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Group Theory

Topic No. 1

Group Theory

Properties of Real
Numbers

Properties of Real Numbers

Number Systems
N={1,23, ..}
7<{..,-2,-1,0,1,2,..}
Q={p/q | p, q € Zand q#0}

Q’= Set of Irrational
Numbers

R=QUQ’

Properties of Real Numbers

0.131313...=0.13+
0.0013+0.000013+...

=13/100+13/10000+
13/1000000+..
=(13/100)(1+1/100+
1/10000+...)
=(13/100)(100/99)
=13/99

Properties of Real Numbers

= ©=2.718281828459045... € Q°

= \/2=1.414213562373095... € Q

= 1/5=2.23606797749978... € Q°

"YabeR,abeR

"VagbeR, atbe R

="V a,b, ceR, (a+b)+c=a+(b+c)

= For example, (1/4+3)+ \/7=(13+4 \/7)/4=1/4+(3+ \/7)

Properties of Real Numbers

="V a,b,ceR, (ab)c=a(bc)

= For instance, ((-2/3)4)V2=(-8/3) V2 =(-2/3)(4 V2)

= For every d € Rand 0 € R, a+0=a=0+a

= Foreveryae Rand 1€ R, a.1=a=1.a

= For every a € R there exists -a € R such that
a+(-a)=0=(-a)+a

= For every a € R\{0} there exists 1/a € R\{0} such that
a(1/a)=1=(1/a)a

="V a,beR, atb=b+a

*Va,beR,ab=b.a
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Group Theory

Topic No. 2

Group Theory

Properties of Complex
Numbers

Properties of Complex Numbers

= C={a+bi | a, b e R}

= V g+bi, c+di € C, (a+bi)+(c+di)=(a+c)+(b+d)i € C

= V ag+bi, c+di € C, (a+bi).(c+di)=(ac-bd)+(ad+bc)i € C

= V g+bi, c+di, e+fi € C, [(a+bi)+(c+di)]+(e+fi)=
[(a+c)+(b+d)i]+(e+fi)=[(a+c)+e]+[(b+d)+f]i
=[a+(c+e)]+[b+(d+f)]i=(a+bi)+[(c+e)+(d+f)i]=
(a+bi)+[(c+di)+(e+fi)]

Properties of Complex Numbers

= V g+bi, c+di, e+fi € C, [(a+bi).(c+di)].(e+fi)
=[(ac-bd)+(bc+ad)i].(e+fi)
=[(ac-bd)e-(bc+ad)f]+[(bc+ad)e+(ac-bd)f]i
=[a(ce-df)-b(de+cf)]+[a(de+cf)]+b(ce-df)]i
=(a+bi).[(ce-df)+(de+cf)i]=(a+bi).[(c+di).(e+fi)]

= For every a+bi € C and 0=0+0i € C, (a+bi)+0=
(a+bi)+(0+0i)=(a+0)+(b+0)i=a+bi=0+(a+bi)

= For every a+bi € C and 1=1+0i € C, (a+bi).1=
(a+bi).(1+0i)=(a.1-0b)+(b.1+0.a)i=a+bi=1.(a+bi)

10
Properties of Complex Numbers Properties of Complex Numbers
= For every a+bi € C there exists -a-bi € C such that L4 a+_bi, c+di_ eC, i
(a+bi)+(-a-bi)=(a+(-a))+(b+(-b))i=0+0i=0=(-a-bi)+(a-+bi) (a+bi)+(crdi)=(a+c)+(b+d)i
= For every a+bi € C\{0} there exists =(c+a)+(d+b)i=(c+di)+(a+bi)
1/(a+bi)=a/(a?+b2)-(b/(a?+b2))i € C\{0} " Vasbi, crdi€
such that (a+bi).(a/(a2+b?)-(b/(a?+b?))i ) (aebi)-(cxd)
= (a?+b?)/(a*+b?)+((ab-ab)/(a%+b?))i=1+0i=1 =(ac-bd)+ (ad+bc)i
=(a/(a*+b?)-(b/(a*+b?))i )(a+bi) =(ca-db)+(cb+da)i
=(c+di).(a+bi)
11
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Group Theory

Topic No. 3

Group Theory

Binary Operations

Binary Operations

Definition

A binary operation * on a
setSis a function
mapping SxSinto S.

For each (a, b) ESx S, we
will denote the element
*((a, b)) of S by a*b.

Binary Operations

= Usual addition ‘+' is a
binary operation on the
sets R, C, Q, Z, R*, Q*,
7

= Usual multiplication * is
a binary operation on
the sets R, C, Q, Z, R*,
Q' Z*

= Usual multiplication * is
a binary operation on
the sets R\{0}, C\{0},
Q\{0}, Z\{0}

15 16
Binary Operations Binary Operations
Let M(R) be the set of all Usual addition ‘+’ is not a
matrices with real entries. binary operation on the
The usual matrix addition sets R\{0}, C\{0}, Q\{0},
is not a binary operation Z\{0} since
on this set since A+B is 2+(-2)=0 ¢ Z\{0}cQ\{0}
not defined for an < R\{0} c C\{0
ordered pair (A, B) of \{0} < C\{0}.
matrices having different
numbers of rows or of
columns.
17 18
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Binary Operations

Definition

Let * be a binary
operation on S and let H
be a subset of S.

The subset H is closed
under # if foralla,b € H
we also have a*b € H.

In this case, the binary
operation on H given by
restricting * to H is the
induced operation of *

Binary Operations

Usual addition ‘+' on the
set R of real numbers
does not induce a binary
operation on the set
R\{0} of nonzero real
numbers because
2€R\{0} and -2€R\{0},
but 2+(-2)=0 € R\{0}.
Thus R\{0} is not
closed under +.

on H.
19 20
Binary Operations Group Theory
Usual multiplication " on
the sets R and Q induces
a binary operation on the
sets R\{0}, R* and Q\{0}, Binary Operations
Q*, respectively.
21

Binary Operations

= LetS beasetand
a,beS.

Binary Operations

= LetS beasetand
a,bes.

= Abinary operation x
on S is a rule which
assigns to any ordered
pair (a,b) an element

axbeS.
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Binary Operations

Binary Operations

Examples Examples
= For S=N,Z,Q,R,C, = For S=N,Z,Q,R,C,
ax*b=a+b ax*b=a+b
* For S=N,Z,QR,C,
axb=ab
Binary Operations Binary Operations
Examples Examples
- For S=NZQRC, * For S=N.Z,QR.C,
ax*b=a+b ax*b=a+b
= For S=N,Z Q,R,C, = For S=N,Z,Q,R,C,
axb=ab axb=ab
" =7 0 ~
R ST EESS T
= For S=N,7Z,QR,
a*b=min(a,b)
Binary Operations Binary Operations
Examples Examples
= For S={1,2,3} = For S={l,2,3}
a*xb=b a*b=b
= For example
1x2=2,
1x1=1,
2#3=3.
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Binary Operations

Examples

= For S=Q, a*b=a/b isnoteverywhere
defined since no rational number is assigned by
this rule to the pair (3,0).

Binary Operations

Examples

= For S=Q, axb=a/b isnot everywhere
defined since no rational number is assigned by
this rule to the pair (3,0).

= For S=7", a*b=a/bis not a binary operation
on 7+ since 7+ is not closed under *,

Binary Operations

Definition

= Abinary operation *
onaset S is
commutative if and
onlyif a*b=b=*a
forall @,beS.

Binary Operations

Definition

= Abinary operation *
onaset$S is
associative if
(axb)*c=ax*(b*c)
forall a,b,ceS.

Binary Operations

Examples
= The binary operation * defined by
ax*b=a+b
is commutative and associative in C.

Binary Operations

Examples
= The binary operation * defined by
a*b=a+b
is commutative and associative in C.
= The binary operation * defined by
a*b=ab
is commutative and associative in C.
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Binary Operations

= The binary operation defined by axb=a—b

is not commutative in 7,

Binary Operations

The binary operation defined by axb=a—b
is not commutative in 7,

The binary operation givenby axb=a—his
not associative in 7,

Binary Operations

The binary operation defined by a*b=a—b
is not commutative in 7.
The binary operation givenby gaxb=a—bis
not associative in 7,
For instance,
(axb)*xc=(4-7)-2=-5
but
ax(bxc)=4-(7-2)=-1.

Group Theory

Bijective Maps

Bijective Maps

Definition

= Afunction f: X >VY is
called injective or one-to-
one if

f(x)=f(%)=>x=X

Bijective Maps

Definition
= Afunction f: X Y is
called injective or one-to-

one if

f(x)=f(%)=x%=X.

or

5% =1 00) = f(x).
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Bijective Maps

Definition

= Afunction f : X > VY is
called surjective or onto if
forany y eV, there exists

xe X with Y= f(X).

Bijective Maps

Definition
= Afunction f: X Y is
called surjective or onto if
forany y €Y, there exists
xe X with Y= f(X).
i.e. if theimage f(X) is
the whole set Y .

Bijective Maps

Definition

= A bijective function or one-
to-one correspondence is a
function that is both
injective and surjective.

Example

Bijective Maps

f:R—>R" f(x)=10"

Bijective Maps

Bijective Maps

Example
f:R—>R", f(x)=10"
f(x)=f(y)=10"=10" = x=y

Therefore, f is one-to-one.

Example
f:R—>R" f(x)=10"
f(x)=f(y)=10"=10" => x=y
Therefore, f is one-to-one.

If reRY, then log,,r €R such that
f(log,, r)=10"%" =r.




Bijective Maps

Example
f:R—>R", f(x)=10"

f(x)=f(y) =10 =10 = x=y
Therefore, f is one-to-one.

If reRY, then log,,r € R such that
f(log,, r) =10"%" =r.

Itimplies that f is onto.

Bijective Maps

Example
f:R—>R", f(x)=10"

f(x)=f(y)=10"=10" = x=y
Therefore, f is one-to-one.

If reR", then log,,reR such that
f(log,,r)=10"%"=r.

Itimplies that f is onto.

Hence f is bijective.

Bijective Maps

Example

f:2—-7, f(m)=3m

Bijective Maps
Example
f:Z2—-7, f(m)=3m

f(m)=f(n)=3m=3n=m=n
Therefore, f is one-to-one.

Bijective Maps

Example
f:2—-7, f(m)=3m

f(m)=f(n)=3m=3n=m=n

Therefore, f is one-to-one.

We assume that m € Z is the pre-image of 4 Z,
then f(M)=3m=4=m=4/3¢Z.

Itimplies that f is not onto.

Bijective Maps
Example

fiR>R, f(x)=x2

12/16/2018
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Bijective Maps
Example
fiR>R, f(x)=x2

f(-3)=f(3)=9 but -3%3.

Therefore, f is not one-to-one.

fiR>R, f(x)=x*

f(-3)=f(3)=9 but 3=3.

Therefore, f is not one-to-one.

We assume that X € R is the pre-image of -5 R,
then f(x)=x* =-5=x=v5¢R.

It implies that f is not onto.

Bijective Maps

Bijective Maps

Definition

= Llet f:X >Y bea
function and let H be a
subset of X. The image of

H under f is given by
f[H]:{f(h)lheH}_

Bijective Maps

Definition
= Afunction f: X Y is
called surjective or onto if

f[x]=Y.

Bijective Maps

Example

f:R>R*, f(x)=10"

Bijective Maps

Example
f:R—>R", f(x)=10"
f[R]=R*

Therefore, f is onto.

10



12/16/2018

Bijective Maps

Example

f:2—-7, f(m)=3m

Bijective Maps

Example
f:Z—-7, f(m)=3m
f [7A]:37A¢7A

It implies that f is not onto.

Bijective Maps
Example

f:RoR, f(x)=x2

Bijective Maps
Example
f:RoR, f(x)=x*

f[R]=R*U{0}=R

So, f isnotonto.

Group Theory

Inversion Theorem

Inversion Theorem

Lemma
if f:X =Y and g:Y — Z are two functions, then:
(i) 1f f and 9 are injective, go f isinjective.

11
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Inversion Theorem

Lemma

If f:X —>Yand g:Y — Z are two functions, then:
(i) If T and 9 are injective, go f isinjective.

(i) If T and 9 are surjective, go fis surjective.

Inversion Theorem

Lemma

If f:X —>Y and g:Y — Z are two functions, then:
(i) If T and 9 areinjective, ge f isinjective.

(i) 1f T and G are surjective, go fis surjective.

(iii) If fand 9 are bijective, 9° f is bijective.

Inversion Theorem

Proof
(i) Suppose that (gof)(xi)=(guf)(x2) Then,
9(f(4)=0(f(x))=f(x)=f(x)=x=x

Inversion Theorem

Proof

(i) Suppose that (g of )(X1)=(g o f)(x2)4 Then,
g(f (Xl))=g(f (XZ))D f(x)=f(x)=x=x

(i) Letz e Z .Since § is surjective, there existsy € Y

with g(y): z.

Inversion Theorem

Proof

(i) Suppose that (g ° f)(x1)=(g of )(Xz) Then,
g(f(x))=9(f(x))=f(x)=f(x)=x=x

(i) Letz e Z .Since § is surjective, there existsy € Y

with g(y)=z.Since f isalso surjective, there exists

xe X with f(x)=y.

Inversion Theorem

Proof

(i) Suppose that (g of )(xl) = (g of )(Xz) Then,
g(f (Xl))=g(f (XZ))D fx)=f(x)=>x=x

(i) Letz e Z .Since § is surjective, there existsy € Y

with g(y)=1z.Since f is also surjective, there exists

x e X with f(x)=y.Hence,

(9o H)(x)=9(f(x)=9(y)=2.

So, go f is surjective.

12
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Inversion Theorem

Proof
(i) Suppose that (g f)(xl):(g of )(xZ) Then,

9(1(%)=0( ()= (%)= ()= % =,
(i) Letz eZ .Since @ is surjective, there existsy € Y
with g(y)=z.Since f isalso surjective, there exists
x e X with f(x) =y.Hence,

(9o 1)) =9(f(x)=9(y)

So, geo f is surjective.
(iii) This follows from parts (i) and (ii).

z.

Inversion Theorem

Theorem
The function f : X =Y has
an inverse if and only if f is
bijective.

Inversion Theorem

Proof
Suppose that h:Y — X is an inverse of f.

Inversion Theorem

Proof
Suppose that h:Y — X is an inverse of f.
The function f is injective because

f(x)=1(x)=(he1)(0)=(h=T)(x)=>x=x%.

Inversion Theorem

Proof
Suppose that h:Y — X is an inverse of f.
The function f is injective because

(%)= 0e)=(hef)(x)=(he)(x)=x=x.

The function f is surjective because if for any Y eY

with X =h(y), it follows that f (x)=f (h(y))=y.

Inversion Theorem

Proof
Suppose that h:Y — X is an inverse of f.
The function f is injective because

(%)= ()=(he1)(0)=(h=T)(x)=x=x.

The function f is surjective because if for any Y € Y
with X =h(y), it follows that f (x)=f (h(y))=y.

Therefore, f is bijective.

13
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Inversion Theorem

Proof
Conversely, suppose that f is bijective. We define the
function h:Y — X as follows.

Inversion Theorem

Proof

Conversely, suppose that f is bijective. We define the
function h:Y — X as follows. Forany y €Y, there

exists x e X with y = f (X)

Since f is injective, there is only one such element X.

Inversion Theorem

Proof

Conversely, suppose that f is bijective. We define the
function h:Y — X as follows. Forany y €Y, there
exists x € X with y = f (x).

Since f is injective, there is only one such element X.
Define h(y) = X. This function h is an inverse of f
because

£(h(y))=(x)=Y and h(f(x))=h(y)=x

Group Theory

= Isomorphic Binary
Structures

Isomorphic Binary Structures

= Let us consider a binary algebraic structure <S,*> to
be aset S together with a binary operation * on S.

Isomorphic Binary Structures

= Let us consider a binary algebraic structure <S,*> to
be aset S together with a binary operation * on S,
= Two binary structures <S,*> and <S',*'> are said to
be isomorphic if there is a one-to-one
correspondence between the elements X of S and
the elements X’ of S’ such that
XX and Yy Y = xry o X ¥y

14
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Isomorphic Binary Structures

Let us consider a binary algebraic structure (S,*) to
be aset S together with a binary operation* on S.
Two binary structures (S,*) and (S',*) are said to
be isomorphic if there is a one-to-one
correspondence between the elements Xof S and
the elements X’ of S’ such that

X< x and YO Y Xy o X ¥y
A one-to-one correspondence exists if the sets §
and S’ have the same number of elements.

Isomorphic Binary Structures

Definition

= Let <S, *> and <S’,*'> be binary algebraic
structures. An isomorphism of S with S’ is a one-
to-one function ¢ mapping S onto S§'such that

Px*y)=4(X)* ¢(y) V X,y €S.

Isomorphic Binary Structures

How to show binary structures are isomorphic

= Step 1. Define the function ¢ that gives the
isomorphism of S and S'.

Isomorphic Binary Structures

How to show binary structures are isomorphic

= Step 1. Define the function ¢ that gives the
isomorphism of S and S'.

= Step 2. Show that ¢ is one-to-one.

Isomorphic Binary Structures

How to show binary structures are isomorphic

= Step 1. Define the function ¢ that gives the
isomorphism of S and S'.

= Step 2. Show that ¢ is one-to-one.

= Step3.Show that ¢@isonto S'.

Isomorphic Binary Structures

How to show binary structures are isomorphic

= Step 1. Define the function ¢ that gives the
isomorphism of S and S'.

= Step 2. Show that ¢ is one-to-one.
= Step3.Show that ¢isonto S'.
= Step 4. Show that

H(x*y)=¢(X) ¥ (y) V X,y €S.

15
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Isomorphic Binary Structures

Example

= We show that the binary structure <1R,+> is
isomorphic to the structure (R”,.).

Isomorphic Binary Structures

Example

= We show that the binary structure <R,+> is
isomorphic to the structure (R",.).

= Stepl.
¢ R>R', g(x)=¢€"

Isomorphic Binary Structures

Example
= We show that the binary structure <]R,+> is
isomorphic to the structure (R*,.).
= Step1l.
$R>R, ¢(x)=¢€"

= Step2.
P =g(y) =€ =€’ = x=y.

Isomorphic Binary Structures

Example

= We show that the binary structure <R,+> is
isomorphic to the structure (R",.).

= Step 1.
¢ R>R, g(x)=¢€*
= Step2. .
) =p(y)=>e =e' =>x=y.
= Step3.If reR", then In(r) e Rand
#(nr)=e" =r.

Isomorphic Binary Structures

Example

= We show that the binary structure <1R, +> is
isomorphic to the structure (R*, >

= Stepl.  g:R—>R', g(x)=¢€"
= Step2. dX)=g(y) >e*=e' = x=y.
= Step3.If reR; then InreR and

#(nr)=e" =r.
= Stepd. g(x+y)=e"' =€’ =g¢(X)d(y) V X,y e R.

Group Theory

= Isomorphic Binary
Structures

16



Isomorphic Binary Structures

Example

= We show that the binary structure <7A, +> is
isomorphic to the structure <2Z, +>.

Isomorphic Binary Structures

Example

= We show that the binary structure <7A, +> is
isomorphic to the structure <ZZ, +>.

= Stepl. ¢:7Z—27, p(m)=2m

Isomorphic Binary Structures

Example

= We show that the binary structure <Z, +> is
isomorphic to the structure <27A, +>.

= Stepl. ¢:Z—>27, g(m)=2m

" Step2.  g(m)=g¢(n)=>2m=2n=m=n.

Isomorphic Binary Structures

Example
= We show that the binary structure <Z, +> is
isomorphic to the structure <27A, +>.
= Stepl. ¢:7Z—>27Z, g(m)=2m
= Step2. P(M)=¢(N)=2m=2n=>m=n.
= Step3.If ne2Z, then m=n/2eZ and
#(m)=2(n/2)=n.

Isomorphic Binary Structures

Example

= We show that the binary structure <Z, +> is
isomorphic to the structure <27A, +>.

= Stepl. ¢:Z—>27, g(m)=2m

= Step2.  g(M)=g(n)=>2m=2n=m=n.

= Step3.If ne€2Z, then m=n/2eZ and

p(m)=2(n/2)=n.
= Step4.
#(m+n)=2(m+n)=2m+2n=g(m)+4(n) V mneZ

Isomorphic Binary Structures

How to show binary structures are not isomorphic
= How do we demonstrate that two binary structures
<S,*> and <S',*’> are not isomorphic?

12/16/2018
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Isomorphic Binary Structures

How to show binary structures are not isomorphic
= How do we demonstrate that two binary structures
<S,*> and <S’,*’> are not isomorphic?
= There is no one-to-one function ¢ from S onto S’
with the property
Px*y)=F(X) ¥ (y) V X,y €8S.

Isomorphic Binary Structures

How to show binary structures are not isomorphic
= How do we demonstrate that two binary structures
<S,*> and <S’,*’> are not isomorphic?
= There is no one-to-one function ¢ from S onto S’
with the property
x*y)=g(X) ¥ $(y) V x,y 8.
= Ingeneral, it is not feasible to try every possible

one-to-one function mapping S onto S’and test
whether it has homomorphism property.

Isomorphic Binary Structures

How to show binary structures are not isomorphic

= Astructural property of a binary structure is one
that must be shared by any isomorphic structure.

Isomorphic Binary Structures

How to show binary structures are not isomorphic

= Astructural property of a binary structure is one
that must be shared by any isomorphic structure.

= Itis not concerned with names or some other
nonstructural characteristics of the elements.

Isomorphic Binary Structures

How to show binary structures are not isomorphic

= Astructural property of a binary structure is one
that must be shared by any isomorphic structure.

= Itis not concerned with names or some other
nonstructural characteristics of the elements.

= Astructural property is not concerned with what we
consider to be the name of the binary operation.

Isomorphic Binary Structures

How to show binary structures are not isomorphic

= Astructural property of a binary structure is one
that must be shared by any isomorphic structure.

= Itis not concerned with names or some other
nonstructural characteristics of the elements.

= Astructural property is not concerned with what we
consider to be the name of the binary operation.

= The number of elements in the set S is a structural
property of <S, *>

18



Isomorphic Binary Structures

How to show binary structures are not isomorphic
= Inthe event that there are one-to-one mappings of
S onto §', we usually show that <S,*> is not
isomorphic to <S', *'> by showing that one has
some structural property that the other does not
possess.

Isomorphic Binary Structures

Possible Structural
Properties
= The set has four elements.

Isomorphic Binary Structures

Possible Structural

Properties

= The set has four elements.

= The operation is
commutative.

Isomorphic Binary Structures

Possible Structural

Properties

= The set has four elements.

