The Sylow 2-subgroups of S_3 have order 2. The subgroups of order 2 in S_3 are $\{\rho_0, \mu_1\}, \{\rho_0, \mu_2\}, \{\rho_0, \mu_3\}.$ Note that there are three subgroups and that $3 \equiv 1 \pmod{2}.$

1075

Sylow Theorems

Example

Let us use the Sylow theorems to show that no group of order 15 is simple. Let G have order 15.

We claim that G has a normal subgroup of order 5. By first Sylow theorem G has at least one subgroup of order 5, and by third Sylow theorem the number of such subgroups is congruent to 1 modulo 5 and divides 15. Since 1, 6, and 11 are the only positive numbers less than 15 that are congruent to 1 modulo 5, and since among these only the number 1 divides 15, we see that G has exactly one subgroup P of order 5.

1077

But for each g∈G, the inner automorphism i_g of G with i_g(x)=gxg⁻¹ maps P onto a subgroup gPg⁻¹, again of order 5. Hence we must have gPg^{-1} =P for all g ∈ G, so P is a normal subgroup of G. Therefore, G is not simple.

Application of Sylow Theory

Consider now the special case of above equation, where X=G and the action of G on G is by conjugation, so g \in G carries x \in X = G into gxg⁻¹. Then X_i={x \in G} gxg⁻¹=x for all g \in G}

 $= \{x \in G \mid xg=gx \text{ for all } g \in G\}=Z(G), \text{ the center of } G. \\ \text{If we let } c=|Z(G)| \text{ and } n_{=}|Gx_{i}| \text{ in above equation,} \\ \text{ then we obtain } |G|=c+n_{c+1}+...+n_{r}, \text{ where } n_{i} \text{ is the} \\ \text{ number of elements in the ith orbit of } G \text{ under } \\ \text{ conjugation by itself.} \\ \end{cases}$

Note that n_i divides |G| for $c+1 \le i \le r$ since we know $|Gx_i| = (G: G_{x_i})$, which is a divisor of |G|.

1081

Application of Sylow Theory

Definition

The equation
$$\begin{split} &|G|=c+n_{c+1}+...+n_r, \text{ where } \\ &c=|Z(G)| \text{ and } n_i \text{ is the } \\ &number of elements in \\ &th orbit of G under \\ &conjugation by itself, is \\ &the class equation of G. \\ &Each orbit in G under \\ &conjugation by G is a \\ &conjugate class in G. \end{split}$$

1082

Application of Sylow Theory

Example

$$\begin{split} & i_{\rho_1}(\rho_0)=\rho_1\rho_0\rho_1^{-1}=\rho_0 & i_{\mu_1}\left(\rho_1\right)=\mu_1\rho_1\mu_1^{-1}=\rho_2 \\ & i_{\mu_1}\left(\rho_2\right)=\mu_1\rho_2\mu_1^{-1}=\mu_1\rho_2\mu_1=\rho_1 \\ & i_{\rho_1}\left(\mu_1\right)=\rho_1\mu_1\rho_1^{-1}=(1,2,3)(2,3)(1,3,2)=(1,3)=\mu_2 \\ & i_{\rho_1}(\mu_2)=\rho_1\mu_2\rho_1^{-1}=\mu_3 & i_{\rho_1}(\mu_3)=\rho_1\mu_3\rho_1^{-1}=\mu_1 \\ & \text{Therefore, the conjugate classes of S}_3 are \\ & \{\rho_0\}, \quad \{\rho_1,\rho_2\}, \quad \{\mu_1,\mu_2,\mu_3\}. \end{split}$$

1083

Application of Sylow Theory

Theorem

The center of a finite nontrivial p-group G is nontrivial.

1084

Application of Sylow Theory

Proof

We have $|G|=c+n_{c+1}+...+n_r$, where n_i is the number of elements in the ith orbit of G under conjugation by itself.

For G, each n, divides |G| for c+1≤i≤r, so p divides each n, and p divides |G|. Therefore p divides c. Now e∈Z(G), so c≥1. Therefore c≥p, and there exists some a∈Z(G) where a≠e.

1085

Group Theory

Application of Sylow Theory

Application of Sylow Theory

Lemma

Let G be a group containing normal subgroups H and K such that $H \cap K = \{e\}$ and H V K = G. Then G is isomorphic to H X K.

1087

Application of Sylow Theory

Proof

We start by showing that hk=kh for k∈K and h∈H. Consider the commutator hkh⁻¹k⁻¹=(hkh⁻¹)k⁻¹=h(kh⁻¹k⁻¹). Since H and K are normal subgroups of G, the two groupings with parentheses show that hkh⁻¹k⁻¹ is in both K and H. Since K∩H={e}, we see that hkh⁻¹k⁻¹=e, so hk=kh.

1088

Application of Sylow Theory

Let $\varphi\colon H\times K\to G$ be defined by $\varphi(h,k) = hk$. Then $\varphi((h,k)(h',k'))=\varphi(hh',kk')=hh'kk'=hkh'k'$ $=\varphi(h,k)\varphi(h',k')$, so φ is a homomorphism. If $\varphi(h,k)=e$, then hk=e, so $h=k^{-1}$, and both h and k are in H \cap K. Thus h=k=e, so Ker(φ)={(e, e)} and φ is one to one.

We know that HK=H V K, and H V K = G by hypothesis.

Thus ϕ is onto G, and H x K \simeq G.

1089

Application of Sylow Theory

Application of Sylow Theory

Theorem

For a prime number p, every group G of order p² is abelian.

1091

Application of Sylow Theory

Proof

If G is not cyclic, then every element except e must be of order p.

Let a be such an element. Then the cyclic subgroup <a> of order p does not exhaust G.

Also let b∈G with b∉<a>. Then <a>∩={e}, since an element c in <a>∩={e}, since both <a> an , giving <a>=, contrary to construction.

1092

Application of Sylow Theory

From first Sylow theorem, <a> is normal in some subgroup of order p^2 of G, that is, normal in all of G. Likewise is normal in G.

Now $\langle a \rangle V \langle b \rangle$ is a subgroup of G properly containing $\langle a \rangle$ and of order dividing p^2 .

Hence <a> V must be all of G.

Thus the hypotheses of last lemma are satisfied, and G is isomorphic to <a> x and therefore abelian.

1093