= The operation is
commutative.

= X*X=X forall xeS§S.

Isomorphic Binary Structures

Possible Structural

Properties

= The set has four elements.

= The operation is
commutative.

= X*X=X forall xe8S.

= The equation a*x=hb
has a solution Xin S
foralla,bes.

Isomorphic Binary Structures

Possible Nonstructural

Properties

= The number 4 is an
element.

12/16/2018
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Isomorphic Binary Structures

Possible Nonstructural

Properties

= The number 4isan
element.

= The operation is called
“addition”.

Isomorphic Binary Structures

Possible Nonstructural

Properties

= The number 4is an
element.

= The operation is called
“addition”.

= The elements of S are
matrices.

Isomorphic Binary Structures

Possible Nonstructural

Properties

= The number 4isan
element.

= The operation is called
“addition”.

= The elements of S are
matrices.

= Sisasubsetof C.

Isomorphic Binary Structures

Example
= The binary structures
(Q+) and (R,+) are
not isomorphic because
Q has cardinality N,
(aleph-null) while
[ R[N,

Isomorphic Binary Structures

Example
= We prove that the binary structures <Q, +> and
<7A,+> under the usual addition are not isomorphic.

Isomorphic Binary Structures

Example
= We prove that the binary structures <Q, +> and
<7A,+> under the usual addition are not isomorphic.

= Both Q and 7Z have cardinality Ny, so there are
lots of one-to-one functions mapping Q onto Z.

20
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Isomorphic Binary Structures

Example
= We prove that the binary structures <Q), +> and

<Z,+> under the usual addition are not isomorphic.

= Both Q and Z have cardinality 2\‘0, so there are
lots of one-to-one functions mapping (Q onto 7.

= The equation X+ X =C has a solution X for all
¢ € Q but this is not the case in Z.

Isomorphic Binary Structures

Example
= We prove that the binary structures <Q, +> and
<Z,+> under the usual addition are not isomorphic.

= Both Q and 7 have cardinality NO, so there are
lots of one-to-one functions mapping Q onto 7.

® The equation X+ X =C has a solution X for all
¢ € Q but this is not the case in Z.

= For example, the equation X + x = 3has no solution
inZ.

Isomorphic Binary Structures

Example

= The binary structures
<‘C,-> and <IR,.>
under usual
multiplication are
not isomorphic because
the equation X.X=C
has solution X for all
¢ eC but x.x =—1has
no solution in R.

Isomorphic Binary Structures

Example

= The binary structures <MZ (IR{),.> and <IR,.>
under usual matrix multiplication and number
multiplication, respectively because multiplication
of numbers is commutative, but multiplication of
matrices is not.

Group Theory

= Isomorphic Binary
Structures

Isomorphic Binary Structures

Example
= s ¢:7Z—> 7, $(n) =3nfor n € Z an isomorphism?
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Isomorphic Binary Structures

Example
= Is ¢: 7 — Z, $(n) =3nfor n € Z an isomorphism?
= ¢ 27, p(n)=3n

Isomorphic Binary Structures

Example

= Is ¢:7 — 7, p(n) =3nfor n € Z an isomorphism?
= ¢ 77, $(n)=3n

= g(m=¢(n)=3m=3n=>m=n

Isomorphic Binary Structures

Example

= s ¢:7Z—7Z, ¢(n) =3nfor n e Z an isomorphism?
« $: 77, ¢(n)=3n

= p(m)=¢(n)=>3m=3n=m=n

= Choose 5¢7, #(M)=3m=>5 but m=5/3¢Z

Isomorphic Binary Structures

Example

= s ¢:7Z—> 7, $(n) =3nfor n € Z an isomorphism?
= $: 77, p(n)=3n

= p(M)=¢(n)=>3m=3n=m=n

= Choose 57, #(M)=3m=5 but m=5/3¢7Z

= Is¢:Z—7Z, $(N)=3n homomorphism?
#(m+n)=3(m+n)=3m+3n=g(Mm)+¢(N) VMneZ

Isomorphic Binary Structures

Example

= s ¢:7Z—7Z, ¢(n) =3Nfor n € Z an isomorphism?
= $: 77, ¢(n)=3n

= p(m)=¢(n)=>3m=3n=m=n

= Choose 5¢7, #(M)=3m=5 but m=5/3¢7Z

= Is¢:Z—7Z, ¢(N)=3n homomorphism?
#(m+n)=3(m+n)=3m+3n=g(M)+¢(n) V mneZ

= (Z+)=(32,+)

Isomorphic Binary Structures

Example
= Is¢p:Z—> Z,$(n) =n+1for n € Z an isomorphism?
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Isomorphic Binary Structures

Example
= Is¢:Z—>Z,$(n) =Nn+1for n € Z anisomorphism?
= $: 77, g(n)=n+1

Isomorphic Binary Structures

Example

= Is¢: 72— 7Z,$(n) =Nn+1forn € Z an isomorphism?
w 77, g(n)=n+1

« g(m=g(n)=>m+l=n+l=m=n

Isomorphic Binary Structures

Example

= Is¢:Z—> Z,$(n) =n+1for n € Z anisomorphism?

= $: 77, g(n)=n+1

« pm)=g(n)=m+l=n+l=m=n

= Forevery NeZ, there exists N—1e& Z such that
p(n—-1)=n-1+1=n.

Isomorphic Binary Structures

Example

= Is¢p:Z— Z,$(n) =n+1for n € Z an isomorphism?

« 27, g(n)=n+1

« pM)=g(n)=>m+l=n+l=>m=n

= Forevery NeZ, there exists N—1e& Z such that
#(n—-1)=n-1+1=n.

= g(m+n)=m+n+1=g(m)+gp(n)=m+n+2

Isomorphic Binary Structures

Example
= Is¢:Q— Q, #(X) = x/ 2for x € Qisomorphism?

Isomorphic Binary Structures

Example
= 15 ¢ Q— Q, #(X) = X/ 2for X € Qisomorphism?
= p:Q>Q, g(x)=x/2
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Isomorphic Binary Structures

Example

= 1s¢:Q—> Q, ¢(x) = x/ 2for x € Qisomorphism?
= 9:Q>Q g(x)=x/2
 JX)=p(Y)=>x/2=y/2=x=y

Isomorphic Binary Structures

Example

= 1s¢:Q—>Q, ¢(x) = x/ 2for x € Qisomorphism?

.« $:0>Q JN)=x/2

 pX)=g(Y)=>x/2=y/2=>x=y

= Forevery Yy €Q, there exists 2y € Q such that
#2y)=2y/2=y.

Isomorphic Binary Structures

Example

= 15 ¢:Q— Q, #(X) = x/ 2for x € Qisomorphism?

= 9:Q>Q, d(x)=x/2

 JX)=g(y)=>x/2=y/2=>x=Yy

= Forevery Y €@, there exists 2y € Q such that
iy Xy pRy)=2yl2=y.

" ¢(X+Y)=T=§+E=¢(X)+¢(Y)

Isomorphic Binary Structures

Example

= We prove that the binary structures <Z,.> and
<Z*,.> under the usual multiplication are not
isomorphic.

Isomorphic Binary Structures

Example

= We prove that the binary structures <Z, > and
<Z*,.> under the usual multiplication are not
isomorphic.

= Both 7 and 7+ have cardinality X, so there are
lots of one-to-one functions mapping 7 onto Z™.

Isomorphic Binary Structures

Example

= We prove that the binary structures <Z,.> and
<Z*,.> under the usual multiplication are not
isomorphic.

= Both 7 and 7, have cardinality N, so there are
lots of one-to-one functions mapping 7 onto Z".

= In <Z, > there are two elements Xsuch that X.X =X,
namely, 0 and 1.
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Isomorphic Binary Structures

Example

We prove that the binary structures <7A, > and

Group Theory

= Isomorphic Binary

<7f,_> under the usual multiplication are not Structures
isomorphic.
* Both Z and 7* have cardinality X, so there are
lots of one-to-one functions mapping 7, onto Z*.
= In <7/,, > there are two elements Xsuch that X.X =X,
namely, 0 and 1.
= However, in <Z‘ ,.>, there is only the single element
Group Theory Group Theory
Associative Binary
Operation
= Abinary operation *
is called associative if
Groups
(axb)*c=a=(b*c).
Group Theory Group Theory
Example Example
= Can we solve = Canwesolve 3+X=2
3+x=2 inZ?
in N?

= The equation is
unsolvable in N since

-3¢ N.
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Group Theory

Example
= Canwesolve 3+X=2
inZ?
= add —3 on both sides
—3+(B+x)=-3+2

Group Theory

Example
= Canwesolve 3+X=2
inZ?
= add —3 on both sides
—3+@B+x)=-3+2
(-3+3)+x=-3+2

Group Theory

Example
= Canwesolve 3+X=2
inZ?
= add —3 on both sides
-3+(B3+x)=-3+2
(-3+3)+x=-3+2
= Thus

Group Theory

Example
= Canwesolve 3+X=2
inZ?
= add —3 on both sides
-3+(3+x)=-3+2
(-3+3)+x=-3+2

= Thus
0+x=-3+2
0+x=-3+2
= X =-1
Group Theory Group Theory
Example Group(Definition)
= Canwesolve 3+X=2 A group <G, *> is aset G with binary operation *
inZ? satisfying the following axioms for all a,b,c€G:
= add —3 on both sides
. We use associative —3+(3+x)=-3+2
property T ———( 3.3),x=-3+2
. Existence of 0 = Thus
with 0+ x=x 0+x=-3+2
. Existence of —?><
with -3+3=0 Sx=-1
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Group Theory

Group(Definition)
Agroup (G,*)isaset G with binary operation s
satisfying the following axioms for all @,b,c€G:

Group Theory

Group(Definition)
Agroup (G,*)isaset G with binary operation =
satisfying the following axioms for all a,b,ce€G:

1. ForabeG, a*beG (closure) 1. Fora,beG, ax*heG (closure)
2. (axb)xc=ax*(bx*c) (associative)
Group Theory Group Theory
Group(Definition) Group(Definition)

A group <G,*> is a set G with binary operation *
satisfying the following axioms for all a,b,ceG:

1. Fora,beG, axbeG (closure)
2. (axb)*c=ax(b*c) (associative)
3. There exists €€ G such that (identity)

exa=a*e=a

Agroup (G,*)isaset G with binary operation
satisfying the following axioms for all a,b,c€G:

1. Fora,beG, axbeG (closure)
2. (axb)x*c=a=*(bx*c) (associative)
3. There exists € € G such that (identity)

exa=a*e=a
4. ForeveryaeG , thereexists a* e G such that
atra=axa'=e (inverse)

Group Theory

Example
= Can we solve equations of the form
a*Xx=Db inagroup <G,*> ?

Group Theory

Example
= Can we solve equations of the form
a*x=Db inagroup <G,*> ?

a'*(a*x)=a’'*b
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Group Theory

Example

= Can we solve equations of the form
a*X=Db inagroup <G,*> ?
a'x(axx)=a'*b
(@'+a)xx=a’'*b

Group Theory

Example

= Can we solve equations of the form
a*X=Db inagroup <G,*> ?
a'x(axx)=a'*b
(a'+*a)xx=a'*b
exx=a'*b

Group Theory

Example
= Can we solve equations of the form
a*Xx=Db inagroup <G,*> ?
a'x(axx)=a'*h
(@'+a)*x=a’*b
exx=a'*h
x=a'*b

Group Theory

Examples of Groups

Group Theory

Example
(@.+)

Group Theory

Example
(.+)
= Closure Vm,neZ m+neZ
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Group Theory

Example

(@.+)

= Closure VmneZ,m+neZ

= Associative
vm,n,peZ,(m+n)+p=m+(n+p)

Group Theory

Example
(z.+)

Closure Ym,neZ,m+neZ
Associative

vm,n, peZ,(m+n)+p=m+(n+p)
Identity

ForeverymeZ, 0€Z,0+m=m=m+0.

Group Theory

Example
{Z.+)
= Closure VmneZm+neZ
= Associative
vm,n, peZ,m+n)+p=m+(n+p)
= Identity

ForeverymeZ, 0€Z, O+m=m=m+0.

= inverse
For every MeZ 3 —m & Z such that
m+(—m)=0=(-m)+m.

Group Theory

Example

{z.-)

Group Theory

Example

{.-)
= closure
vmneZ m-neZ

Group Theory

Example

{Z.-)
= closure

vmneZ m-neZ
= associative

(2-3)-4=-5%3=2-(3-4)
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Example
(z.)

Group Theory

Example
(@)
= closure ¥YmneZmneZ

Group Theory

Example
(z.)
= closure VYmneZmneZ
= associative
vm,n, peZ,(mn).p=m.(n.p)

Group Theory

Example
z.)
= closure VmneZmneZ
= associative
vm,n, peZ,(mn).p=m.(n.p)
= identity

Forevery meZ,1eZ, Ilm=m=m.l.

Group Theory

Example
(2.)
= closure VYmneZmneZ
= associative
vm,n, peZ,(mn).p=m.(n.p)
= identity

Forevery meZ,1leZ, lm=m=m.1l.

= Inverse

2eZ but =¢Z
2

Group Theory

Example

(@)

12/16/2018
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Group Theory

Example
(@+)

® Closure Vr,seQ,r+seQ

Group Theory

Example

(@+)

= Closure Vr,seQ,r+seQ

= Associative
Vr,s,teQ,(r+s)+t=r+(s+t)

Group Theory

Example
(@)
= Closure Vr,seQ,r+seQ
= Associative
Vr,s,teQ,(r+s)+t=r+(s+t)
= Identity
Forevery reQ,0+r=r=r+0, 0eQ.

Group Theory

Example
(@)
* Closure Vr,seQ r+seQ
= Associative
Vr,steQ (r+s)+t=r+(s+t)
= Identity

Forevery reQ,0+r=r=r+0, 0eQ.

= inverse
Forevery re@Q 3 —reQ suchthat
r+(-r)=0=(-r)+r.

Group Theory

Example
(@)

Group Theory

Example

(@)

= closure Vr,seQ,rseQ
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Group Theory

Example
@)
= closure Vr,seQrseQ
= associative
Vvr,s,teQ,(rs)t=r.(st)

Group Theory

Example
(@)
= closure Vr,seQ,rseQ
= associative
vr,s,teQ,(rs)t=r.(st)
= identity
Forevery reQ,lr=r=r.1 1eQ.

Group Theory

Example
(@)
* closure Vr,seQrseQ
= associative
Vvr,s,teQ,(rs)t=r.(st)
= identity
Forevery reQ,lr=r=r1 1eQ.
= Inverse

Inverse of 0 e (Qdoes not exist

Group Theory

Examples

. <Q7{0},.> isa group.

Group Theory

Examples

. <Q7{0},.> isa group.

- <R *{O}x-> is a group.

Group Theory
Examples
. <Q—{0},.> isa group.
« (R—{0},.)is a group.

. <(C —{0},.> isa group.
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Group Theory Group Theory
Proposition
= Let <G,*> be a
group. Then
Uniqueness of Identity
and Inverse
Group Theory Group Theory
Proposition Proposition
= Let <G,*> bea = Let <G,*> bea
group. Then group. Then

1) G has exactly one

1) G has exactly one
identity element

identity element

2) Each elementof G
has exactly one
inverse.

Group Theory Group Theory
Proof Proof

1) Suppose €, € are

1) Suppose €, e are
identity elements.

identity elements. So
exX=X*e=X
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Group Theory

Proof
’
1) Suppose & € are
identity elements. So
exx=XxX*e=X
e'xx=x*e' =X

Group Theory

Proof
1) Suppose €, €' are
identity elements. So
exxX=X*e=X
e'xx=x*e =X
holds for all xe G

Group Theory

Proof
1) Suppose €, € are
identity elements. So
exX=X*e=X
e'kx=x*e' =X
holds for all xe G
= In particular

e=exe'=¢"

Group Theory

Proof

2) LetxeGand
suppose X', X" are
inverses of X.

Group Theory

Proof
2) Let xeGand
ron
suppose X', X"are
inverses of X. So
X' xx=x*X=e

Group Theory

Proof
2) LetxeGand
"o
suppose X', X"are
inverses of X. So
X#x=x*X'=¢e
X" #x=x*X"=€
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Group Theory

Proof
2) Let xeGand
;o
suppose X, X are
inverses of X. So
X'#x=x*X=e
X"xx=xxX"=e

Group Theory

Proof
2) LetxeGand
"o
suppose X, X are
inverses of X. So
X xkX=X*X =g
X' xkX=xX*X"=e

= Then = Then
X'=Xx*e X'=x*e
=X"#(x*X")
Group Theory Group Theory
Proof Proof

2) LetxeGand
o
suppose X', X" are
inverses of X. So
X'#x=x*x=e
X" xx=x*X"=¢e

= Then
X'=x'*e
=X"#(x*X")
=(X"*x)*Xx"

2) LetxeGand
o
suppose X', X" are
inverses of X. So
X*x=x*x'=e
X" #x=x*X"=e

= Then
X' =x'*e
=X"#(x*X")
=(X"*Xx)*X"
=exx"=x".

Group Theory

An Interesting
Example of Group

An Interesting Example of Group

Example
LetG={xeR| x# 1}
and define

X*y=Xy—Xx—y+2.
Prove that (G, *) is a

group.
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An Interesting Example of Group

Solution
Closure:

Leta, beG,soa# 1
and b # 1.

Supposea * b =1.
Thenab-a-b+2=1
andso(a—-1)(b-1)=0
which implies thata = 1

or b =1, a contradiction.

An Interesting Example of Group

Associative:

(a*xb)*c

=(a * b)c—(a* b)—c+2
=(ab-a-b+2)c—
(ab-a-b+2)-c+2
=abc—ac—bc+2c—ab
+a+b-2-c+2
=abc—ab-ac-bc+a+
b+c

Similarly a « (b «¢) has
the same value.

An Interesting Example of Group

An Interesting Example of Group

Identity: Inverses:
An identity, e, would If x * y =2, then
have to satisfy: Xy—X—y+2=2.
exx=x=xxeforallx So
€G, y(x—1)=x and
that is, hence
ex—e-x+2=x, y=x/(x—-1).
or
(e—2)(x—1)=0forall x.
Clearly e = 2 works.

An Interesting Example of Group Group Theory
This exists for all x # 1,
i.e. forall x € G. But we
must also check that it is Topic No. 14

itself an element of G.
This is so because

x/(x=1)#1
forall x#1.
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Group Theory

Elementary Properties
of Groups

Elementary Properties of Groups

Theorem

If G is agroup with binary
operation * then the left
and right cancellation

laws hold in G, that is,
a*b=a*cimplies b=c,
and b * a=c * aimplies
b=cforalla, b, c €G.

Elementary Properties of Groups

Proof

Suppose a*b=a*c.

Then, there exists a'€ G, and
a'* (a* b) =a'*(a*c).
(a™*a)*b=(a"*a)*c.
So,e*b=e*cimpliesb=c.
Similarly, fromb *a=c* a
one can deduce that b = ¢
upon multiplication by a'e G
on the right.

Elementary Properties of Groups

Theorem

If G is a group with binary
operation *, and ifa and b
are any elements of G, then
the linear equations a * x=b
and y * a=b have unique
solutions x and y in G.

Elementary Properties of Groups

Proof
First we show the existence of atleast one solution by just
computing that a' * b is a solution of a* x = b.
Note that
a* (a'* b) =(a*a')* b=e * b=b.
Thus x =a' *bis a solution ofa * x = b.
In a similar fashion, y=b* a'is a
solution of y *a = b.

Group Theory

Topic No. 15
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Elementary Properties of Groups

Theorem

Let G be a group. For all
a, be G, we have

(a*b)' = b’ *d"

Elementary Properties of Groups

Proof

Note that in a group G,
we have

(0¥ b) * (b *a)
=a*(b *b') *a’
= (a* e) *a’
=a*a'=e.

Elementary Properties of Groups

It shows that b' * a'is
the unique inverse of
a*b.

That is,

(@*b)'=b"*a'

Elementary Properties of Groups

Theorem

Foranyn€N, (a" )_1 = (a_1 .

Elementary Properties of Groups

Proof

By definition, (a is the unique element of G whose product
with a" in any order is e.

But by associativity,

a" * (at)"= (@™ * a) * (@t x(a™Y)™?)
"

n-ll

n)—l

o™l i@x@ls@l

n 1

sa"ara )o@l

e @)™

n-1 -1,n-1
="t @t

Elementary Properties of Groups

which by induction on n equals e (the casesn=0
and n =1 are trivial).

Similarly, the product of a” and (a™*)"in the other
orderise.

This proves that (a=* )"is the inverse of a".
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Group Theory

Groups of Matrices

Groups of Matrices

Is { M;,(R), +) group?
=V [a], [by] € M (R), [ay] + [byl=[a;+ by] € M,(R)
=V [ay], [by), [c5] € M, (R),

(lay] + [by)+ [cy] =lay + byl+ [c;)

=[(ay+ by)+ ¢

=la;+( by+ ¢;)]

= [ay]+[byt+ ¢

= [ay] + ([by]+ [c;])

Groups of Matrices

= For every [a;] € M,,(R) and [0] € M,,(R),
la,] + [0)=[a;+0)=la;]=[0]+[a;]

= For every [a;] € M,,,,(R) there exists [-a;] € M,,(R) such
that [a] + [-a;]=[a;+(- ay)]= [0]= [-a;]+[ay]

Group Theory

Groups of Matrices

Groups of Matrices

"V [ay), [by] € M (R),
la;] + [b;)=la; + by]

=[by+ ayl= [by] + [ay]
Therefore, ( M,,,(R), + ) is
abelian group.

= Similarly, ( M,,(Z), +),
(Mn(Q), +) and

{M,(C), +) are also
abelian groups.

Groups of Matrices

Is (M,,(R), . ) group?

VA BeM,(R),
AB € M,(R)

"VA,B CeM,(R),
(AB)C=A(BC)

= For every A € M, (R)
and I, € M, (R),
Al =A=I A

= Al does not exist for all
those A € M, (R) having
det(A)=0

12/16/2018
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Groups of Matrices

Groups of Matrices

Field P
(+.) (@.+)
* (E+)isabelian group <@'+>
. (gf;})a(i)},.) is abelian <Q—{O}, >
Va,b,ceF, <R,+>
= a(b+c)=ab+ac <]R (o, >
= (g+b)c=ac+bc
(C+)
<(C —{0}, >
Group Theory

Group Theory

Abelian Groups

= Let F=Ror C.

Group Theory

= Let F=Ror C,

= Let [a.j] be a matrix
over I ie. all

a”eF

Group Theory

= let F=Ror C.

= Let [aij] be a matrix
over F i.e. all

aueF

= Let GL(n, F) denotes
the setof all nxn
invertible matrices
over F.
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Group Theory

= Ingeneral set of all
NxN matrices is not
a group under matrix
multiplication.

Group Theory

= In general set of all
NxnN matrices is not
a group under matrix
multiplication.

= But GL(n,F)isa
group under matrix
multiplication.

Axioms

Group Theory

« Let G=GL(n,F).

Group Theory

Axioms

Let G=GL(n,F).
Closure: Forall A, BeG, ABeG.

Axioms

Group Theory

= Let G=GL(n,F).
= Closure: Forall A, BeG, ABeG.
= Associative property also holds in G.

Group Theory

Axioms

Let G=GL(n,F).

Closure: Forall A, BeG, ABeG.
Associative property also holds in G.
1, is the identity matrix.
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Group Theory

Axioms
= Let G=GL(n,F).
= Closure: Forall A, BeG, ABeG.
= Associative property also holds in G.
= |, is the identity matrix.
= Since both A and Al

are invertible so inverse exists.

Group Theory

Example
= Let G=GL(2,R) and A, BeG such that

o2} ol

Group Theory

Example
= Let G=GL(2,R) and A, BeG such that

afo 2) =1 o)
S e R P

then

Group Theory

Example
= Let G=GL(2,R) and A, BeG suchthat

ao 2} o1 o)
o5 25 53
a3 25 25 2

= then

Group Theory

Definition

= let <G,*> be a group.

Ifforall a,beG,
a*b=bxa

We call G an abelian

group.

Group Theory

Definition

= Let <G,*> be a group.

Ifforall a,beG,
a*b=bx*a
We call G an abelian
group.
= Examples

(nZ,+)
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Group Theory Group Theory
Definition Examples
= let <G,*> be a group.

Ifforall a,beG, <R,+>
a*b=bxa
We call G an abelian
group.
Examples
(nZ,+)
(Q-{oy.)

Group Theory Group Theory
Examples Examples
(R,+) (R,+)

€+ (c+)
(=)

Group Theory Group Theory
Examples Examples
(R+) GL(nZ)

€+
(R—{0}..)
(C—{a}..)
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Group Theory
Examples

GL(n,7)

s )

Group Theory
Examples

GL(n,Z)
1 -1
A=
o2
A lf2 1
200 1

Group Theory
Examples

GL(n,Z)

A 121
200 1

GL(n.Q)

Group Theory

Abelian Groups

Abelian Groups

Theorem
If a* b =b *a, then for all/any

onenEZ,(a*b)n =a" «p".

Abelian Groups

Proof

Ifn =0 or n =1, this holds triviall. Nowlet n >1.

By commutativity, b™ xa=axb™ forallm=0.
Then by inductiononn,

(@ +b)" = (@ x )" x(a +b)= (@1 + b""L) x(a +b)
=@ ") ra)sb =@ 1 " sa) s

=@ @sb" ) xb=(@"t «a)xb" 1) xb
=a" «(b" L wp)=a” b".

Thus the result holds for all neN.
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Abelian Groups

If n<0, then by the positive case
and commutativity,

(a +b)"

= (b +a)"

= (b +a) "y
b« a Myt
S e o)

no_n
=a *b

Group Theory

Modular Arithmetic

Modular Arithmetic

Defi

on

Let n be a fixed positive integer
and a and b any two integers.
We say that a is congruentto b
modulo n if n divides a-b.

We denote this by a=b mod n.

Modular Arithmetic

Theorem
Show that the congruence
relation modulonis an

equivalence relation on Z.

Modular Arithmetic

Proof

Write “n|m” for “ n divides m,”
which means that there is
some integer k such thatm =
nk.

Hencea =b modnifand

onlyif n|(a-b).

(i) Foralla €Z, n |(a-a), so

a=amod n and the relation is
reflexive.

Modular Arithmetic

(ii) If a = b mod n, then n|(a-b),
son|-(a-b).

Hence n|(b-a) and b =a mod n.

(iii) fa=bmodnandb=c
mod n, then n|(a-b) and
n|(b-c), so n [(a-b)+(b-c).
Therefore, n|(a-c)anda=c
mod n.

Hence congruence modulo n is

an equivalence relation on Z.
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Modular Arithmetic

The set of equivalence
classes is called the set of
integers modulo n and is

denoted by Z,.

Modular Arithmetic

In the congruence relation modulo 3, we have the following
equivalence classes:

[0]+(...-3,03,6,9,..}  [1]={..,-2,1,4,7,10,..} [2]={...-1,2,5,8,11,..}
[3]={....0,3,6,9,12,...}=[0]

Any equivalence class must be one of [0], [1], or [2], so

Zy ={[0],[1],(2]}.

In general, Z,, ={[0],[1],[2],...,[n-1]}, since any integer is congruent

modulo n to its remainder when divided by n.

Group Theory

Order of a Group

Order of a Group

Definition

The number of elements of a
group G is called the order of
G.

We denote it as |G].

We call G finite if it has only
finitely many elements;

otherwise we call G infinite.

Order of a Group

Definition
Let G be a group and a
€EG

If there is a positive
integer n such that g"
=¢, then we call the
smallest such positive

integer the order of a.

If no such n exists,
we say that a has
infinite order.
The order of a is
denoted by |a|.

Order of a Group

In the congruence relation modulo 4, we have
the following equivalence classes:

[0]{...,-4,0,4,8,12,...} [1]+{...,-3,1,5,9,13,...}
[2]#{....-2,2,6,10,14,...}  [3]={...-1,3,7,11,15,...}
Any equivalence class must be one of [0], [1], [2]
or[3],

50 Z4 ={[0],[1],[2],131}-

Let +4 be addition modulo 4. Then, 2 +4 3=1.
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Order of a Group

We can write out its Cayley table:
EHCHCEENG
o 0 [ @2 B8
W W @& B o
2 @ B

B B 0 @@

Therefore, (Z,,+, ) is a group.

Order of a Group

" Z,]=4

= 1+,1+,1+,1=4(1)=0 = |[1]|=4
= 2+,2=2(2)=0 = |[2]|=2

= 3+,3+,3+,3=4(3)=0 = |[3]|=4
*1(0)=0 = |[0]|=1

" Z,71)=(3)

= Let Z,=([0], [1], [2],...,[n-1]}. Then, (Z +, ) isa
group.

=1 Z,|=n

Order of a Group

Group Theory

Finite Groups

Finite Groups

Let U4 ={1,-1,i,-i}, and let “” be multiplication. Then
U, is a group, and we can write out its multiplication table

1 1 -1 i i

(Cayley table):

Finite Groups

" |U,l=4

" (1(1)=(-1)=1 = |-1]=2

* ()E)))=()=1 = |-i]=4
“1=1 = |1]=1

- U=
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Finite Groups Finite Groups
15 (Uy, Y=(Zy+, )? Let U, ={e/n:k=0,1, ..n-1},
=1[0] Then, (U,,.) is a group.
=-1e(2) (Uns I=(Zp 4,
i eo[1]
=i [3]
Group Theory Finite Groups

Since a group has to have at least one element,
namely, the identity, a minimal set that might give
rise to a group is a one-element set { e}.

Finite Groups The only possible binary operation on
{e} isdefinedbye xe=e.

The three group axioms hold.

The identity element is always its own

inverse in every group.

Finite Groups Finite Groups

Let us try to put a group structure on a set of two

Since e is to be the
elements.

identity, so exx=x*e=x
for all xe{e, a}.

Also, @ must have an
inverse a'such that
agxa'=a'xa=e.

In our case, a' must be
either e or a. Since a' =
e obviously does not
work, we must have

'

a =a.

Since one of the elements must play the role of
identity element, we may as well let the set be
{e ak

Let us attempt to find a table for a binary
operation * on { e, a} that gives a group
structure on { e, a}.
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Finite Groups

So, we have to complete
the table as follows:

Finite Groups

We know that
Z>={[0], [}

under addition modulo

2 isa group, and by
;-i-j- EO T our arguments, its table
a a e ol [0l 1 must be the one above
a m ol with e replaced by [0]
and a by [1].
Group Theory Finite Groups

Finite Groups

Suppose that G is any group of three

elements and imagine a table for G with identity
element appearing first.

Since our filling out of the table for G = {e, a, b}
could be done in only one way, we see that if we
take the table for G and rename the identity e, the
next element listed @, and the last element b, the
resulting table for G gives anisomorphism of the
group G with the group G'={[0], [1], [2]}.

Finite Groups

DN DECEEEEEE
e e a b

[0] [0] [ 21
a a b e [E3] 6] 2] [0}
b b e a 2 2] [0] [

axb =b = a=e not possible
axb =a=>b=e not possible
axa=a=>a=e not possible

bxb =b = b=e not possible

Finite Groups

Our work above can be summarized by saying that
all groups with a single element are isomorphic, all
groups with just two elements are isomorphic, and
all groups with just three elements are isomorphic.
We may say:

There is only one group of single element (up to
Isomorphism), there is only one group of two
elements (up to isomorphism) and there is only
one group of three elements (up to isomorphism).
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Finite Groups

There are two different types of group structures of
order 4.

= The group (Z,, +,) is isomorphic to the group
U,={1,1, -1, -i} of fourth roots of unity under
multiplication.

= The group V=(a,b | a%=b?=(ab)*=e )
is the Klein 4-group, and the notation V comes
from the German word Vier for four.

Finite Groups

We describe Klein 4-group by
its group table.

[+ e 2o ||
e e a b c
a a e c b
b b c e a
c c b a e

Group Theory

Finite Groups

Is (Z\{[0]}, .¢ ) a group?

Finite Groups R CEEE
W W @ B @ s
2 @2 @0 2 @
Bl B [0 B 0 @
@ @@ 0 @@
BB @B @ W
Finite Groups Group Theory
Is (Z;\([01), 5 ) a group?
W W @ B @ Subgroups
IR eI U B CV |
BB oW @ @
@o@woB @&

(Z,MI01}, ., ) is a group,
where p is a prime number
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Subgroups

Subgroups

= Let <G,*> be a group.
A subgroup of G is a
subset of G which is

itself a group under .

Subgroups

Examples
. <Z,+> is a subgroup of <R,+>

Subgroups

Examples
- <Z,+> is a subgroup of <]R,+>

- <Q—{0},-> is not a subgroup of <R,+>

Subgroups

Examples
- <Z,+> is a subgroup of <]R,+>

- <@—{0},-> is not a subgroup of <R,+>

<{l,—l},.> is a subgroup of <{1,71,i,7i},.>

Subgroups

Examples
- <Z,+> is a subgroup of <]R,+>

- <Q—{0},-> is not a subgroup of <R,+>
. <{1, —l},.> is a subgroup of <{1Y —Li,—i},_>

- <{ZL i},,> is not a subgroup of

& -1}

Subgroups

Proposition

= Let G beagroup. Let
HcG.ThenH isa
subgroup of G if the
following are true:
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Subgroups

Proposition

= Let G beagroup. Let
HcG.ThenH isa
subgroup of G if the
following are true:

Subgroups

Proposition

= Let G be agroup. Let
HcG.ThenH isa
subgroup of G if the
following are true:

1) eeH 1) eeH
2) if h,k e H then
hkeH
Subgroups Subgroups
Proposition Example

= Let G beagroup. Let
HcG.ThenH isa
subgroup of G if the
following are true:
1) eeH
2) if h,k € H then
hk e H
3) ifheH then
h*eH

+ Llet G=GL(2,R)

S

Subgroups

Example
= Let G=GL(2,R)

e e

1) eeH

Subgroups

Example
= Let G=GL(2,R)

= let 1 n
e
01
1) eeH
2) let h:l n’kzl p
01 01

then 1
k=~ PN en.
0 1
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Subgroups

Example

3) let 1 n
o 1)

Then

ht= Lo eH.
0 1

=2

Subgroups

Example

3) Iethz(]_ n]-
01

Then
1 -n
h= eH.
0 1

Hence H is a subgroup

of G.

Group Theory

Groups of Matrices

If F is a field GL(n, F) denotes the group of
all invertible n x n matrices over F under

Examples of Subgroups

multiplication. This group is called the general linear
group of degree n over F.

We know that the associative law holds for matrix
multiplication. Checking the closure law requires us
to know that the product of two invertible matrices is
invertible. And we need to know more than just the
fact that every invertible matrix has an inverse. We
need to observe that such an inverse is itself
invertible.

Groups of Matrices

Groups of Matrices

An interesting subgroup of GL(n, F) is T*(n, F) the
set of all n x n upper- triangular matrices over F,
that is, n x n matrices of the form:

A, Ay .. A,
0 8, a; . a,

0 0 ay . g,

where each diagonal component is
non-zero.

Then there are the lower triangular matrices
T(n, F) which are the transposes of the upper
triangular ones.

a, 0 0 0
a, a, 0 0
a; 8y ay 0

4 Ay Ay 8y
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Groups of Matrices

Diagon,al matrices D(n, F)., 1It’s closed under
multiplication, |dent|_t|y and inverses simply because
each of T*(n, F) and T-(n, F) are.

This is a special case of the ?ene_ral fact that: .
The intersection of any collection of subgroups is
itself a subgroup.

a, 0 0 .. 0

0 a,

0 0 a .. 0

o
o :
o
o

Groups of Matrices

Within D(n, F) we have the non-zero scalar
matrices S(n, F). These are simply the diagonal
matrices that have the same non-zero entry down
the diagonal, that is, non-zero scalar multiples of
the identity matrix.

o o~

00 ..0 1 . 0
A0 .. 0 010 ..0
0 2 0|=4]0 0

Groups of Matrices

Another interesting subgroup of T*(n, F) is the

group of uni-upper-triangular matrices UT*(n, F).
These are the upper-triangular matrices with 1’s down
the diagonal:

1oay, 8 -« &,

1 aza azn
0 1 a,
00 0 1

Groups of Matrices

And inside T~ (n, F) we have the uni-lower-triangular
matrices UT (n, F).

a, 1 0 .. 0
a, a; 1 .. 0

a, A G .1

Groups of Matrices

We can summarize the connections between these
subgroups in a “lattice diagram”:
Ty

TO.F) 0.

0. F)

uT(n,F) ‘ uref

S0,F)

Groups of Matrices

Another very important
subgroup of GL(n, F) is
SL(n, F) consisting of
all the matrices with
determinant 1.

It’s called the special
linear group of degree
nover F.
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Group Theory

Topic No. 28

Group Theory

The Two Step
Subgroup Test

The Two Step Subgroup Test

Theorem
A subset H of a group G is a
subgroup of G if and only if

1. His closed under the binary operation * of G,

2.foralla € Hitis true that a’> € H also.

The Two Step Subgroup Test

Proof

The fact that if H is subgroup of G then conditions

1 and 2 must hold follows at once from the
definition of a subgroup.

Conversely, suppose H is a subset of a group G

such that conditions 1 and 2 hold.

By 1 we have at once that closure property is
satisfied. The inverse law is satisfied by 2.
Therefore, for every a€H there exists a'eH such
that e=a*a'eH by 1. So, exa=axe=a by 1.

The Two Step Subgroup Test

It remains to check the
associative axiom.

But surely for alla, b, c €
Hitis true that

(ab)c = a(bc)

in H, for we may actually
view this as an equation
in G, where the
associative law holds.

Group Theory

Topic No. 29
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Group Theory

Examples on Subgroup
Test

Examples on Subgroup Test

Recall

Let Gbe agroupandHa
nonempty subset of G. If
axb is in H whenever a and
bareinH,anda?isinH
whenever aisin H, then His
a subgroup of G.

Examples on Subgroup Test

To Apply the Two Step
Subgroup Test:

a NotethatHis
nonempty

a  Show that His closed
with respect to the
group operation

a  ShowthatHis closed

with respect to inverses.

a  Conclude thatHisa

Examples on Subgroup Test

Example
Show that 3Q* is a subgroup of Q*, the non-zero rational
numbers.

3Q* is non-empty because 3 is an element of 3Q*.
For a, b in 3Q*, a=3i and b=3j where i, j are in Q*.
Then ab=3i3j=3(3ij), an element of 3Q* (closed)
For a in 3Q*, a=3i for i an element in Q*.

Then a'=(i'3), an element of 3Q*. (inverses)
Therefore 3Q* is a subgroup of Q*.

subgroup of G.
Group Theory Group Theory
. The One Step Subgroup
Topic No. 30 Test
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The one Step Subgroup Test

Theorem

If S is a subset of the
group G, then S isa
subgroup of G if and
only if S is nonempty
and whenever a,b €S,
then ab-! €S.

The one Step Subgroup Test

Proof

If S is a subgroup, then
of course S is nonempty
and whenever a, b €S,
then ab™ €.

The one Step Subgroup Test

Conversely suppose S is a nonempty subset of
the Group G such that whenever a, b € S, then
abes.

Leta€S,thene=aal€S andsoal=eal€Ss.
Finally, if a, b €S, then b'l € S by the above and
soab=a(bl)teSs.

Group Theory

Topic No. 31

Group Theory

Examples on Subgroup
Test

Examples on Subgroup Test

Recall

Suppose G is a group and H
is a non-empty subset of G.
If, whenever a and b are in
H, abtisalsoinH,

then H is a subgroup of G.

Or, in additive notation:

If, whenever a and b are in
H,a-bisalsoinH,

then H is a subgroup of G.
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Examples on Subgroup Test

To apply this test:

o NotethatHisa
non-empty subset
of G.

Show that for any
two elements
aandbinH,ablis
alsoin H.

Conclude that Hisa
subgroup of G.

o

o

Examples on Subgroup Test

Example

Show that the even integers are a subgroup of the
Integers.

Note that the even integers is not an empty set because
2 isan even integer.

Let aand b be even integers.

Then a = 2j and b = 2k for some integers j and k.

a+ (-b) = 2j + 2(-k) = 2(j-k) = an even integer

Thus a - bis an even integer

Thus the even integers are a subgroup of the integers.

Examples on Subgroup Test

Example

For a, b in 3Q*, a=3i and b=3j
where i, jare in Q*

Then

ab1=3i(3j)! =3i(j13)=3(ij131),
an element of 3Q*

Group Theory

Topic No. 32

Group Theory

The Finite Subgroup
Test

The finite Subgroup Test

Theorem

If S is a subset of the
finite group G, then S is
a subgroup of G if and
only if S is nonempty

and whenever a,b €S,

then ab €.
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The finite Subgroup Test

Proof

If S is a subgroup then obviously S is nonempty
and whenever a, b €S, thenab €S.

Conversely suppose S is nonempty and
whenever a,b €S, then ab € S.

Then let a € S. The above property says that

a2=aa€s and so a%=aa2€s$ and so a’=aades

and so on and on and on.

The finite Subgroup Test

Thatis a" €5 for all integers
n>0.

But G is finite and thus so is S.

Consequently the sequence,
a,a2,a3,a%,..a",..

cannot continue to produce
new elements.

That is there must exist m<n
such that a™=a".
Thuse=a"Mes.

The finite Subgroup Test

Therefore foralla € S, there
is a smallest integer k >0
such thatak=e.

Moreover, a’1 = ak'1 €S.
Finallyifa, b €S, then b’1 €S
by the above and so by the
assume property we have
ables.

Therefore S is a subgroup as
desired.

Group Theory

Topic No. 33

Group Theory

Examples on Subgroup
Test

Examples on Subgroup Test

Example
=({1,-1,i-i}, -)
={1,i}

{1}

={1,-1}
={1,-1,i}
={1,-1,-i}
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Examples on Subgroup Test

Example

= ({{0], [1], [2], [3], [4], [}, +6)

={[0], [1]} or {[0], [41} or {[0], []} or {[0], [2]}
={[0], 31}

={[0], [2], [41}

={[0], [2], [3], [4]}

Group Theory

= Cyclic Groups

Cyclic Groups

Definition

Let G be a group and let

aedG.

Then the subgroup
H={a"| ne Z}

of Gis called the cyclic

subgroup of G generated

by a, and denoted by (a).

Cyclic Groups

Definition

= An element a of a group G
generates G and is a
generator for G if (a)=G.

= A group G is cyclic if there is
some element g in G that
generates G.

358
Cyclic Groups Cyclic Groups
= Let a be an element of a Example
group G. * For each positive integer n, let U, be the multiplicative
* If the cyclic subgroup (a) is group of the nth roots of unity in C.
finite, then the order of a is = These elements of Uy, can be represented geometrically
the order | {a) | of this by equally spaced points on a circle about the origin.
cyclic subgroup. 2t . . 7n
= Otherwise, we say that a is * U= (ml @ =cossy +isin 7) < U= {zeCllzl = 1)
Py am
of infinite order. _ {m,mz, L n = (elnyn= 1} moo )
W Re
359 360
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Group Theory

= Examples of Cyclic
Groups

Examples of Cyclic Groups

Cyclic groups may be finite:
=InZ,, (1) = {1,2,3,0} = Z, = (3) # (2)
= 7,4 is cyclic.

= Zg is cyclic.
=InZs, (1) = {1,2,3,4,5,0} = Zs = (5)
= Zg is cyclic.

=InZ,, (I)=1{1,2,...,n—
g.c.d(m,n) =1form = 12,...,n— 1.

-

Examples of Cyclic Groups

Cyclic groups may be infinite:

=InZ {1y =1{...,—2,—-1,0,1,2, ...} = Z = (—1)

=, —2(1) =—2, —1(1) = —1, 0(1) =0,

(D=1, 2(1) =2, ..

.., —2(—1) =2, —1(—1) =1, 0(-1) =0,
1(—1) = —1, 2(—1) = =2, ...

=InZ, {2y ={..,—4,—2,0,2,4, ...} = 2Z = (—2)

=InZ {n)y=4{...,—2n,—n,0,n,2n, ..} = nZ = {(—n)
forneZ

Examples of Cyclic Groups

Cyclic groups may be infinite:

=in @ — {0}, (2) = {

sn@— (0}, ¢ ={... 5.5 L% ) = (l)
for re@.

=In GL(2, R), ([é 1i]) = {[é ’11] : neZ}

363 364
Group Theory Elementary Properties of Cyclic Groups
= Elementary Theorem
Properties of Cyclic Every cyclic group is
Groups abelian.
366
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Elementary Properties of Cyclic Groups

Proof
= Let G be a cyclic group and let a be a generator of G so that
G ={(ay={a"|n €Z}.
= If g; and g, are any two elements of G, there exists integers r and s such
that g;,=a"and g,=a°.
= Then
g19,=0'a°= 0" = a*"= a'a"= g,g;.

= So, G is abelian.

Elementary Properties of Cyclic Groups

u
Zy,
nZz

In@ — {0}, (r) = {...,%,ﬁ,%, 1,r, 72,73, } = (l)

r

n

for re@.

InGL(2, R),([(l, 1]) = {[Ll) T] : nez}

367 368
Elementary Properties of Cyclic Groups Group Theory
[1 IJZ _ ll 1] ll 1] _ [1 ZJ = Elementary
01 0 1llo 1 0 1 Properties of Cyclic
Groups
[1 1]*1 _ [1 71] P
0 1 0 1
1 17721 =11 -1y_1 -2
[0 1] _[u 1][:} 1]_[0 1]
369
Group Theory Elementary Properties of Cyclic Groups
= Elementary Definition: G is cyclic if G = <a> for some ain G.
Properties of Cyclic Theorem
Groups sl |a| = oo, ai=dl iff i =j
=If |a| =n, d=d iffn|i—j
=<g>={a, a?, .. a"Le}
Corollary 1: |a| = |<a>|
Corollary 2: ¢ = e implies |a| | k
Example: Ug=< w | w’=1>=< w?>=< w?>= < w*>, w=el?7/5)
wZw* 544-2 ; w=w!® 5|10-5
372
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Elementary Properties of Cyclic Groups

Example

Us=< w |wb=1>={w,w?, w?, w, w%,1} with w=e7/6)
(w5)2= w10= Wowi= w?

(W5)3= wis= (wf)2w3= w3

(w5)*= w20= (W8)Pw?= w?

(w%)5= W= (wf)*w= w

(w5)f= wP= (ws)5= 1

Ug =< w>={w5, w*, w3, w?,w,1}

Elementary Properties of Cyclic Groups

Example

Ug=< 0 |wb=1>={w,w?, w3, w*, w® 1} with w=el2/6)
<w»={w?, w1} < Ug

<w>={w?1} < Uq

<wh={w!, w31} =< w?>

373 374
Group Theory Elementary Properties of Cyclic Groups
= Elementary Theorem 1
Properties of Cyclic If |a| =n, then
Groups = <gk> = <gecdni>
® |a*| = n/gcd(n,k)
376
Elementary Properties of Cyclic Groups Elementary Properties of Cyclic Groups
To prove the |a| = n/gcd(n,k) , we begin with a little lemma. Now, we prove that |a*| = n/gcd(n,k).
Prove: Ifd | n= |a|, then |a?| = n/d. Let d = ged(n,k). Then, we have
Proof: Letn =dq. Thene=a"=(ad)q.
So o] < |a¥| = |<a*>| by Corollary 1
o |ad| <q.
X g . = |<a%>| by Part 1 of Theorem 1
IfO0<i<q,then0O<di<dg=n=|a|
=|ad| by Corollary 1
so(ad)ze
L . =n/d by above Lemma.
Hence, |a?| = q which is n/d as required. i
This concludes the proof.
377 378
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Elementary Properties of Cyclic Groups

Example
= Suppose G = <a> with |a| = 30.
Find |a?!| and <a?!>.
= By Theorem 1, |a?!| = 30/gcd(30,21) = 10
= Also <a?'> = <a®>

={a? a5 a® a'%,a%s, a'8, a?t, a?, a?’, e}

Group Theory

= Elementary
Properties of Cyclic
Groups

Elementary Properties of Cyclic Groups

Theorem 1
If |a| = n, then <g*> = <@&d"X> and |a*| = n/gcd(n,k).
Corollaries to Theorem 1
1.In a finite cyclic group, the order of an element divides the order of the
group.
2.Let |a| =nin any group. Then
a) <@ =<ad>iff ged(n,i) = ged(n,j)
b) |d'| = |dl] iff ged(n,i) = ged(n,j)

Elementary Properties of Cyclic Groups

Corollaries to Theorem 1

3. Let |a| =n.
Then < a'> = dl iff ged(n,i) = ged(n,j)

4. Aninteger k in Z,, is a generator of Z, iff gcd(n,k)
=1

381 382
Elementary Properties of Cyclic Groups Group Theory

Example = Fundamental
Find all the generators of U(50) = (3). Theorem of Cyclic
U(50) ={1,3,7,9,11,13,17,19,21,23,27,29,31,33, Groups
37,39,41,43,47,49} |U(50)| =20
The numbers relatively prime to 20 are 1, 3, 7, 9, 11, 13, 17, 19
The generators of U(50) are therefore
31,33, 37,39, 311 313 317 319
i.e.3,27,37,33,47,23, 13,17

383
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Fundamental Theorem of Cyclic Groups

Fundamental Theorem of Cyclic Groups
a) Every subgroup of a cyclic group is cyclic.
b) If |a] = n, then the order of any subgroup of <a> is a divisor of n

c) For each positive divisor k of n, the group <a> has exactly one subgroup
of order k, namely <a"*>

Fundamental Theorem of Cyclic Groups

Subgroups are cyclic

Proof: Let G = <a>and suppose H < G. If H is trivial, then H is cyclic.
Suppose H is not trivial.

Let m be the smallest positive integer with a™in H.

(Does m exist?)

385 386
Fundamental Theorem of Cyclic Groups Fundamental Theorem of Cyclic Groups
By closure, <a™> is contained in H. Since b = gk = @9™a", we have
We claim that H = <a™>. To see this, a'=(am)9b
choose any b = a*in H. There exist integers q,r with Since band a™are in H, so is a".
0< r < m such that But r < m (the smallest power of a in H)
ak=qim*r (Why?) sor=0.
Hence b = (a™)9and b is in H.
It follows that H = <a™> as required.
387 388
Fundamental Theorem of Cyclic Groups Fundamental Theorem of Cyclic Groups
|H| is a divisor of |a| Exactly one subgroup for each divisor k of n
Proof: Given |<a>| =nand H < <a>. We showed H = <a™> where m is the = (Existence) Given |<a>| =n. Letk | n.
smallest positive integer with a™in H. Say n = kq. Note that ged(n,q) = g
Now e =a"is in H, so as we just showed, n = mq for So |a9] = n/ged(n,q) = n/q = k.
some q. Hence there exists a subgroup of order k, namely <a"/a>
Now |a™| = q is a divisor of n as required.
389 390
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Fundamental Theorem of Cyclic Groups

= (Uniqueness) Let H be any subgroup of <a> with order k. We claim H =
<gk>

From (a), H = <a™> for some m.

From (b), m | n so ged(n,m)=m.

So k=|a™| = n/gcd(n,m) by Theorem 1
=n/m

Hence m = n/k

So H =<a"> as required.

Group Theory

= Subgroups of Finite
Cyclic Groups

Subgroups of Finite Cyclic Groups

Theorem

Let G be a cyclic group with n elements and generated by a. Let beG and
let b=a*. Then b generates a cyclic subgroup H of G containing n/d
elements, where d = ged (n, k).

Also <a*>=<g*> if and only gcd (k, n) = ged (s, n).

Subgroups of Finite Cyclic Groups

Example

using additive notation, consider in Z,,, with the

generator a=1.

= 3=3.1, gcd(3, 12)=3, so ( 3 ) has 12/3=4 elements.
(3)={0,3,6,9}

= Furthermore, ( 3 )=( 9 ) since gcd(3, 12)=gcd(9, 12).

393 394
Subgroups of Finite Cyclic Groups Subgroups of Finite Cyclic Groups
Corollary
Example If a is a generator of a finite cyclic group G of order n, then
= 8=8:1, gcd (8, 12)=4, so ( 8 ) has 12/4=3 elements. the other generators of G are the elements of the form a’,
(8)={0, 4, 8} where r is relatively prime to n.
= 5= 5.1, gcd (5, 12)=1, so ( 5 ) has 12 elements.
(5)=Ly,
395 396
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Subgroups of Finite Cyclic Groups

Example
Find all subgroups of Z,g and give their subgroup diagram.
= All subgroups are cyclic

= By above Corollary is the generator of Z;g, sois 5, 7, 11,
13, and 17.

= Starting with 2, ( 2 )={0, 2, 4, 6, 8, 10, 12, 14, 16 }is of
order 9, and gcd(2, 18)=2=gcd(k, 18) where k is 2, 4, 8, 10,
14, and 16. Thus 2, 4, 8, 10, 14, and 16 are all generators
of (2).

Subgroups of Finite Cyclic Groups

Example

= (3)={0,3, 6,9, 12, 15} is of order 6, and gcd(3,
18)=3=gcd(k, 18) where k=15

= (6)={0, 6, 12} is of order 3, so is 12
= (9)={0, 9} is of order 2

397 398
Subgroups of Finite Cyclic Groups Group Theory
L Theorem on Cyclic
/ \ Group
(2) /3>
\6> (9)
(0)
399
Theorem on Cyclic Group Theorem on Cyclic Group
Theorem Proof1
Let G be a cyclic group Case o
with generator a. For all positive integersm, a™ # e.
If the order of G is In this case we claim that no two distinct
infinite, then G is exponents h and k can give equal elements a"
isomorphic to (Z, +). and a* of G.
If G has finite order n, Suppose that ah=akand say h > k.
then G is isomorphic to Then aha* = ah* = e, contrary to our Case 1
(Z,, +y)- assumption.
401 402
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Theorem on Cyclic Group

Casel

Hence every element
of G can be expressed
asa™ for a unique m
eZ.
Themap:G>Z
given by @(a) =iis
thus well defined, one
to one, and onto Z.

Theorem on Cyclic Group

Casel

Also,

@(a'al)=g(a™)

=i+j

=p(a' )+o(a),

so the homomorphism

property is satisfied and
@ isanisomorphism.

403 404
Theorem on Cyclic Group Theorem on Cyclic Group
Case 2 Case 2
am = e for some positive integer m. Thus the elements
Let n be the smallest positive integer such that a’=e, a, ?25 ad, -, ant
e are all distinct and
. comprise all elements
IfseZ ands=nq+rfor0<r<n,then of G.
at=a"=(a")iar=edar=at Themap ¥ :G > Z,
AsinCasel,if0O<k<h<nand . N .
given by ¥(a) =ifori
ah=ak thena" =eand O<h-k<n, 20,12 -~ n-11is
contradicting our choice of n. thus well defined, one
to one, and onto Z,.
405 406
Theorem on Cyclic Group Group Theory
Case 2
Because a" = e, we see
ia = ok
that alal=a Permutation Groups
where k =i+, ].
Thus Y(a'al) =i+, ]
=¥(a) +, ¥ (a),
so the homomorphism
property is satisfied and
Y is an isomorphism.
407
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Permutation Groups

Definition

A permutation of a set
A'is a function from A to
A that is both one to
one and onto.

Permutation Groups

Array Notation
=letA={1,2,3,4}
= Here are two permutations of A:

1234 1234
a= B=
[2314] [2143]

a(2)=3 p4)=3
ad)=4 pO)=2
Ba(2)=pE)=4
409 410
Permutation Groups Permutation Groups
Composition in Array Notation Composition in Array Notation
1 3 4\ 2 3 4 1 2 4\(1 3 4
a (L2 2 4 saft 212
21 4 329 3 1 4 2 144 3)\243 1 4
(g2 3 4 (1 [ 34
B U
a1 a12
Permutation Groups Permutation Groups
Composition in Array Notation Composition in Array Notation
5 2 3 4)1 2[[3 4 5 123
o = o =
4 32 34 4 21 4
(1 4 (1234
|1 142
413 a14
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Permutation Groups
Composition in Array Notation
1 3 4\(1 2 3 4
Pa=
4 3){2 314
3
2

Y

AN RN

Permutation Groups

Definition

A permutation group of
asetAisasetof
permutations of A that
forms a group under
function composition.

415 416
Permutation Groups Group Theory
Example
= The set of all permutations on {1,2,3} is called the symmetric group
on three letters, denoted S, Examples.of
. . Permutation Groups
= There are 6 permutations possible:
[ 1 2 3 J
3x 2 x1=6
417
Examples of Permutation Groups Examples of Permutation Groups
Ss
= The permutations of {1,2,3}: Is S3a group?
1 2 3 1 2 3 = Composition of functions is always associative.
&= a= = |dentity is €.
1 2 3 2 31 . } s
= Since permutations are one to one and onto, there exist inverses
2 1 2 3 1 2 3 (which are also permutations).
a- = = = Therefore, S; is group.
31 2 B 13 2 3is group
123 123
(Zﬂ = IZZIB =
213 3 21
419 420

70



12/16/2018

Examples of Permutation Groups

Computations in S

; (1 2 3)(1 2 3 12 3

o = = =&
2 1)\3 1 2 123

31 2 3) (12 3)_

2)l1 3 2) 123

12 3)(123)(123) ,
ﬂa:(l 3 2}(2 3 1]{3 2 J=a/3

A~y

RS

Il
VY

[
w N w

Examples of Permutation Groups

Simplified Computationsin S

= apa?B = a(Bajop = aa?B)op

= o?(Ba)p = &(a’B)B

= o2p?

=2
= Double the exponent of a. when switching with f3.
= We can simplify any expression in S;!

421 422
Group Theory Examples of Permutation Groups
Symmetric Groups, S,
E les of =LetA={1, 2, .. n}. The symmetric group on n letters, denoted S, is
Pﬁﬁ:ti:i;n Groups the group of all permutations of A under composition.
P =S, is a group for the same reasons that S; is group.
* IS, =n!
424
Examples of Permutation Groups Examples of Permutation Groups
Symmetries of a Square, D,
Why do we care?
12 3 4 1 2 3 4
R, = [l 9 3 4} H= (2 14 3] = Every group turns out to be a permutation group on some set!
(To be proved later).
1234 12 3 4)3 2
Rolz 3 4 1)V
4 3 21
R1’1234D_1234
3412 1432 a 1
12 3 4 123 4
R, = D'= D,<S
o0 [4 12 3) [3 2 1 4] am 425 426
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Group Theory

Permutation Groups

Permutation Groups

Definition

Let f:A->Bbea
function and let H be a
subset of A. The image
of H under fis

{f(h) I h € H} and is
denoted by f[H].

428
Permutation Groups Permutation Groups
Lemma Proof
Let G and G' be groups Let x',y' € @[G]. Then there exist x,y € G such that @(x)
andlet@:G->G'bea =x'and (p(y-)=y. L ) -
one-to-one function such B\{é\]ypothesns, ®(xy) = @(x)o(y) = x'y', showing thatx'y' €
that @(xy) = @(x elal.
®l) = elxJo(v) We have shown that @[G] is closed under the operation of

forallx,y € G. G
Then @[ G] is a subgroup
of G' and ¢ provides an
isomorphism of G with
[G].

429 430

Permutation Groups Permutation Groups
Let e' be the identity of G'. For x' € @[G] where x' =
Then ®(x), we have
e'ele) = ¢(e) e'=¢(e)
=p(ee) =p(xx?)
= ole)p(e). = @(x) @(x?)
Cancellation in G' shows =x' @(x?)
thate'= p(e) soe' € @[G]. which shows that
X1 =g(x?) €@[G].
Therefore, @[G]<G'.
431 432
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Permutation Groups

Note that ¢ provides an
isomorphism of G with
@[G] follows at once
because ¢ provides a one-
to-one map of G onto @[G]
such that (xy) = @(x)@(y)
forallx,yeG.

Group Theory

Cayley’s Theorem

433
Cayley’s Theorem Cayley’s Theorem
Theorem Proof
Every group is isomorphic Let G be a group.
to a group of permutations. We show that G is
isomorphic to a
subgroup of Sg.
We Need only to define
a one-to-one function
@: G - Sgsuch that
@(xy) =o(x)e(y)
forallx, y € G.
435 436
Cayley’s Theorem Cayley’'s Theorem
Forx € G,letA,: G- G bedefined by A, (g) =xg We now define @: G - Sg by defining ¢(x) = A,
for all g € G. (We think of A, as performing left forallx €G.
multiplication by x.) To show that @ is one to one, suppose that
The equation A (x'c) =x(x*c) =cforallce G o(x) = @ly).
shows thatA, maps Gonto G.IfA(a) =A(b), ~ . . .
then xa =xb so a=b by cancellation. Thus A, is Then A, = A, as functions mapping G into G.
also one to one, and is a permutation of G. In particular A,(e) =A(e), soxe=yeand x=y.
Thus ¢ is one to one.
437 438
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Cayley’s Theorem

It only remains to show that @(xy) = @(x )o(y),
thatis, A, =AA, .

Now for any g € G, we have A, (g) = (xy)g.
Permutation multiplication is function
composition, so (A,A)(8) =A(A(g)) =Alyg) =
x(yg).

Thus by associativity, A, = A, A

x Ay -

Group Theory

Examples of
Permutation Groups

Examples of Permutation Groups

There is a natural correspondence between the
elements of S; and the ways in which two copies of
an equilateral triangle with vertices 1, 2, and 3 can
be placed, one covering the other with vertices on
top of vertices.

For this reason, S, is also the group D; of
symmetries of an equilateral triangle. We used p,
for rotations and p; for mirror images in bisectors of
angles. The notation D3 stands for the third dihedral
group.

The nth dihedral group D, is the group of
symmetries of the regular n-gon.

Examples of Permutation Groups

p, = do nothing
s
1y = reflect in ling 1, 3Az

3
= reflect in line |
Hp 2 ZA]
2

113 = reflect in line 15 lAa

3
= rotate anticlockwise 120°
Pi 1‘

2

2
= rotate anticlockwise 240°
~ A,

Examples of Permutation Groups

(1
Pe*l

|

u P P2 Po M3 Hy Ha
u [ T T TR
n T T T T Y
u T T A
- |

2
2
2
3
2
1
123
wely 53
2
2
2 L T Nt [ P
1

443

Group Theory

Examples of
Permutation Groups
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Examples of Permutation Groups

Examples of Permutation Groups

Symmetries of a Square, D,

Recall
We form the dihedral group D, of permutations P = 1234 W= 123
corresponding to the ways that two copies of a 1234 (2121
square with vertices 1, 2, 3, and 4 can be placed, 123 4
one covering the other with vertices on top of p= ) = 123
vertices. 2 3 4 1)H 43 2
D, is the group of symmetries of the square. 123 4 123
It is also called the octic group. < 341 2 4= 1 4 3
(1234 (123
Plg 1 2 3) %75 9
445 446
Examples of Permutation Groups Group Theory
Dy
7 | ~_
T | \\\ Orbits
. g 210 2 3] [om 2781 8)
. N\
s —
N e | \\
toe sy} Lo pis) fog o3t {0, 811 {oo. 8]
T ~ | o
~ |
e
447
Orbits Orbits
Definition Find all orbits of P 12345
An orbit of a permutation 2 315 4
p is an equivalence class Method:
under the relation: Let S be the set that the permutation works on.
avbh = A b=p"(a), 0) Start with an empty list
for some nin Z. 1) If possible, pick an element of the S not already
visited and apply permutation repeatedly to get
an orbit.
2) Repeat step 1 until all elements of S have been
visited.
449 450

75



12/16/2018

Orbits Group Theory
= Look at what happens to elements as a
permutation is applied.
. Orbits
1 23 45
a=
2 3154
a(1)=2,a?(1)=3,a3(1)=1 {1,2,3}
a(4)=5, a?(4)=4 {4,5}
451
Orbits Orbits
Theorem Proof
Let p be a permutation 1) reflexive:
of asetS. a=pa)=>a~a
The following relation 2) symmetric:
is an equivalence a~b = b =p"(a), for
relation: some ninZ
a~beb =_p"(a), =a=p(b),
for some nin Z. with -nin Z
= b~a
453 454
Orbits Group Theory
3) transitive:
a~b and b~c vl
cles
= b =p™(a)and c = p"2(b), for some n, and n, in v
VA
= c=p"z(p™(a)), forsomen, and n,in Z
= c=p™*™(a), withn, +n,in Z
=a~c
455
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Cycles

Definition

A permutationis a
cycle if at most one of
its orbits is nontrivial
(has more than one

Cycles

Definition
A cycle of length 2 is
called a transposition.

element).
457 458
Cycles Cycles
Example Composition in cycle notation
af=(123)(12)(34)
1 23 45 =(134)(2)
o=
2 315 4 =(134)
Ba=(12)(34)(123)
=(1,2,3)4,5) =(1)(243)
=(1,3)(1,2)(4,5) =(243)
459 460
Group Theory Disjoint Cycles
Definition
L Two permutations are
Disjoint Cycles disjoint if the sets of
elements moved by
the permutations are
disjoint.
462

12/16/2018
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Disjoint Cycles Disjoint Cycles
Symmetries of a Square, D,< S, Symmetries of a Square, D,< S,
123 4 12 3 4
= =12)(12 = =(12)34
”“(1234]‘)() m(2143j()()
(12 3 4) B 123 4
pl’[z 3 4 1]’(1234)’(14)(13)(12) Hy :(4 3 2 1]:(14)(2 3)
1234 123 4
= =(13)(24 = =
”2[3412J()‘) 51[1432j(24)
12 3 4 123 4
= =(1432)=(12)13)(14 5, = =
p3[4123j< ) =020 314 2[3214](13)
463 464
Group Theory Cycle Decomposition
Theorem:
Cycle D it Every permutation of
ycle Decomposition a finite set is a product
of disjoint cycles.
466
Cycle Decomposition Cycle Decomposition
Proof: Lemma
Let o be a permutation. Every cycle is a product
Let ABI, B,, ..., B, be the of transpositions.
Erb'ts'b h | Proof
et ; be the cycle
defined by 1, (x) = 6(x) if Let (ay ay ., @) bea
x in B; and x otherwise. cycle, then
Then o =, fy ... i, (ay, a,) (a3, ap4) - (a3, @)
Note: Disjoint cycles =@y, az .. ).
commute.
467 468
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Cycle Decomposition

Theorem

Every permutation can
be written as a product
of transpositions.
Proof

Use the lemma plus the
previous theorem.

Group Theory

Parity of Permutation

469
Parity of a Permutation Parity of a Permutation
Definition Theorem
The parity of a permutation The parity of a
is said to be even if it can permutation is even or
be expressed as the odd, but not both.
product of an even number
of transpositions, and odd
if it can be expressed as a
product of an odd number
of transpositions.
471 472
Parity of a Permutation Parity of a Permutation
. One way uses linear algebra: For the permutation 1t
Proo 3 nto RN itchi i
We show that for any positive integer n, parity is a define a map from R"to R" by switching coordinates
homomorphism from S, to the group Z,, where 0 as follows
represents even, and 1 represents odd. Le(X1) Xg, o0 Xp) = (X (1) Xn2yp -+ X))+
These are alternate names for the equivalence classes Then L, is represented by a n x n matrix M., whose
27 and 2Z+1 that make up the group Z,. . .
. " rows are the corresponding permutation of the rows
There are several ways to define the parity map. - ) .
They tend to use the group {1, -1} with multiplicative of the n x n identity matrix.
notation instead of {0, 1} with additive notation. The map that takes the permutation 1 to Det (M,) is
a homomorphism from S, to the multiplicative group
{-1,1}.
473 474
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Parity of a Permutation

Another way uses the action of the permutation on
the polynomial

P(Xy, Xp, - Xy ) = Product{(x;- x;)| i <j}.
Each permutation changes the sign of P or leaves it
alone.
This determines the parity: change sign = odd parity,
leave sign = even parity.

Group Theory

Alternating Group

475
Alternating Group Alternating Group
Definition Definition
The alternating group The alternating group
on n letters consists of on n letters consists of
the even permutations the even permutations
in the symmetric group in the symmetric group
of n letters. of n letters.
477 a7s
Alternating Group Alternating Group
123
Theorem _[l 2 3] =(202)
If n>2, then the :(1 2 3J:(123):(l3)(12)
collection of all even 231
ermutations of 123
p w2 ) —(3 1 2]:(132):(12)(13)
,2, N
123
forms a subgroup of :[ ]:(2 3)
order n!/2 of the 132
i 123
symmetric group S,.. {3 : Jz(l 3
123
:[2 1 3]:(1 2
479 480
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Alternating Group

As={(1),(123),(132)}

(1) (123)  (132)

(123)  (132) (1

w 132 (1 (123)

Group Theory

Direct Products

481
Direct Products Direct Products
Definition Let Gy, -+, G, be groups, and let us use
The Cartesian product of multiplicative notation for all the group operations.
X Regarding the G as sets, we can form TT,.," G,.

sets Sy, ..., Sy is the set of Let us show that we can make TJ,.," G, into a group

all n-tuples (ay,+, an), by means of a binary operation of multiplication by

where a;€ S;fori =1, n. components.

The Cartesian product is

denoted by either

S;X...XS,or by TTi-,"S,

483 484
Direct Products Direct Products
Theorem Proof
Let Gy, ..., G, be groups. Note that since a;, b;€ G, and G; is a group, we
i By i
For (ay, ..., a,) and (by,..., b,) in TTi," G, have a,b; € G.
define (ay, ..., a,)(by,..., b,) to be the element Thus the definition of the binary operation on
(a; by, ., 3, by) TTi-1" G, given in the statement of the theorem
s+ @ bp)- - .
Then TT.," Gy is a group, the direct product of the makes sense, that is, T]..,"G; is closed under the
groups G;, under this binary operation. binary operation.
485 486
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Direct Products

The associate law in

TTi-1." G; is thrown back onto the associative law in
each component as follows:

(@5, an)l(by,, ba)(cy, €4)]

=(ay, -, a,)(bycy, ) baco)= (a1(bycy), 7, an(bcy))
= ((asby)ey,, (anby)eq)=(asby, ... anby)(cy, . .C0)

=[(ag,-ran) (0., 0,)1(Cyy e s C)

Direct Products

If ; is the identity element in G, then clearly,
with multiplication by components, (e, e,) an
identity in TT.,"G;.

Finally, an inverse of (a;, -, a,)is (a;%,, a,%);
compute the product by components.

Hence TT.,"G; is a group.

487 488
Group Theory Direct Products
In the event that the operation of each G; is
Direct Products commutative, we sometimes use additive
notation in T,.,"G,, and refer to T].,"G, as the
direct sum of the groups G;. The notation
@,_,"G; is sometimes used in this case in place of
Ti-1" G, especially with abelian groups with
operation +. The direct sum of abelian groups G,
G,, -, G, may be written as G, @... ®G,.
490
Direct Products Direct Products
Proposition Proof
A direct product of Let Gy, ..., G, be abelian
abelian groups is groups. For (ay, ..., a,)
abelian. and (by,..., b,) in
nw:ln Gi 1
(ay, s @p)(by,eee, by)
=(a; by, ..., a, by)
=(bjay,....bya,)
=(by,..., by) (ay, ., ay).
491 492
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Direct Products

If the S; hasr; elements
fori=1,-,n, then TT,,,"S;
has r,...r, elements, for
in an n-tuple, there are
r, choices for the first
component from S;, and
for each of these there
are r, choices for the
next component from S,,
and so on.

Group Theory

Direct Products

493
Direct Products Direct Products
Example ©1(1,1) =(1, 1)
Consider the group Z, x Z3, which has 2:3=6 *2(1. 1) =(, N+(1, 1) =(0,2)
elements, namely (0, 0), (0, 1), (0, 2), (I, 0), (1, 1), ©3(1, 1) =(1, 1)+(1, 1)+ (1, 1) =(1,0)
and (1, 2). We claim that Z, x Zj is cyclic. It is only e 4(1, 1) =3(1. 1)+ (1, 1) =(1,0)+ (L. 1) =(0, 1)
necessary to find a generator. Let ustry (1, 1). Here
the operations in Z, and Z; are written additively, 51, 1) =41, 1)+(1, 1) =(0, 1)+(1, 1) =(L,2)
so we do the same in the direct product Z, x Z. *6(1, 1) =5(1. 1)+ (1, 1) =(1,2)+(1, 1) =(0,0)
Thus (1, 1) generates all of Z, x Z. Since there is,
up to isomorphism, only one cyclic group structure
of a given order, we see that Z, x Z is isomorphic
to Zg.
495 496
Direct Products Group Theory
Example
Consider Z3 x Zs. This is a group of nine elements.
We claim that Z; x Z; is not cyclic. Direct Products
Since the addition is by components, and since in Z;
every element added to itself three times gives the
identity, the same is true in Z3 x Z3. Thus no
element can generate the group, for a generator
added to itself successively could only give the
identity after nine summands. We have found
another group structure of order 9. A similar
argument shows that Z, x Z, is not cyclic. Thus Z, x
7, must be isomorphic to the Klein 4-group.
497
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Direct Products

Theorem

The group Z,, x Z,, is cyclic and is isomorphic to Z,,, if
and only if m and n are relatively prime, that is, the
gedof mand nis 1.

Direct Products

Proof

Consider the cyclic subgroup of Z,, x Z,, generated
by (1,1). The order of this cyclic subgroup is the
smallest power of (1,1) that gives the identity (0,0).
Here taking a power of (1,1) in our additive
notation will involve adding (1,1) to itself
repeatedly. Under addition by components, the
first component 1 € Z,, yields 0 only after m
summands, 2m summands, and so on, and the
second component 1 € Z, yields 0 only after n
summands, 2n summands, and so on.

499 500
Direct Products Direct Products
For them to yield 0 simultalneously, the number of For the converse, suppose that the ged of m and
summands must be a lmultlplelof both m and n. The nis d > 1. The mn/d is divisible by both m and n.
smallest nulmber that is a multiple of both m anq n. Consequently, for any (r, s) in Z,,x Z,,, we have
will be mn if and only if the gcd of m and n is 1; in this - (00
case, (1,1) generates a cyclic subgroup of order mn, (8) + - +(1,s) = (0,0).
which is the order of the whole group. This shows mn/d summands )
that Z,, x Z, is cyclic of order mn, and hence Hence no element (r, s) in Z,, x I, can generate
isomorphic to Z,, if m and n are relatively prime. the entire group, so Z,, x Z, is not cyclic and
therefore not isomorphic to Z,,,.
501 502
Direct Products Direct Products
Corollary Example
The group ﬂi=1”Zmi is If n is written as a product
cyclic and isomorphic to of powers ofldistinct prime
Lo, .my, if and only if numlglers, asin
the numbers m; for i = n=py"t.pr"
1,.., naresuch that the then Z, is isomorphic to
gcd of any two of them
s 1. Lp,maX . XL, nr,
In particular, Z, is
isomorphic to Zg x Z.
503 504
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Group Theory

Direct Products

Direct Products

We remark that changing
the order of the factors
in a direct product yields
a group isomorphic to the
original one. The names
of elements have simply
been changed via a
permutation of the
components in the n-
tuples.

506
Direct Products Direct Products
It is straightforward to prove that the subset of Z Definition
consisting of all integers that are multiples of both r Letr,,, 1, be positive integers. Their least
and s is a subgroup of Z, and hence is cyclic group common multiple (abbreviated Icm) is the positive
generated by the least common multiple of two generator of the cyclic group of all common
pF’SItIYe integers r ands. . . multiples of the r, that is, the cyclic group of all
Likewise, the set of all common multiples of n positive . . )
. . . ) integers divisible by eachr;, fori=1,-,n.
integers ry, -, r,, is a subgroup of Z, and hence is cyclic
group generated by the least common multiple of n
positive integersry,-, r,.
507 508
Direct Products Direct Products
Theorem Proof
Let (a;, ', a,)€ TTi.1"G;. If a; is of finite order r; in This follows by a repetition of the argument used
G, then the order of (a;,,a,) in TTi-;" G;is equal to in the proof of previous Theorem. For a power of
the least common multiple of all the r;. (a,, a,) to give (ey, -+,e,), the power must
simultaneously be a multiple of r, so that this
power of the first component a, will yield e;, a
multiple of r,, so that this power of the second
component a, will yield e,, and so on.
509 510
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Group Theory

Direct Products

Direct Products

Example

Find the order of (8, 4, 10) in the group Z;, x Zg, X
o m

Solution

Since the gcd of 8 and 12 is 4, we see that 8 is of
order 3 in Z,. Similarly, we find that 4 is of order
15 in Zg, and 10 is of order 12 in Z,,. The lcm
of 3, 15, and 12 is 3-5:4 = 60, so (8, 4,10) is of
order 60 in the group Z,; X Zgy X Zoy,.

512
Direct Products Group Theory
Example
The group Zx Z, is generated by the elements
(1,0) and (0, 1). More generally, the direct Func:!an:nentalTheorem
product of n cyclic groups, each of which is of F'"'te.ly Generated
either Z or Z,, for some positive integer m, is Abelian Groups
generated by then n-tuples
(1,0,+,0),(0,1,+,0),..,(0, 0,~, 1). Such a direct
product might also be generated by fewer
elements. For example, Z; x Z, X Z;5 is generated
by the single element (1, 1, 1).
513
Fundamental Theorem of Finitely Generated Fundamental Theorem of Finitely Generated
Abelian Groups Abelian Groups
Theorem Example
Every finitely generated abelian group G is Find all abelian groups, up to isomorphism, of
isomorphic to a direct product of cyclic groups in the order 360. The phrase up to isomorphism
form signifies that any abelian group of order 360
should be structurally identical (isomorphic) to
LpyriX e X Lp,rn XL X . X I one of the groups of order 360 exhibited.
where the p; are primes, not necessarily distinct,
and the r; are positive integers. The direct product
is unique except for possible rearrangement of the
factors; that is, the number (Betti number of G) of
factors Z is unique and the prime powers p;"t are
unique. 515 516
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Fundamental Theorem of Finitely Generated
Abelian Groups

Solution

Since our groups are to be of the finite order
360, no factors Z will appear in the direct
product shown in the statement of the
fundamental theorem of finitely generated
abelian groups.

First we express 360 as a product of prime
powers 23,325,

Fundamental Theorem of Finitely Generated

Abelian Groups

Then, we get as possibilities

1.7y XZyxZy XZ3 XLy X Zsg

2.7y XLy XLz XLy X Zs

3.7Z) XLy XLy xZLg X Zs

4.7, x Ly XLy XZLs

5.Zgx Lz XLy X Ls

6. Zgx Ly X Ls

Thus there are six different abelian groups (up
to isomorphism) of order 360.

Group Theory

Applications

Applications

Definition

A group G is decomposable if it is isomorphic to
a direct product of two proper nontrivial
subgroups. Otherwise G is indecomposable.

Applications

Theorem

The finite indecomposable abelian groups are
exactly the cyclic groups with order a power of
a prime.

Applications

Proof

Let G be a finite indecomposable abelian group.
Then, G is isomorphic to a direct product of
cyclic groups of prime power order. Since G is
indecomposable, this direct product must
consist of just one cyclic group whose order is a
power of a prime number.

Conversely, let p be a prime. Then Z,, is
indecomposable, for if Z; were isomorphic to
Zpi X ij , where i +j=r, then every element

would have an order at most pmaiil<pr,
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Group Theory Applications
Theorem
o If m divides the order of a finite abelian group
Applications G, then G has a subgroup of order m.
524
Applications Applications
Proof Recalling that <a> denotes the cyclic subgroup
We can think of G as being generated by a, we see that
Zp,1X ... X Ly, rn where not all primes p; need be <P > XL x<pp T >
distinct. Since p;™ ... p,™ is the order of G, then m is the required subgroup of order m.
must be of the form p;*1 ... p,,*r, where 0< s; <.
p;"""t generates a cyclic subgroup of Z, r of
order equal to the quotient of p;"i by the gcd of
p; i and p;"i~Si. But the ged of p;"t and p;" St is
p; 75t Thus p;"i~5t generates a cyclic subgroup
Zp i of order [p;"1/[p;"~%1]=p;*.
525 526
Group Theory Applications
Theorem
. If mis a square free integer, that is, m is not
Applications divisible by the square of any prime, then
every abelian group of order m is cyclic.
528
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Applications

Proof

Let G be an abelian group of square free order
m. Then, G is isomorphic to

Ly, r1X . X Ly, n,

where m=p;" ... p,'n. Since m is square free,
we must haveallr; =1 and all p; distinct
primes. Then, G is isomorphic to Zj ;. ,s0G
is cyclic.

Group Theory

Cosets

529
Cosets Cosets
Definition Example
Let H be a subgroup of a group G, which may be of finite We exhibit the left cosets and the right cosets of the
or infinite order and a in G. subgroup 3Z of Z.
The left coset of H containing a is the set 0+3Z=3Z={..,-6,-3,0,3,6, ..}
aH={ah | hinH} 1+37={...,-5,-2,1,4,7, ...}
The right coset of H containing a is the set 2+372={..,-4,-1,2,5,8, ...}
Ha ={ha | hin H} Z=3ZU1+3Z U 2+3Z
In additive groups, we use a+H and H+a for left and So, these three left cosets constitute the partition of
right cosets, respectively. Z into left cosets of 3Z.
531 532
Cosets Group Theory
Example
3Z+0=3Z={...,-6,-3,0,3,6, ... }=0+3Z
3Z+1={..,-5,-2,1,4,7,..}=1+3Z Cosets
3Z+2={..,-4,-1,2,5,8, ... }=2+43Z
Z=3ZU3Z+1 U 3Z+2
So, the partition of Z into right cosets is the same.
533
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Group Theory Group Theory

Partitions of Groups

Topic No. 67
Partitions of Groups Partitions of Groups
Let H be a subgroup of a Theorem
group G, which may be of Let H be a subgroup of a group G.
finite or infinite order. Let the relation ~ be defined on G by a ~ b iff albeH.
We exhibit two partitions Let ~ be defined by a ~ b iff ab-leH.
of G by defining two Then ~ and ~ are both equivalence relations on G.
equivalence relations, ~|,
and ~z on G.
537 538
Partitions of Groups Partitions of Groups
Proof Symmetric
Reflexive Suppose a~ b.
Let aeG. Then a'beH.
Thenala=ee€H Since H is a subgroup,
since H is a subgroup. (a'b)*=ba eH.
Thus a~,a. Itimplies that b ~ a.
539 540
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Partitions of Groups Partitions of Groups
Transitive = g is called the coset
Let a~ b and b~ c representative of gH.
L L~ o
Then a'beH and bceH = Similarly, aHa* ={aha' |
' hin H}

Since H is a subgroup,
(ab)(bic)=alceH.

So,a~c.
541 542
Group Theory Group Theory
Topic No. 68 Examples of Cosets
Examples of Cosets Examples of Cosets
Vectors under addition are a group: Visualizing H={(2t,t) | teR}
=(a,b) + (c,d) = (a+c,b+d)eR? mletx=2t,y=t
=|dentity is (0,0) eR? =Eliminate t: :
=Inverse of (a,b) is (-a,-b) in R? y=x/2
H
*((a,b)+(c,d))+(e,f)=(a+c,b+d)+(e,f)=((a+c)+e,(b+d)+f) ! >
=(a+(c+e),b+(d+f))=(a,b)+(c+e,d+f)=(a,b)+((c,d)+(e,f))
H={(2t,t) | teR}is a subgroup of R2. 'y T H B H
Proof: (2a,a) - (2b,b) = (2(a-b),a-b) €H
545 546
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Examples of Cosets

Cosets of H={(2t,t) | t € R}

(a,b) + H = {(a+2t,b+t)}

Set x = g+2t, y = b+t and eliminate t:
y=b+(x-a)/2

The subgroup H is the line y = x/2.

The cosets are lines parallel toy = x/2 !

547

Examples of Cosets

Hand some cosets

©)+H

(-3.0)+H

Group Theory

Examples of Cosets

Group Theory

Topic No. 69

Group Theory

Examples of Cosets

Examples o

f Cosets

Left Cosets of <(23)>in S,

Let H = <(23)> {¢, (23)}
eH ={g, (23)}=H

(123)H = {(123), (12)}

(132)H = {(132), (13)}

S,= H U (123)H U (132)H
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Examples of Cosets

Right Cosets of <(23)>in S;
Let H = <(23)> {g, (23)}
He={g, (23)}=H

H(123) = {(123), (13)}
H(132) = {(132), (12)}

S,= H U H(123) U H(132)

Examples of Cosets

Left Cosets of <(123)>in A,

Let H = <(123)> {g, (123), (132)}
eH = {g, (123), (132)}

(12)(34)H = {(12)(34), (243), (143)}
(13)(24)H = {(13)(24), (142), (234)}
(14)(23)H = {(14)(23), (134), (124)}

553 554
Group Theory Group Theory
Examples of Cosets Topic No. 70
Group Theory Properties of Cosets
Proposition
Let H be a subgroup of G,
Properties of Cosets anda,binG.
1. a belongs to aH
2. aH = H iff a belongs to
H
558
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Properties of Cosets

1. a belongs to aH

Proof: a = ae belongs to
aH.

2. gH=HiffainH
Proof: (=) Given aH = H.
By (1), @isinaH =H.

Properties of Cosets

(<) Given a belongs to H. Then

(i) @H is contained in H by closure.
(ii) Choose any h in H.

Note that @ is in H since a is.

Let b = a'h. Note that b isin H. So
h =(ga')h =ala'h) =ab is in aH

It follows that H is contained in aH

By (i) and (ii), aH =H

559 560
Group Theory Group Theory
Properties of Cosets
operties o Topic No. 71
Group Theory Properties of Cosets
Proposition
) § Let H be a subgroup of G, and a,b in G.
Properties of Cosets 3. aH = bH iff a belongs to bH
4. aH and bH are either equal or disjoint
5. aH = bH iff a'b belongs to H
564
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Properties of Cosets

3. gH =DbH iff @ in bH

Proof: (=) Suppose aH = bH. Then
a=geinaH=bH.

(<) Suppose a is in bH. Then

a = bh for some hin H.

so aH = (bh)H = b(hH) = bH by (2).

Properties of Cosets

4. gH and bH are either disjoint or equal.

Proof: Suppose aH and bH are not disjoint. Say x is in
the intersection of aH and bH.

Then aH = xH = bH by (3).
Consequently, aH and bH are either disjoint or equal,
as required.

565 566
Properties of Cosets Group Theory
5. agH=bHiffa 1hinH
Proof: gH = bH )
< binaHby(3) Properties of Cosets
< b =ah for some hin H
<@ b=hforsomehinH
=a’binH
567
Group Theory Group Theory
Topic No. 72 Properties of Cosets

95



12/16/2018

Properties of Cosets Properties of Cosets
Proposition 6. |aH| = |bH]|
Let H be a subgroup of G, Proof: Let ¢: aH -> bH be given by
andainG.

@(ah) = bh for all hin H.
We claim @ is one to one and onto.
If g(ah,) = @(ah,), then bh, = bh,
so h; = h,. Therefore ah, = ah,.

6. |aH| = |bH|

7. aH=Haiff H = aHa*

8. aH < G iff a belongs to H
Hence ¢ is one-to-one.

@ is clearly onto.
It follows that |aH| = |bH| as required.

571 572
Properties of Cosets Properties of Cosets
7. aH =Haiff H = gHa™? 8. aHsGiffainH
Proof: gH = Ha Proof: (=) Suppose gH < G.
<> each gh =h’ag for some h"inH Then e in agH.
< gha' =h"for some h"in H But e in eH, so eH and aH are not disjoint. By (4), aH =eH
< H=aHa?. =H.

(<) Suppose a in H.
ThenaH=H <G.

573 574

Group Theory Group Theory

Properties of Cosets Lagrange’s Theorem
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Lagrange’s Theorem

Lagrange’s Theorem
Statement

If G is a finite group and H
is a subgroup of G, then
|H| divides |G]|.

Lagrange’s Theorem

Proof

The right cosets of H in G form a partition of G, so G
can be written as a disjoint union

G=Ha; UHa,U - -UHa,

for a finite set of elementsay, a,, ..., a, € G.

The number of elements in each cosetis |H|.
Hence, counting all the elements in the disjoint
union above, we see that |G| = k|H|.

Therefore, |H| divides |G]|.

Lagrange’s Theorem

Subgroups of Z,,

|Z15|=12

The divisors of 12 are 1, 2, 3,
4,6and 12.

The subgroups of Z,, are
H,={[0]}

Ho={[0],[6]}
H;={[0],[4],[8]}
Hy={[0].[3],[6].[9]}
Hs={[0],[2],[4].[6].[8],[10]}

Group Theory

Applications of
Lagrange’s Theorem

Applications of Lagrange’s Theorem

Corollary

Every group of prime
order is cyclic.

Applications of Lagrange’s Theorem

Proof

Let G be of prime order p, and let a be an element of
G different from the identity.

Then the cyclic subgroup <a> of G generated by a
has at least two elements, a and e.

But the order m>2 of <a> must divide the prime p.
Thus we must have m = p and <a>=G, so G is cyclic.
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Applications of Lagrange’s Theorem

Since every cyclic
group of order pis
isomorphic to Z,, we
see that there is only
one group structure,
up to isomorphism, of
a given prime order p.

Applications of Lagrange’s Theorem

Theorem

The order of an

element of a finite
group divides the
order of the group.

583 584
Applications of Lagrange’s Theorem Group Theory
Proof
Remembering that the .
order of an elgement is Indices of Subgroups
the same as the order
of the cyclic subgroup
generated by the
element, we see that
this theorem follows
directly from
Lagrange’s Theorem.
585
Indices of Subgroups Indices of Subgroups
Definition The index (G:H) just
Let H be a subgroup of defined may be finite or
agroup G. infinite.
The number of left (or If G is finite, then
right) cosets of Hin G obviously (G:H) is flhlte
is the index (G:H) of H and (G:H)=IGI/IHI, since
inG. every coset of H contains
IHI elements.
587 588
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Indices of Subgroups

Example
u=(1,2,4,5)(3,6)
12=(2,5)(1,4)
w=(1,5,4,2)(3,6)
pi=e

<p>< S
(Se:<p>)=[Sel/I1< u>|
=6!/4=6.5.3.2=180.

Indices of Subgroups

Example

Find the right cosets of
H={e, g% g in
Cp={eg8...,8"

590

Indices of Subgroups

Solution
H={e, g%, g8} itself is one coset.
Another is Hg = {g, g°, 8°}.

These two cosets have not exhausted all the
elements of C,,, so pick an element, say g2, which is
not in H or Hg.

A third coset is Hg? = {g?, g°, g°} and a fourth is
Hg®={g? g’, g"}.

Since C;, = H U Hg U Hg? U Hg?, these are all the
cosets. Therefore, (Cy,:H)=12/3=4.

Indices of Subgroups

Theorem

Suppose Hand K are
subgroups of a group
GsuchthatK <H<G,
and suppose (H:K) and
(G:H) are both finite.
Then (G:K) is finite, and
(G:K)=(G:H)(H:K).

Group Theory

Converse of Lagrange’s
Theorem

Converse of Lagrange’s Theorem

Lagrange’s Theorem
shows that if there is
a subgroup H of a finite
group G, then the
order of H divides the
order of G.
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Converse of Lagrange’s Theorem

Is the converse true?
That is, if G is a group
of order n, and m
divides n, is there
always a subgroup of
order m?

We will see next that
this is true for abelian
groups.

Converse of Lagrange’s Theorem

However, A, can be
shown to have no
subgroup of order 6,
which gives a
counterexample for
nonabelian groups.

595 596
Converse of Lagrange’s Theorem Group Theory
A={(1), (1, 2)3, 4),
(1,3)(2, 4),(1, 4)(2, 3), An Interesting Example
(1,2,3),(1,3,2),
(1,3,4),(1,4,3),
(1,2,4),(1,4,2),
(2,3,4),(2,4,3)}
597
An Interesting Example An Interesting Example
The composition of this
Example translation with a
translation g in the
A translation of the plane direction of (c, d) is the
R2in the direction of the function
2 2
vector (a, b) is a function fg:R? > R? where
f :R2 > R2 defined by f gf(zs y)=f (gEjX), y))
_ =f(x+cy+
f(x,y)=(x+a,y+b). S(krcray+deb)
This is a translation in the
direction of (c+a, d +b).
99 600
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An Interesting Example

It can easily be verified
that the set of all
translations in R? forms
an abelian group, under
composition.

An Interesting Example

A translation of the plane
R2?in the direction of the
vector (0, 0) is an identity
function 13%:R? - R?
defined by

1x2(x, y)=(x+0, y+0)=(x, y).

An Interesting Example

The inverse of the
translation of the plane
R2in the direction of the
vector (a, b) is an inverse
function f 1 :R? > R?
defined by
fr{xy)=(x-a,y-b)
such that

FF(x, y)=(x, y)=f* flx, y).

An Interesting Example

The inverse of the
translation in the
direction (a, b) is the
translation in the
opposite direction
(-a,~b).

Group Theory

Homomorphism of
Groups

Homomorphism of Groups

Structure-Relating Maps

Let G and G' be groups.
We are interested in
maps from G to G' that
relate the group
structure of G to the
group structure of G'.

Such a map often gives
us information about one
of the groups from
known structural
properties of the other.
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Homomorphism of Groups

Structure-Relating Maps
An isomorphism ¢: G >
G', if one exists, is an
example of such a
structure-relating map. If
we know all about the
group G and know that ¢
is an isomorphism, we
immediately know all
about the group structure
of G', for it is structurally
just a copy of G.

Homomorphism of Groups

Structure-Relating Maps

We now consider more general structure-relating
maps, weakening the conditions from those of an
isomorphism by no longer requiring that the maps
be one to one and onto. We see, those conditions
are the purely set-theoretic portion of our definition
of an isomorphism, and have nothing to do with the
binary operations of G and of G'.

Homomorphism of Groups

Definition
If (G, *) and (H, *) are
two groups, the function
f:G - His called a group
homomorphism if

f(a * b)=f(a)=f(b)
foralla,b€G.

609

Homomorphism of Groups

= We often use the
notation
f:(G, *)>(H, =)
for such a homorphism.
= Many authors use

morphism instead of
homomorphism.

Homomorphism of Groups

Definition

A group isomorphism is a
bijective group
homomorphism.

If there is an isomorphism
between the groups (G, * )
and (H,*), we say that

(G, - ) and (H,*) are
isomorphic and write

(G, = )=(H,*).

Homomorphism of Groups

Example

Let ¢: G - G' be a group homomorphism of G onto
G'. We claim that if G is abelian, then G' must be
abelian. Leta’, b'€ G'. We must show thata'b'=b'
a'. Since ¢ is onto G', there exist a, b € G such that
d(a)=a'and ¢(b) =b', Since G is abelian,

we have ab= ba. Using homomorphism property,
we have a'b’ = ¢(a) d(b) = p(ab)= Pp(ba) =

¢(b) dp(a) =b'a', so G'is indeed abelian.
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Group Theory Homomorphism of Groups
Example
The function f: Z > Z,,
Examples of Group defined by f (x) = [x] is

Homomorphisms the group

homomorphism,
forifi, j € Z, then
fi+)=[i+j]

=[il+.01
=f(D)+,f()-
6:
Examples of Group Homomorphisms Examples of Group Homomorphisms
Example Now f is an isomorphism, for its inverse function
Let be R the group of all real numbers with g:R*>RisInx.
operation addition, and let R* be the group of all Therefore, the additive group R is isomorphic to
positive real numbers with operation multiplication. the multiplicative group R*.
The function f: R - R*, defined by f (x) = &*, is a Note that the inverse function g is also an
’ i hism:
homomorphism, forif x, y € R, then |s;)m;)rpl |{sm) I I )+ aly)
xy) =In(xy) = Inx + Iny = g(x) + g(y).
fix +y) =exv=exeV=1f(x)f(y). gy ¢ =9 v
615 616

Group Theory Examples of Group Homomorphisms
Example
€ | G Let S, be the symmetric group on n letters, and let :
xamples of Group $:5,> Z, be defined by
Homomorphisms d(c) =0 if o is an even permutation,

=1 if ois an odd permutation.
Show that ¢ is a homomorphism.
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Examples of Group Homomorphisms

Solution

We must show that ¢(c, p) = d(o) + () for all
choices of o, p € S,,. Note that the operation on the
right-hand side of this equation is written additively
since it takes place in the group Z,. Verifying this
equation amounts to checking just four cases:

= g odd and p odd,

=g odd and p even,

= o evenand podd,

=g evenand peven.

619

Examples of Group Homomorphisms

Checking the first case, if o and p can both be
written as a product of an odd number of
transpositions, then o can be written as the
product of an even number of transpositions. Thus
d(o, w)=0and p(o) + d(u) =1 + 1 =0inZ, The
other cases can be checked similarly.

Group Theory

Properties of
Homomorphisms

Properties of Homomorphisms

Proposition

Let ¢ :G - H be a group
morphism, and let eg
and e, be the identities
of G and H, respectively.

Then

(i) b (eg) =ey.

(i) b (a7 = b (a) for
alla€eaG.

Theorems on Group Homomorphisms

Proof

(i) Since ¢ is a morphism,
b (eg) d (eg)

= ¢ (egeq)

=& (eg)

= ¢ (egley

Hence (i) follows by
cancellation in H.

623

Theorems on Group Homomorphisms

Proof

(i) $ (a) ¢ (a71)
=¢aa’)

= (eg)

=e, by (i).

Hence ¢ (a™!) is the
unique inverse of ¢ (a);

thatis ¢ (a™%) = ¢ (a) ™
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Group Theory

Properties of
Homomorphisms

Properties of Homomorphisms

We tum to some
structural features of G
and G' that are
preserved by a
homomorphism

$¢:G> G
First we review set-
theoretic definitions.

Properties of Homomorphisms

Definition

Let ¢ be a mapping of
asetXintoasetY and
letAS Xand BE Y. The
image p[A] of AinY
under ¢ is {p(a) |aeA}.
The set ¢[X] is the
range of ¢. The inverse
image ¢[B] of Bin X is
{xeX| (x)eB).

Properties of Homomorphisms

Theorem

Letp bea
homomorphism of a

group Ginto agroup G'.

1.IfH is a subgroup of
G, then ¢[H]is a
subgroup of G'.

2. If K'is a subgroup of
G', then ¢Y[K']is a
subgroup of G.

Properties of Homomorphisms

Proof

(1) Let H be a subgroup of G, and let ¢(a) and ¢(b)
be any two elements in ¢p[H]. Then d(a) dp(b) =
P(ab), so we see that ¢p(a) d(b) € d[H]; thus, $[H]
is closed under the operation of G'. The fact that
dleg) = egrand d (a?) = ¢ (a)™! completes the
proof that ¢[H] is a subgroup of G".

629

Properties of Homomorphisms

Proof

(2) Let K' be a subgroup of G'. Suppose a and b are
in ¢ [K']. Then ¢p(a)d(b)ek' since K' is a subgroup.
The equation ¢(ab) = ¢(a) p(b) shows that

abed? [K']. Thus ¢2[K'] is closed under the binary
operationin G.
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Properties of Homomorphisms

Also, K' must contain the identity elemente;r=
dleg), soege dK']. Ifae K], then

$(a) e K', sop(a)teK'. Butp(a)!=d(a?l), sowe
must have a*e ¢[K'].

Hence ¢1[K'] is a subgroup of G.

Group Theory

Properties of
Homomorphisms

Properties of Homomorphisms

Theorem: Let h be a homomorphism from a group G
into a group G'. Let K be the kernel of h. Then
aK={xinG | h(x) = h(a)} = h[{h(a)}]
and also
Ka={xinG | h(x) = h(a)} = h*[{h(a)}]

633

Properties of Homomorphisms

Proof

h-[{h(a)}] = {xin G | h(x) = h(a)} directly from the
definition of inverse image.

Now we show that: a K={xin G | h(x) = h(a)}:
xinaK & x=ak, for some k in K

& h(x) = h(a k) = h(a) h(k) = h(a) , for some k in K
< h(x) = h(a)

Thus, aK={xinG | h(x) =h(a)}.

Likewise, Ka={xinG | h(x)=h(a)}.

634

Properties of Homomorphisms

Suppose: h: X 2 Y is any map of sets. Then h
defines an equivalence relation ~; on X by:

X~y € h(x) = hiy)
The previous theorem says that when h is a homomorphism
of groups then the cosets (left or right) of the kernel of h are
the equivalence classes of this equivalence relation.

Group Theory

Properties of
Homomorphisms
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Properties of Homomorphisms

Definition

If d: G - G'is a group morphism, the kernel of ¢ , denoted by Ker ¢, is
defined to be the set of elements of G that are mapped by f to the
identity of G'. Thatis, Ker f={g € G|f (g) = €' }.

Properties of Homomorphisms

Corollary
Let ¢: G = G' be a group morphism. Then, ¢ is injective if and only if
Ker ¢ = {e}.

Properties of Homomorphisms

Proof

If Ker(¢) = {e}, then for every a € G, the elements mapped into ¢(a)
are precisely the elements of the left coset a { e} = {a}, which shows
that ¢ is one to one.

Conversely, suppose ¢ is one to one. Now, we know that ¢p(e)=e’, the
identity element of G'. Since ¢ is one to one, we see that e is the only
element mapped into e’ by ¢, so Ker(d)= {e}.

Properties of Homomorphisms

Definition

To Show ¢: G > G'isan
Isomorphism

Step1l Show ¢ isa
homomorphism.

Step 2 Show Ker(d)=
{e}.

Step 3 Show ¢ maps G
onto G'.

Group Theory

Normal Subgroups

Normal Subgroups

Normal Subgrops

Let G be a group with subgroup H. The right cosets of H in G are
equivalence classes under the relation a = b mod H, defined by ab™ €
H. We can also define the relation L on G so that a L b if and only if b~!a
€ H. This relation, L, is an equivalence relation, and the equivalence
class containing a is the left coset aH = {ah|h € H}. As the following
example shows, the left coset of an element does not necessarily equal
the right coset.
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Normal Subgroups

Example
Find the left and right
cosets of H = A; and K =

{(1), (12)}in S;.

Normal Subgroups

Solution
We calculated the right cosets of H = A;.
Right Cosets

H ={(1), (123), (132)}; H(12) ={(12), (13), (23)}
Left Cosets

H={(1), (123), (132}; (12)H ={(12), (23), (13)}
In this case, the left and right cosets of H are the

same.

Normal Subgroups

However, the left and right cosets of K are not all the
same.

Right Cosets

K={(1), (12)}; K(13) = {(13), (132)}; K(23) = {(23),
(123)}

Left Cosets
K ={(1), (12)}(23)K = {(23), (132)}; (13)K = {(13),
(123)}

Group Theory

Normal Subgroups

Normal Subgroups

Definition

A subgroup H of a
group G is called a
normal subgroup of G if
glhgeHforallge G
and h € H.

Normal Subgroups

Proposition

Hg =gH, forallg € G, if
and only if H is a normal
subgroup of G.
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Normal Subgroups

Proof

Suppose that Hg = gH.
Then, for any elementh €
H, hg € Hg=gH.

Hence hg = gh, for some
h, €Hand
glhg=ggh;=h, EH.
Therefore, H is a normal
subgroup.

Normal Subgroups

Conversely, if H is normal, let hg € Hg and
glhg=h, EH.

Then hg = gh, € gH and Hg € gH.

Also, ghg™ = (g7%)thgt=h, € H, since H is
normal, so gh = h,g € Hg. Hence, gH S Hg,
and so Hg = gH.

Group Theory

Theorem on Normal
Subgroup

Theorem on Normal Subgroup

If N is a normal
subgroup of a group G,
the left cosets of N in G
are the same as the
right cosets of N in G, so
there will be no
ambiguity in just talking
about the cosets of N in
G.

Theorem on Normal Subgroup

Theorem

If N is a normal subgroup
of (G, -), the set of cosets
G/N ={Ng|g € G} forms a
group (G/N, -), where the
operation is defined by

(Ngy) - (Ng,) = N(g; - 8,)-
This group is called the
quotient group or factor
group of G by N.

Theorem on Normal Subgroup

Proof. The operation of multiplying two cosets, Ng;
and Ng,, is defined in terms of particular elements,
g,and g,, of the cosets. For this operation to make
sense, we have to verify that, if we choose
different elements, h; and h,, in the same cosets,
the product coset N(h, - h,) is the same as

N(g; - g;). In other words, we have to show that
multiplication of cosets is well defined.
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Theorem on Normal Subgroup

Since h, is in the same coset as g;, we have

h; =g, mod N. Similarly, h, =g, mod N.

We show that Nh;h, = Ng,g,.

We have hyg ™t =n; ENand h,g ;2 =n, €N, so
hihy(g182)" = hihog '8 17 = nuginyg.8, 1847t =
nyging

Now N is a normal subgroup, so g,n,g ;"*€ N and
n,g,n,g ,~* € N. Hence h;h, = g;g, mod N and

Nh;h, = Ng,g,.
Therefore, the operation is well defined.

Theorem on Normal Subgroup

* The operation is associative because (Ng, - Ng,) -
Ng; = N(g,8,) - Ng; = N(g,8,)g; and also Ng, - (Ng,
- Ngs) = Ngy - N(8,85) = Nga(g:85) = N(g:8,)8s.

« Since Ng - Ne = Nge = Ng and Ne - Ng = Ng, the
identity is Ne = N.

* The inverse of Ng is Ng™* because Ng - Ng1 = N(g -
g')=Ne=NandalsoNg™-Ng=N.

* Hence (G/N, -) is a group.

Group Theory

Example on Normal
Subgroup

Example on Normal Subgroup

Example

(Z,, +) is the quotient
group of (Z,+) by the
subgroup

nZ= {nz|z € Z}.

Example on Normal Subgroup

Solution

Since (Z,+) is abelian, every subgroup is normal. The
set nZ can be verified to be a subgroup, and the
relationship a = b mod nZ is equivalent to a - b € nZ
and to n|la - b. Hence a = b mod nZ is the same
relation as a = b mod n. Therefore, Z, is the quotient
group Z/nZ, where the operation on congruence
classes is defined by [a] + [b] = [a + b].

Example on Normal Subgroup

(Z,,*+) is a cyclic group
with 1 as a generator.
When there is no
confusion, we write the
elements of Z,as 0, 1,

2,3,...,n-1instead
of [0], [1], [2], [3], . . .,
[n-1].
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Group Theory

Morphism Theorem for
Groups

Morphism Theorem for Groups

Theorem

Let K be the kernel of the

group morphism

f:G > H.Then G/Kis

isomorphic to the image

of f, and the isomorphism
P:G/K>Imf

is defined by

b(Kg) = f(g).

Morphism Theorem for Groups

This result is also known as the first isomorphism
theorem.

Proof. The function { is defined on a coset by
using one particular element in the coset, so we
have to check that Y is well defined;

that is, it does not matter which element we use.

Morphism Theorem for Groups

U: G/K = Im f, P(Kg)=f(g).
If Kg’=Kg, then g’=g mod K
soggl=keK=Kerf.
Hence g’=kg and so

f(g’) = f(kg)

= f(k)f(g)

= e,f(g) =f(g).

Thus Y is well defined on
cosets.

Morphism Theorem for Groups

The function ¢ is a
morphism because

U(Kg;Kg,)

= (Kg,8,)
=f(g18)
=f(g.)f ()

= P(Ke,)W(Ke,).

Morphism Theorem for Groups

If P(Kg) = e,, then
f(g)=eyandgEK.
Hence the only element
in the kernel of Y is the
identity coset K, and

Y is injective.

666
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Morphism Theorem for Groups

Finally, Im ¥ = Im f, that is,
U(f(g))=Kg , by the
definition of .
Therefore, Y is the
required isomorphism
between G/K and Im f.

Group Theory

Application of
Morphism Theorem

Application of Morphism Theorem

Example

Show that the quotient
group R/Z is
isomorphic to the circle
group
W={efeC|0eR}

Application of Morphism Theorem

Solution

The set W={e®® e C | 8 € R } consists of points on
the circle of complex numbers of unit modulus, and
forms a group under multiplication.

Define the function f: R - W by f (x) = e2™x.

This is a morphism from (R,+) to (W, -) because
f(x +y) = e2mibe+y)

= g2ix . g2niy

=f(x)-f(y)

Application of Morphism Theorem

The morphismf:R > W
is clearly surjective,

and its kernel is
{xER|ex=1}=7Z.
Therefore, the morphism
theorem implies that
R/Z = W.

Group Theory

Normality of Kernel of
a Homomorphism
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Normality of Kernel of a Homomorphism

Right Cosets

Let (G, ) be a group
with subgroup H. For a,
b € G, we say that a is
congruent to b modulo
H, and write a = b mod
H if and only if ab™! € H.

Normality of Kernel of a Homomorphism

Proposition
The relation a =b mod H

is an equivalence
relation on G.

The equivalence class
containing a can be
written in the form Ha =
{halh € H}, and itis
called a right coset of H
in G. The element a is
called a representative
of the coset Ha.

Normality of Kernel of a Homomorphism

Theorem

Letp be a
homomorphism
function from group
(G, *) to group (G'.).
Then, (Kerg,*) is a
normal subgroup of
(G,%).

675

Normality of Kernel of a Homomorphism

Proof

i) Kerg is a subgroup of G

Va,beKero, o(a)=eg,
b)=eg.

Therefore, a*beKero.
Inverse element:
VaeKero, p(a)=eg-.
Then,
pla)=p(a)*
=eg Therefore, a
leKero.
676

Normality of Kernel of a Homomorphism

ii) VgeG,aeKerg, ¢(a)=eg.
Then,

olg*a*e)

=¢(g") ¢(a) ¢ (g)
=¢(gteso(g)

=eq

Therefore,

gl*a*geKere.

Group Theory

Example of Normal
Group
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Example of Normal Group

Definition
A subgroup H of a group

is a normal subgroup if
gH=Hg for VgeG.

Example of Normal Group

Example

= Any subgroups of Abelian group are normal
subgroups

=55={(1),(1,2,3), (1,3,2), (2,3), (1,3), (1,2)}.

= Hi={(2), (23)5 Hp={(1), (1,3)1 Hs={(2), (1,2)}
S(L3AHS(L3)(12) Hi(L3)={(1,3),(1,2)

= (1,2,3)H,={(1,2,3),(1,2)} H,(1,2,3)={(1,2,3),(1,3)}

679 680
Example of Normal Group Example of Normal Group
=H,={(1), (1,2,3), (1,3,2)} (1)Hg=gH, it does not
are subgroups of Ss. imply hg=gh.
= H, is a normal subgroup. (2) If Hg=gH, then there
exists h'eH such that
hg=gh' for VheH.
681 682
Example of Normal Group Group Theory
= Let H be a subgroup of a group G. When is
(aH) (bH)=ab H?
= This is true for abelian groups, but not always when G is Factor Group
nonabelian.
* Consider S;: Let H = {p;, w;}. The left cosets are
{Po b {Py Hsh (P Kol
If we multiply the first two together, then
{Po, ks {Pa, K3} = {Po Py, Po sy 1 Pus M Hs)
={p1, M3, 1y, P o}
This has four distinct elements, not two!
683
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Factor Group

Definition

Let (H,*) be a normal
subgroup of the group
(G,*). (G/H,®) is called
quotient group, where the
operation ® is defined on
G/H by

Hg; ®Hg,= H(g,*g,).

If G is a finite group, then

G/H is also a finite group,
and |G/H|=|G|/|H].

Factor Group

* The product of two sets is define as follow
SS’ = {xx’|xeS and x"S}

« {aH|a€G, H is normal} is a group, denote by G/H and called it factor
groups of G.

* A mapping f: G>G/H is a homomorphism, and call it canonical
homomorphism.

685 686
Factor Group Factor Group
f
Consider S;: Let H = {py, p, , p,}. The left cosets are
{Po, P1s P2 {Hy Ha s s}
If we multiply the first two together, then
{Por 1+ 02} {Hy, Mo, Kb = {Pg Ky, Po s Po Hs, Py Ky, P1 M, Py My, 03 Wy,
03 g, P s} = s i W, . b, s gy Wy i) = iy, b i
This is one of the cosets. Likewise,
{Po P1, P2} Po 1+ P2} ={Po, P1, P}
{Hy M, usHPo Py P2} = (g, My, K}
(K Ky, 1 Hiy, 1y, M3} = {0g, 01, P2}
Note that the cosets of {p,, p; , p,} with this binary operation
form a group isomorphic to Z,.
G/H
687 688
Factor Group Group Theory
Note that there is a
natural map from S;to o
{{po: Py, Pab {Hy Ky, Kl CosethUItlphT_atlon
that takes any element to and Normality
the coset that contains it.
This gives a
homomorphism called
the cannonical
homomorphism.
689 %0
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Coset Multiplication and Normality

Theorem

Let H be a subgroup of a
group G.

Then H is normal if and
only if
(@aH)(bH)=(ab)H,
foralla,binG

Coset Multiplication and Normality

Proof

Suppose
(@aH)(bH)=(ab)H,
foralla, binG.

We show thataH=H a,
forallainH.

We do this by showing:
aHcHaandHac aH,

forallainG.
691 692
Coset Multiplication and Normality Coset Multiplication and Normality
a H c H a: First observe that aHalc (aH)(a*H) For the converse, assume H is normal.
=(aa*)H=H. (aH)(bH)c(ab)H:Fora,binG,xin(aH)(bH)
Let xbeinaH. Thenx=a h, for some hin H. Then implies that x = a h, b h,, for some h, and h, in H.
-1 -1 ichicin = -1
xat=aha’,whichisin=aHa", Buthy bisin H b, thus in b H. Thus hy b = b h; for
thusin H. Thusxa?isin H. Thusxisin Ha. . -
some hyinH. Thusx=abhyh,isinabH.
HacaH: HacHaH=(eH)(aH)=(ea)H=aH. b) H H)bH): xin(ab)H=x=aebh, f
This establishes normality. fab)Hc (aH)(bH): xin(ab) x=aebnh, for
some hin H.
Thus xis in (a H) (b H).
693 694
Group Theory Examples on Kernel of a Homomorphism
Leth: G>G'be a
homomorphism and let
Examples on Kernel of e'be the identity
a Homomorphism element of G'. Now {e'}
is a subgroup of G', so
h[{e'}] is a subgroup K
of G. This subgroup is
critical to the study of
homomorphisms.
696
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Examples on Kernel of a Homomorphism

Definition

Leth: G—G'be a
homomorphism of
groups. The subgroup
h1[{e'H={x€G| h(x)=e'}
is the kernel of h,
denoted by Ker(h).

Examples on Kernel of a Homomorphism

Example

Let R" be the additive
group of column vectors
with n real-number
components. (This group is
of course isomorphic to
the direct product of R
under addition with itself
for n factors.) Let A be an
m x n matrix of real
numbers. Let ¢: R"—>R™
be defined by ¢(v)=Av for
each column vector veRR™.

698

Examples on Kernel of a Homomorphism

Example

Then ¢ isa
homomorphism, since v,
weR", matrix algebra
shows that
d(v+w)=A(v+w)
=Av+Aw=¢(v)+d(w)
In linear algebra, such a
map computed by
multiplying a column
vector on the left by a
matrix A is known as a
linear transformation.

699

Examples on Kernel of a Homomorphism

Ker(h) is called the null
space of A. It consists of
all v € R" such that

Av =0, the zero vector.

Group Theory

Examples on Kernel of
a Homomorphism

Examples on Kernel of a Homomorphism

Example

Let GL(n, R) be the
multiplicative group of
all invertible nx n
matrices. Recall that a
matrix A is invertible if
and only if its
determinant, det(A), is
nonzero.
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Examples on Kernel of a Homomorphism

Recall also that for matrices A,
B €GL(n, R) we have
det(AB)=det(A)det(B). This
means that det is a
homomorphism mapping GL(n,
R) into the multiplicative group
R* of nonzero real numbers.

Ker(det)
= {Ae GL(n, R)|det(A)=1}.

703

Examples on Kernel of a Homomorphism

Homomorphisms of a
group G into itself are
often useful for studying
the structure of G. Our
next example gives a
nontrivial
homomorphism of a
group into itself.

Examples on Kernel of a Homomorphism

Example

LetreZ and let ¢: Z—>Z
be defined by ¢.(n)=rn
for all neZ. For all m,
n€Z, we have

& (m+n)=r(m +n)
=rm+rn=¢, (m)+d.(n) so
&, is a homomorphism.

Examples on Kernel of a Homomorphism

Note that ¢, is the trivial
homomorphism, ¢, is
the identity map, and ¢4
maps Z onto Z. For all
other rin Z, the map ¢,
is not onto Z.

Ker(dg)=Z
Ker(¢p,)= {0} for r#0

Group Theory

Examples on Kernel of
a Homomorphism

Examples on Kernel of a Homomorphism

Example (Reduction
Modulo n)

Lety be the natural map
of Z into Z, given by y(m)
=r, wherer is the
remainder given by the
division algorithm when
m is divided by n. Show
thatyisa
homomorphism. Find
Ker(y).
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Examples on Kernel of a Homomorphism

Solution

We need to show that y(s+t)=y(s)+y(t) for s, t € Z. Using
the division algorithm, we let

S=qyn+ry (1) and
t=q,n+r, (2) where 0<ri<n for i=1, 2.

If ry#r,=asn+r;  (3) for 0<r3<n then adding Egs. (1) and
(2)wesee thats+t= S q3)n +r3, so that
y(s+t)=r;. From Egs. (1) and (f) we see that

y(s) =r, and y(t)=r,. Equation (3) shows that
the sumr,+r, in Z, is equal to r; also.

709

Examples on Kernel of a Homomorphism

Consequently
y(s+t)=y(s)+y(t),

so we do indeed have a
homomorphism.

Ker(y)=nZ

Group Theory

Kernel of a
Homomorphism

Kernel of a Homomorphism

Theorem

Lethbea
homomorphism from a
group G into a group G'.
Let K be the kernel of h.
Then

aK={xinG | h(x) =h(a)}
=h-1[{h(a)}] and also
Ka={xinG | h(x) = h(a)}
=h[{h(@)}]

Kernel of a Homomorphism

Let K=Ker(h) for a homomorphism h:G—G'. We think
of h as "collapsing" K down onto e’. Above Theorem
shows that for g € G, the cosets gK and Kg are the
same, and are collapsed onto the single element
h(g) by h. That is h'1[{h(g)}]=gK=Kg. We have
attempted to symbolize this collapsing in Fig. below,
where the shaded rectangle represents G, the solid
vertical line segments represent the cosets of

K= Ker(h), and the horizontal line at the bottom
represents G'.

Kernel of a Homomorphism

hiffa'}] bk Ko xk by

1
|
'

I
t i
| |
A | | |
a h) e

Cosets of K collapsed by h
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Kernel of a Homomorphism Group Theory

We view h as projecting the elements of G, which
are in the shaded rectangle, straight down onto
elements of G', which are on the horizontal line
segment at the bottom. Notice the downward
arrow labeled h at the left, starting at G and ending
at G'. Elements of K=Ker(h) thus lie on the solid
vertical line segment in the shaded box lying over €',
as labeled at the top of the figure.

Kernel of a
Homomorphism

Kernel of a Homomorphism Kernel of a Homomorphism
Example
We have |2,2,|=|2| |z,]| Since {1} is a subgroup of R*, the complex numbers
for complex numbers z, of magnitude 1 form a subgroup U of C*. Recall
and z,. This means that that the complex numbers can be viewed as filling
the absolute value the coordinate plane, and that the magnitude of a
function | | Isa complex number is its distance from the origin.
homomgrphlsm of the Consequently, the cosets of U are circles with
group C* of nonzero center at the origin. Each circle is collapsed by this
complex numbers under homomorphism onto its point of intersection with
multiplication onto the the positive real axis.
group R* of positive real
numbers under
multiplication.
717 718
Group Theory Kernel of a Homomorphism
Theorem
Lethbea

homomorphism from a
Kernel of a

Homomorphism group G into a group G'.

Let K be the kernel of h.
Then

aK={xin G | h(x) = h(a)}
=h-1[{h(a)}] and also
Ka={xinG | h(x) = h(a)}
=h[{h(@)}]
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Kernel of a Homomorphism

Above theorem shows that the kernel of a group
homomorphism h:G—G' is a subgroup K of G whose
left and right cosets coincide, so that gk=Kg for all g
€ G. When left and right cosets coincide, we can
form a coset group G/K. Furthermore, we have
seen that K then appears as the kernel of a
homomorphism of G onto this coset group in a very
natural way. Such subgroups K whose left and right
cosets coincide are very useful in studying normal
group.

Kernel of a Homomorphism

Example

Let D be the additive group of all differentiable functions
mapping R into R, and let F be the additive group of all
functions mapping R into R Then differentiation gives
us a map ¢: D—F, where ¢(f)=f' for feF. We easily see
that ¢ is a homomorphism, for
P(f+g)=(f+g)'=f'+g'=Pp(f)+P(g); the derivative of a sumis
the sum of the derivatives.

Kernel of a Homomorphism

Now Ker(¢) consists of all functions f such that f'=0.
Thus Ker(¢) consists of all constant functions, which
form a subgroup C of F. Let us find all functions in G
mapped into x? by ¢, that is, all functions whose
derivative is x2. Now we know that x3/3 is one such
function. By previous theorem, all such functions
form the coset x3/3+C.

Group Theory

Examples of Group
Homomorphisms

Examples of Group Homomorphisms

Example (Evaluation Homomorphism)

Let F be the additive group of all functions mapping
Rinto R, let R be the additive group of real
numbers, and let c be any real number. Let

¢: F->R be the evaluation homomorphism defined
by ¢(f)=f(c) for feF. Recall that, by definition, the
sum of two functions f and g is the function f+ g
whose value at x is f (x) + g(x). Thus we have
bc(f+g)=(f+g)(c)=f(c)+g(c)=c(f)+c(g), so we have a
homomorphism.

Examples of Group Homomorphisms

Composition of group homomorphisms is again a
group homomorphism. That is, if

¢: G-G' and y: G'>G" are both group
homomorphisms then their composition

(yod): G=G", where (yod)(g) = y(¢(g)) for g € G, is
also a homomorphism.
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Group Theory

Examples of Group
Homomorphisms

Examples of Group Homomorphisms

Example

Let G=G, x - X G;x - x G, be a direct product of
groups. The projection map m;: G—G; where
(84, =, 8~ » 8,) =8 isa homomorphism for
eachi=1, -, n.

This follows immediately from the fact that the
binary operation of G coincides in the ith
component with the binary operation in G,

Examples of Group Homomorphisms

Example

Let F be the additive group of continuous functions
with domain [0, 1] and let R be the additive group of
real numbers. The map o:F—R defined by

(f)=J ;'f(x)dx for f € F is a homomorphism, for
a(frg)=/ o (Fg)()dx=J o [f(x) +g(x)]dx=

Jof(x)dx+ [ 'g(x)dx=0(f)+o(g) for all f, g € F.

Examples of Group Homomorphisms

Each of the homomorphisms in the preceding two
examples is a many-to-one map. That is, different
points of the domain of the map may be carried
into the same point. Consider, for illustration, the
homomorphism m;: Z,x Z,—~Z, We have

14(0, 0)=m4(0, 1)= 14(0, 2)= 1,(0, 3)=0, so four
elements in Z,x Z, are mapped into 0 in Z, by ;.

Group Theory

Factor Groups from
Homomorphisms

Factor Groups from Homomorphisms

Let G be a group and let S be a set having the same
cardinality as G. Then there is a one-to-one
correspondence < between S and G. We can use <
to define a binary operation on S, making S into a
group isomorphic to G. Naively, we simply use the
correspondence to rename each element of G by
the name of its corresponding (under <) elementin
S. We can describe explicitly the computation of xy
for x, y €S as follows:

ifx & g,andy & g, and z& g.g,, thenxy=z (1)
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Factor Groups from Homomorphisms

The direction — of the one-to-one correspondence
seg between se€S and geG gives us a one-to-one
function p mapping S onto G. The direction « of &
gives us the inverse function u. Expressed in terms
of p, the computation (1yof xy for x, y € S becomes
if u(x)=g, and p(y)=g, and p(z)=g,g, thenxy=z (2)
The map u: S—G now becomes an isomorphism
mapping the group S onto the group G. Notice that
from (2), we obtain p(xy)=p(z)=g;8,=H(x)u(y), the
required homomorphism property.

Group Theory

Factor Groups from
Homomorphisms

Factor Groups from Homomorphisms

Let G and G' be groups,
leth: G»G'bea

homomorphism, and let
K=Ker(h). The previous
theorem shows that for
a€G, we have
h[{h(a)}]=aK =Ka. We
have a one-to-one
correspondence aK
<h(a) between cosets of
Kin G and elements of
the subgroup h[G] of G'.

Factor Groups from Homomorphisms

Remember that if xeaK, so that x=ak for some kek,
then h(x)=h(ak)=h(a)h(k)=h(a)e'
=h(a), so the computation of the element of h[G]

corresponding to the coset ak=xK is the same
whether we compute it as h(a) or as h(x ). Let us
denote the set of all cosets of K by G/K. (We read
G/K as "G over K" or as "G modulo K" or as "G mod
K," but never as "G divided by K.")

735 736
Factor Groups from Homomorphisms Factor Groups from Homomorphisms
We started with a homomorphism h: G=G' having Replacing Sby G/ H and replacing G by h[G] in
kernel K, and we finished with the set G/K of cosets that construction, we can consider G/K to be a
in one-to-one correspondence with the elements of group isomorphic to h[G] with that isomorphism p.
the group h[G]. In our work above that, we had a set In terms of G/K and h[G], the computation (2) of
S with elements in one-t3-one correspondence with the product (xK)(yK) for xK, yK € G/K becomes if
a those of a grouplG, anq we madg Sinto a group p(xK)=h(x) and p(yK)=h(y) and p(zK)=h(x)h(y), then
isomorphic to G with an isomorphism p. (xK)(yK)=zK. 3)

737 738
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Factor Groups from Homomorphisms

But because h is a homomorphism, we can easily
find zeG such that p(zK)=h(x )h(y ); namely, we take
z=xy in G, and find that p(zK)=p(xyK)=h(xy)=h(x)h(y).
This shows that the product (xK)(yK) of two cosets is
the coset (xy)K that contains the product xy of x and
y in G. While this computation of (xK)(yK) may seem
to depend on our choices x from xK and y from yK,
our work above shows it does not. We demonstrate
it again here because it is such an important point. If
ky, k; € K so that xk, is an element of xK and yk, is an
element of yK, then there exists h; € K such that
k,y=yk; because Ky= yK by previous Theorem.

Factor Groups from Homomorphisms

Thus we have

(xkq)(yka)=x(kyy)ky=x(yks)k,=(xy)(ksk;) € (xy)K,

so we obtain the same coset. Computation of the
product of two cosets is accomplished by choosing
an element from each cé$et and taking, as product
of the cosets, the coset that contains the product in
G of the choices. Any time we define something
(like a product) in terms of choices, it is important to
show that it is well defined, which means that it is
independent of the choices made.

Group Theory

Factor Groups from
Homomorphisms

Factor Groups from Homomorphisms

Theorem

Let h: G=G' be a group
homomorphism with kernel K.
Then the cosets of K form a
factor group, G/K. where
(aK)(bK)=(ab)K. Also, the map p:
G/H-h[G]

defined by p(ak)=h(a) is an
isomorphism. Both coset
multiplication and p are well
defined, independent of the
choices a and b from the cosets.

742
Factor Groups from Homomorphisms Factor Groups from Homomorphisms
For example, taking n = 5, we see the cosets of 5Z are
Example 57Z={..,-10,-5,0, 5, 10,...},
Consider the map y: Z—Z,, where y(m) is the 145Z ={..,-9,-4,1,6,11,..},
re'mainderlvsl/hen mis c'jivided by nin accordgnce 2457=1.,-8,-3,2,7,12,..},
with the division algorlthp. We know thatyis a _
homomorphism. Of course, Ker(y) = nZ. By above 3+45Z={..,-7,-2,3,8,13,.}
Theorem, we see that the factor group Z/nZis 4+5Z ={..,-6,-1,4,9,14,..}.
isomorphic to Z,. The cosets of nZ are the residue Note that the isomorphism p: Z/5Z— Zs of previous
classes modulo n. Theorem assigns to each coset of 5Z its smallest
nonnegative element. That is, W(5Z)=0, u(1+52) =1,
etc.
743 744
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Group Theory Factor Groups from Homomorphisms

It is very important that we
learn how to compute in a
Factor Groups from factor group. We can multiply
Homomorphisms (add) two cosets by choosing
anytwo representative
elements, multiplying (adding)
them and finding the coset in
which the resulting product

(sum) lies.
746
Factor Groups from Homomorphisms Factor Groups from Homomorphisms
Example The factor groups Z/nZ in the preceding example

are classics. Recall that we refer to the cosets of nZ
as residue classes modulo n. Two integers in the
same coset are congruent modulo n. This

Consider the factor group Z/5Z with the cosets
shown in precious example. We can add

(2+5Z)+(4+57) by choosing 2 and 4, finding 2+4=6, terminology is carried over to other factor groups. A
and noticing that 6 is in the coset 1+5Z. We could factor group G/H is often called the factor group of
equally well add these two cosets by choosing 27 in G modulo H. Elements in the same coset of H are
2+57 and -16 in 4+5Z; the sum 27+(-16)=11 is also often said to be congruent modulo H. By abuse of
in the coset 1+57Z. notation, we may sometimes write Z/nZ=Z, and

think of Z,, as the additive group of residue classes
of Z modulo n.

Group Theory Factor Groups from Normal Subgroups

So far, we have obtained
factor groups only from
Factor Groups from homomorphisms. Let G
Normal Subgroups be a group and let H be a
subgroup of G. Now H
has both left cosets and
right cosets, and in
general, a left coset aH
need not be the same set
as the right coset Ha.

1

125



12/16/2018

Factor Groups from Normal Subgroups

Suppose we try to define a binary operation on left
cosets by defining (aH)(bH)=(ab)H as in the
statement of previous theorem. The above equation
attempts to define left coset multiplication by
choosing representatives’a and b from the cosets.
The above equation is meaningless unless it gives a
well-defined operation, independent of the
representative elements a and b chosen from the
cosets. In the following theorem, we have proved
that the above equation gives a well-defined binary
operation if and only if H is a normal subgroup of G.

Factor Groups from Normal Subgroups

Theorem
Let H be a subgroup of a
group G.

= Then H is normal if and
only if
(@aH)(bH)=(ab)H,
foralla,bin G

Factor Groups from Normal Subgroups

Above theorem shows
that if left and right
cosets of H coincide,
then the equation
(aH)(bH)=(ab)H, for all a,
binG

gives a well-defined

1

binary operation on
cosets.

Factor Groups from Normal Subgroups

Theorem

If N is a normal subgroup

of (G, -), the set of cosets
., G/N={Ng|g€ G}formsa

group (G/N, ), where the

operation is defined by

(Ngy)-(Ng,)=N(gy°8,)-

Factor Groups from Normal Subgroups

Example

Since Z is an abelian
group, nZ is a normal
subgroup. Above
theorem allows us to
construct the factor
group Z/nZ with no
referenceto a
homomorphism. As we
already observed, Z/nZ is
isomorphic to Z,.

1

Group Theory

Factor Groups from
Normal Subgroups
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Factor Groups from Normal Subgroups Factor Groups from Normal Subgroups
Example Every coset of <c> contains just one element of x
Consider the abelian such that 0 < x < c. If we choose these elements as
group R under addition, representatives of the cosets when computing in

_, andlet c € R*. The cyclic R/ <c>, we find that we are computing their sum

subgroup <c>of R modulo cin R.. For example, if ¢ = 5.37, then the
contains as elements sum of the cosets 4.65+<5.37> and 3.42+<5.37>
-+ -3¢,-2¢,-¢, 0, ¢, 2¢, is the coset 8.07+<5.37>, which contains 8.07-5.37
3¢, =2.7, which is 4.65+s 3,3.42.

Factor Groups from Normal Subgroups Group Theory

Working with these coset elements x where 0 < x <
¢, we thus see that the group R is isomorphic to

R / <c> under an isomorphism p where p(x) =x+<c> Kernel of an |nJ?CtIVE
forallx € R. Of course, R/ <c> is then also Homomorphism
isomorphic to the circle group U of complex

numbers of magnitude 1 under multiplication.

759

Kernel of an Injective Homomorphism Kernel of an Injective Homomorphism
Theorem Proof
A homomorphism Suppose h is injective,
h: G=G'is injective and let x € Ker h.
if and only if Then h(x)=e'=h(e).
Ker h={e}. Hence x=e.

127



12/16/2018

Kernel of an Injective Homomorphism

Conversely, suppose
Ker h={e}.

Then h(x)=h(y)
=h(xy)=h(h(y 1)
=h(h(y)1=e'
=xyle Kerh

= xyl=e

>X=y.

Hence, his injective.

Group Theory

Factor Groups from
Normal Subgroups

Factor Groups from Normal Subgroups

Theorem

Let K be a normal
subgroup of G.

Then y: G-G/K given by
y(g)=gKis a
homomorphism with
kernel K.

Factor Groups from Normal Subgroups

Proof

Letg,, 8, € G. Then
V(818)=(818,)K
=(g:K)(g2K)=v(g1)v(82),

soy is a homomorphism.
Since g,K= K if and only if

g,€ K, we see that the
kernel of y is indeed K.

Factor Groups from Normal Subgroups

We have proved that if
h:G—G'is a
homomorphism with
kernel K, then
W:G/K—h[G] where pu(gK)
= h(g) is an isomorphism.
Above theorem shows
that y:G—G/K defined by
y(g)=gKis a
homomorphism.

Factor Groups from Normal Subgroups

We show these groups
and maps in the figure.
h We see that the

homomorphism h can be
\ factored, h = py,
y f '
wherey is a

G/K homomorphism and p is
an isomorphism of G/K
with h[ G].
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Group Theory

Example on Morphism
Theorem of Groups

Example on Morphism Theorem of Groups

Theorem

Let K be the kernel of the

group morphism

h:G > G'.Then G/Kis

isomorphic to the image

of h, h[G], and the

isomorphism
K:G/K>Imh

is defined by

u(Kg) = higl.

Example on Morphism Theorem of Groups

Example

Classify the group
(Z4XZ,) /({0}x Z.,)
according to the
fundamental theorem of
finitely generated abelian
groups.

Example on Morphism

Theorem of Groups

Solution

The projection map

T, Z,XZ,—7Z, given by
Ty (X,y) =Xis a
homomorphism of Z,xZ,
onto Z, with kernel
{O}XZ,. By fundamental
theorem of
homomorphism, we
know that the given
factor group is
isomorphic to Z,.

Example on Morphism Theorem of Groups

The projection map
Ty ZxXZ,—>7Z, given by
T(y) = x.

K=Ker 1,={0}xZ,
={(0,0),(0,1)}
(1,0)+K={(1,0),(1,1)}
(2,0+K={(2,0),(2,1)}
(3,0)+K={(3,0),(3,1)}

Group Theory

Normal Groups and
Inner Automorphisms
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Normal Groups and Inner Automorphisms

We derive some
alternative
characterizations of
normal subgroups,
which often provide us
with an easier way to
check normality than
finding both the left
and the right coset
decompositions.

Normal Groups and Inner Automorphisms

Theorem

The following are three
equivalent conditions
for a subgroup H of a
group G to be a normal
subgroup of G.

1. ghgeH for all geG
and heH.

2. gHg'=H for all geG.
3. gH=Hg for all geG.

Normal Groups and Inner Automorphisms

Condition (2) of above
Theorem is often taken as
the definition of a normal
subgroup H of a group G.

Normal Groups and Inner Automorphisms

Proof

Suppose that gH = Hg for all g € G. Then gh = h,g, so
ghgleHforallge Gandallh e H.

Then gHg'={ghg!lheH} S H forallgeG.
We claim that actually gHg* = H. We must show

that H € gHg! forall g € G. Let h € H. Replacing g by
g in the relation ghg! € H, we obtain

g'h(g?)'=gthg =h, whereh, e H.
Consequently, gHg? =Hforallge G.

Normal Groups and Inner Automorphisms

Conversely, if gHgt=H forall
g€ G, thenghg'=h, so

gh = h;g € Hg, and gH S Hg.
But also, g'Hg = H giving
gthg = h,, so that hg = gh,
and Hg S gH.

779

Group Theory

Normal Groups and
Inner Automorphisms

130



12/16/2018

Normal Groups and Inner Automorphisms

Example

Every subgroup H of an
abelian group G is

Normal Groups and Inner Automorphisms

Example

Themapi;: G- G
defined by ig(x) =gxg?is

normal. a homomorphism of G

We need only note that into itself.

gh=hgforallheHand ig (xy)=gxyg™

allg € G, so, of course, = (gxgl -1

ghgt=heHforallge -(g g )eve™)

GandallheH. =igX)igly)

781 782

Normal Groups and Inner Automorphisms Group Theory

We see that

ig(x)=ig(y)
=gxg'=gyg"’

>x=y,

S0 g is injective.

Since for any x in G
i(87xg) =glg'xglg* = x,

we see that igisonto G,
so it is an isomorphism

of G with itself.

Inner Automorphisms

Inner Automorphisms

Definition

An isomorphism ¢: G—G
of a group G with itself is
an automorphism of G.
The automorphism

ig: GoG, where i (x)=gxg™
forall x € G, is the inner
automorphism of G by g,
denoted by Inn (G).
Performing i;on x is
called conjugation of x
by g.

Inner Automorphisms

Theorem

The following are three equivalent conditions for
a subgroup H of a group G to be a normal
subgroup of G.

1. ghgteH for all geG and heH.

2. gHg'=H for all geG. 3. gH=Hg for all geG.
The equivalence of conditions (2) and (3) shows
that gH=Hg for all g € G if and only if i,[H]=H for all
g € G, thatis, if and only if H is invariant under all
inner automorphisms of G.
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Inner Automorphisms

Itisimportant to realize thati[H]=H isan
equation in sets; we need not have ig(h) = h for all
heH.

That is i; may perform a nontrivial permutation
of the set H.

We see that the normal subgroups of a group G
are precisely those that are invariant under all
inner automorphisms.

A subgroup K of G is a conjugate subgroup of H if
K =i,[H] for somege G.

Group Theory

Inner Automorphisms

Inner Automorphisms

Lemma

The set of all inner
automorphisms of G
is a subgroup of
Aut(G).

Inner Automorphisms

Proof

(1) Leti,, iy € Inn (G).

Then i,(iy(x)) =a(i,(x))a =abxbtat
=abx(ab)=i,, € Inn (G).

Hence the conjugation by b composed by
conjugation by a is conjugation by ab.

(2) The inverse of i, is conjugation by a’=a™.
i,((i;)(x)=i,(a’x(a’) )=aa’xa"'a =aa'x(aa’) 1=x.
Thus Inn (G) is a subgroup.

Group Theory

Example on
Automorphism

Inner Automorphisms

Example

Prove that
Aut(Z,)=U,.
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Inner Automorphisms

Solution

An automorphism @:Z,—Z, is determined by
(1) as for any integer k,
@(k)=@(1+..+1)=@(1)+...+@(1)= kep(1).

Since isomorphisms preserve order, ¢(1) must
be a generator of Z,.

We have proved that the generators of Z, are
those integers k € Z, for which gcd(k, n) = 1.
But these k are precisely the elements of

Un={1, @,..., ™1 | @=e2mi/n},

Inner Automorphisms

In this way, each element a of U, gives a
distinct automorphism @, which is multiplication
by a, and these are all the automorphisms of Z,.
Furthermore, u: Aut(Z,)—U, given by u(¢.)=a is
a group isomorphism.

* (1(@av)=ab=p1(pa) (po)

* u(@a)=p(pr)=>a=b

* u(pa)=a

Group Theory

Theorem on Factor
Group

Theorem on Factor Group

Theorem

A factor group of a
cyclic group is cyclic.

Theorem on Factor Group

Proof

Let G be cyclic with generator a, and letN be a
normal subgroup of G. We claim the coset aN
generates G/ N. We must compute all powers
of aN. But this amounts to computing, in G, all
powers of the representative a and all these
powers give all elements in G. Hence the powers
of aN certainly give all cosetsof N and G/ N is
cyclic.

Group Theory

Example on Factor
Group
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Example on Factor Group

Example

Let us compute the
factor group

(Z4 x Zg)/((0, 2)).
Now (0, 2) generates
the subgroup
H={(0,0), (0, 2),(0,4)}
of Z, x Zgof order 3.

799

Example on Factor Group

Here the first factor Z,
of Z, x Zg s left alone.
The Z factor, on the
other hand, is
essentially collapsed by
a subgroup of order 3,
giving a factor group in
the second factor of
order 2 that must be
isomorphic to Z,. Thus
(Zy x Ze)/((0, 2)) is
isomorphic to Z, x Z,.

Group Theory

Factor Group
Computations

Factor Group Computations

Let N be a normal
subgroup of G. In the
factor group G/ N, the
subgroup N acts as
identity element. We may
regard N as being
collapsed to a single
element, eitherto 0in
additive notation orto e
in multiplicative notation.

Factor Group Computations

This collapsing of N
together with the
algebraic structure of
G require that other
subsets of G, namely,
the cosets of N, also
collapse into a single
element in the factor
group. A visualization of
this collapsing is
provided by Figure.

Factor Group Computations

|

| i
| |
| |

(cb)N (ab)N N

G/N

Z4——-
T
2

aN
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Factor Group Computations

Recall that y: G>G/N defined by y(a)=aN for

a € Gisahomomorphism of G onto G / N. We
can view the "line" G/ N at the bottom of the
figure as obtained by collapsing to a point each
coset of N in another copy of G. Each point of
G/ N thus corresponds to a whole vertical line
segment in the shaded portion, representing
acoset of N in G. Itis crucial to remember that
multiplication of cosets in G/ N can be
computed by multiplying in G, using any
representative elements of the cosets.

Group Theory

Factor Group
Computations

Factor Group Computations

Additively, two elements
of G will collapse into the
same element of G/N if
they differ by an element
of N. Multiplicatively, a
and b collapse together if
ablis in N. The degree of
collapsing can vary from
nonexistent to
catastrophic. We illustrate
the two extreme cases by

Factor Group Computations

Example

The trivial subgroup
N ={0} of Zis, of
course, a normal
subgroup.

Compute Z /{0}.

examples.
807 808
Factor Group Computations Factor Group Computations
Solution Example
Since N={0} has only Let n be a positive
one element, every integer. The set
coset of N has only one nR={nr|reR} isa
element. Thatis, the subgroup of R under
cosets are of the form addition, and it is
{m}for m e Z. There is normal since R is
no collapsing at all, and abelian.
consequently, Z /{0} =
Z. Each m € Z is simply Compute R/nR.
renamed {m} inZ /{0}.
809 810
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Factor Group Computations

Solution

Actually nR=R,
because each xeR is of
the form n(x/n) and

x/neR. Thus R/nR has
only one element, the
subgroup nR. The
factor group is a trivial
group consisting only of
the identity element.

Group Theory

Factor Group
Computations

811
Factor Group Computations Factor Group Computations

As illustrated in above We would like

Examples for any group knowledge of a factor

G, we have G/{e} =G group G/N to give some

and G/G={e}, where information about the

{e} is the trivial group structure of G.

consisting only of the If N={e}, the factor

identity element e. group has the same

These two extremes of structure as G and we

factor groups are of might as well have tried

little importance. to study G directly.

813 814
Factor Group Computations Factor Group Computations

If N = G, the factor If G is a finite group

group has no and N #{e} is a normal

significant structure to subgroup of G, then

supply information G/N is a smaller group

about G. than G, and
consequently may
have a more simple
structure than G.

815 816
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Factor Group Computations

The multiplication of
cosets in G/N reflects
the multiplication in G,
since products of cosets
can be computed by
multiplying in G
representative elements
of the cosets.

Factor Group Computations

In next module, we give
example showing that
even when G/N has
order 2, we may be
able to deduce some
useful results.

If G is a finite group and
G/N has just two
elements, then we
must have |G|=2|N]|.

Group Theory

Factor Group
Computations

Factor Group Computations

Note that every
subgroup H containing
just half the elements
of a finite group G must
be a normal subgroup,
since for each element
ain GbutnotinH,
both the left coset aH
and the right coset Ha
must consist of all
elements in G that are
not in H.

820

Factor Group Computations

Thus the left and right
cosets of H coincide
and H is a normal
subgroup of G.

Factor Group Computations

Example

Because |S,|=2]A,|,
we see that A, is a
normal subgroup of S,
and S, /A, has order 2.
Let o be an odd
permutationin S,

so that

So/Aq= 1Ay, 0A).
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Factor Group Computations

Renaming the element A "even" and the
element oA, "odd," the multiplication in S, /A,
shown in Table becomes

(even)(even)=even, (even)(odd)=odd,
(odd)(even)=odd, (odd)(odd)=even.

Thus the factor group reflects these
multiplicative properties for all the permutations

in S I S 7

Factor Group Computations

Above example
illustrates that while
knowing the product of
two cosets in G/N does
not tell us what the
product of two
elements of G is, it may
tell us that the product
in G of two types of

A b e elements is itself of a
T % Ao certain type.
823 824
Group Theory Factor Group Computations
The theorem of Lagrange
states if H is a subgroup
Factor Group of a finite group G, then
Computations the order of H divides the
order of G.
We show that it is false
that if d divides the order
of G, then there must
exist a subgroup H of G
having order d.
826
Factor Group Computations Factor Group Computations
Example
W hp that A hich Then A,/H would have only two elements, H and oH
haes ngg' 123 co“r;t:i’nsl,cno for some €A, not in H. Since in a group of order 2,
subgroup of brder 6. the square of each element is the identity, we would
S that H have HH=H and (oH)(cH)=H. Now computation in a
sﬂggﬁjp o?A r?;?/irr?ga factor group can be achieved by computing with
order 6. 4 representatives in the original group. Thus,
As ob d before i computing in A,, we find that for each aeH we must
p?e?/igsgveexameplzreitm have a?eH and for each BeaH we must have B2eH.
would follow that H That is, the square of every elementin A, must be in
would be a normal H.
subgroup of A,.
827 828
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Factor Group Computations

But in A;, we have

(1,2,3)=(1,3,22 and (1,3,2)=(1,2,3)?
so(1, 2,3)and (1, 3,2)areinH.

A similar computation shows that (1, 2, 4),
(1,4,2),(1, 3,4),(1,4,3),(2, 3,4),and (2, 4,3)
areallin H.

This shows that there must be at least 8
elements in H, contradicting the fact that H was
supposed to have order 6.

Group Theory

Factor Group
Computations

829
Factor Group Computations Factor Group Computations
We now turn to several examples that compute Example
factor groups. If the_ group we start with is f|n|t_ely Let us compute the factor group (Z,xZ)/
generated anf:I abelian, then its factor group will be ((0, 1)). Here {(0, 1)) is the cyclic subgroup H of
also4_C9mp_ut|ng suc_h a factor group means 7.,xZg generated by (0, 1). Thus
classifying it according to the fundamental ~
theorem of finitely generated abelian groups. H={(0,0), (0, 1), (0.2), (0, 3), (0, 4), (0, 5)}.
Since Z,xZg has 24 elements and H has 6
elements, all cosets of H must have 6 elements,
and (Z,x Zg)/H must have order 4. Since Z,XZ is
abelian, so is (Z,x Zg)/H. Remember, we compute
in a factor group by means of representatives
from the original group.
831 832
Factor Group Computations Group Theory
In additive notation, the cosets are
H=(0, 0)+H, (1,0)+H, (2, 0)+H, (3, 0)+H.
Since we can compute by choosing the Factor Group
representatives (0, 0), (1, 0), (2, 0), and (3, 0), it is Computations
clear that (Z,xZg)/H is isomorphic to Z,. Note that
this is what we would expect, since in a factor group
modulo H, everything in H becomes the identity
element; that is, we are essentially setting
everything in H equal to zero. Thus the whole second
factor Zg of Z,xZs is collapsed, leaving just the first
factor Z,.
833
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Factor Group Computations

The last example is a special case of a general
theorem that we now state and prove. We should
acquire an intuitive feeling for this theorem in
terms of collapsing one of the factors to the
identity element.

Factor Group Computations

Theorem

Let G =H x K be the direct product of groups H
and K. Then H={(h, e)| h e H}is a normal
subgroup of G. Also G/H is isomorphic to K in a
natural way. Similarly, G /K =~ H in a natural
way.

835 836
Factor Group Computations Group Theory

Proof
Consider the map m,: Hx K — K given by
,(h, k) = k. The map T, is homomorphism since Factor Gr?up
Tohshy kol =kik= Talhy ko) Thy ko). Computations
Because Ker(m,) = H, we see that H is a normal
subgroup of H x K. Because , is onto K,
Fundamental Theorem of Homomorphism tells us
that (HxK)/ H=K.

837

Factor Group Computations Factor Group Computations

Example Setting (2, 3) equal to zero does not make (2, 0)
Let us compute the factor group (Z, x Z)/ and (0, 3) equal to zero individually, so the
((2, 3)). Be careful! There is a great temptation to factors do not collapse separately.
say that we are setting the 2 of Z, and the 3 of Z, The possible abelian groups of order 12 are
both equal to zero, so Fhat Z,is collapsed to a Zyx Ty and Z, x Z, x Z,, and we must decide to
factor group isomorphic to Z, and Zg to one which one our factor group is isomorphic. These
isomorphic to Zs, giving a total factolr group two groups are most easily distinguished in that
isomorphic to Z, x Zs. This is wrong! Z, x Zy has an element of order 4, and
Note that H =((2, 3)) ={(0, 0), (2, 3)}is of order 7. x 7, x Z. does not.
2,50 (Z4 x Zg)/{(2, 3)) has order 12, not 6. 2T

839 840
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Factor Group Computations

We claim that the coset (1, 0) + H is of order 4 in
the factor group (Z, x Zg)/H.

To find the smallest power of a coset giving the
identity in a factor group modulo H, we must, by
choosing representatives, find the smallest
power of a representative that is in the subgroup
H. Now, 4(1,0)=(1, 0)+(1,0)+(1,0)+(1,0)=(0,0) is
the first time that (1,0) added to itself gives an
element of H. Thus (Z, x Z¢)/{(2, 3)) has an
element of order 4 and is isomorphic to Z, x Z;
or Zy,.

Group Theory

Factor Group
Computations

841
Factor Group Computations Factor Group Computations
Example
Let us compute (that is, classify as in Fundamental
Theorem of Abelian Groups the group (ZxZ)/
((1, 1)). We may visualize Z x Z as the points in
the plane with both coordinates integers, as
indicated by the dots in Fig. below. The subgroup
((1, 1)) consists of those points that lie on the
45° line through the origin, indicated in the figure.
The coset (1, 0) +{(1, 1)) consists of those dots on
the 45° line through the point (1, 0), also shown in
the figure.
843 844
Factor Group Computations Simple Groups
Continuing, we see that each cosoet.cons.ists of One feature of a factor
those dots lying on one of the 45° lines in the roup is that it gives
figure. We may choose the representatives Eroup | L
gure. crude information about
-+ (-3,0), (-2,0), (-1,0), (0,0), (1,0), (2,0), (3,0)," the structure of the whole
of these cosets to compute in the factor group. group.
Since these representatives correspond precisely Of course, sometimes
to the points of Z on the x-axis, we see that the there may be no
factor group (Z x Z) /{(1, 1)} is isomorphic to Z. nontrivial proper normal
subgroups.
845 846
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Simple Groups

For example, Lagrange’s
Theorem shows that a
group of prime order can
have no nontrivial proper

Simple Groups

Definition

A group is simple if it is
nontrivial and has no
proper nontrivial normal

subgroups of any sort. subgroups.
847 848
Simple Groups Group Theory
Example
The cyclic group G=Z/5Z of congruence classes Simple Groups
modulo 5 is simple.
If H is a subgroup of this group, its order must be
a divisor of the order of G which is 5.
Since 5 is prime, its only divisors are 1 and 5, so
either His G, or H is the trivial group.
849
Simple Groups Simple Groups
Example
Example On the other hand, the
The cyclic group G=Z/pZ group G = Z /127 is not
of congruence classes simple.
modulo pissimple, ongruence Catscs of 0
Whef pisaprime 4, and 8 modulo 12 is a ’
numoer. subgroup of order 3, and
it is a normal subgroup
since any subgroup of
an abelian group is
normal.
851 852
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Simple Groups

Example

The additive group Z of
integers is not simple;
the set of even integers
27 is a non-trivial proper
normal subgroup.

Simple Groups

Theorem

The alternating group A,
is simple for n>5.

853 854
Group Theory Simple Groups
Theorem
Simple Groups Letgp:G— G.I be a group
homomorphism. If N is a
normal subgroup of G,
then ¢[N] is a normal
subgroup of ¢[G]. Also, if
N'is a normal subgroup
of ¢[G], then ¢p[N'] is a
normal subgroup of G.
856
Simple Groups Simple Groups
Proof Proof
Let ¢: G — G' be a group Also, if N' is a normal subgroup of ¢[G], then
homomorphism. If N is a d(@n'd(g) 1€ N' for every p(g) € ¢[G]
normal subgroup of G, andn’ € N’
then gng'€ N for all geG . X )
and neN. It implies that By definition, there exist n € N such thatp(n) = n'".
oleng’)= Therefore, &()n'd ()" = ¢(gng ).
AN
G € HIN]. Hence ¢[N'] is a normal subgroup of G.
Therefore, $[N] is a
normal subgroup of ¢[G].
857 858
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Group Theory Simple Groups

The last Theorem should
be viewed as saying that
Simple Groups a homomorphism

¢: G - G' preserves
normal subgroups
between G and ¢[G].

It is important to note
that ¢[N] may not be
normal in G', even
though N is normal in G.

860
Simple Groups Group Theory
Example
For example, ¢: Z, = S;, where Maximal Normal
$(0) =p, and ¢(1) =p, is a homomorphism, and Subgroups
Z, is a normal subgroup of itself, but {p,, p,} is not
a normal subgroup of S;.
(13)(23)=(213)
(23)(13)=(123)
861
Maximal Normal Subgroups Maximal Normal Subgroups
We characterize when
G/N is a simple group. Theorem
Definition M is a maximal normal
A maximal normal subgroup of G if and only
subgroup of a group G is ifG/Mis simple.
a normal subgroup M
not equal to G such that
there is no proper
normal subgroup N of G
properly containing M.
863 864
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Maximal Normal Subgroups Maximal Normal Subgroups

Proof Conversely, if N is a normal subgroup of G

Let M be a maximal normal subgroup of G. properly containing M, then y[N] is normal in

Consider the canonical homomorphism G/M. If also N#G, then y[N]#G/M and y[N]#
y: G=G/M. Now y! of any nontrivial proper M}
normal subgroup of G/M is a proper normal Thus, if G/M is simple so that no such y[N] can
subgroup of G properly containing M. But M is exist, no such N can exist, and M is maximal.
maximal, so this can not happen. Thus G/M is
simple.
865 866
Group Theory The Center Subgroup
Definition
The center Z(G) is
The Center Subgroup defined by
Z(G)={z € G| zg=gz for all
gE G}
868
The Center Subgroup The Center Subgroup
Exercise Solution
Show thatZ( G) is a For each g € Gand
normal and an abelian 2€2(G) we have
subgroup of G. N .
gzgl=zggl=ze=7, we see
atonce that Z(G) is a
normal subgroup of G. It
implies that gz=zg for g €
G and z€Z(G).
869 870
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The Center Subgroup

If G is abelian, then
Z(G) =G;

in this case, the center is
not useful.

Group Theory

Example on Center
Subgroup

871
Example on Center Subgroup Example on Center Subgroup
(132)(123) = p, = (123)(132)
Example (123)(23) = (12), (23)(123) = (13)
po (123) = (123)p, (132)(13) = (12),(13)(132) = (23)
po (132) = (132)p, (13)(12) = (123),(12)(13) = (132)
o (23) = (23)p, Z(S3)={po}, so the center of S; is trivial.
po (13) = (13)py
po (12) = (12)py
873 874
Group Theory Example on Center Subgroup
The center of a group G
always contains the
Example on Center identity element e.
Subgroup It may be that Z(G)={e},
in which case we say that
the center of G is trivial.
876
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Example on Center Subgroup Example on Center Subgroup
Example The center of S3x Zs
S5 X Z5={(po,0), (Po:1), (Po,2), (Po:3), (Pos4), must be {p,} x Zs, which
(P1,0), (P1,1), (P1,2), (p1,3), (P1,4), is isomorphic to Zs.

(P2,0), (p21), (P2,2), (P2,3), (P24),
(11,0), (10,2), (13,2), (H1,3), (11,4),
(12,0), (12,1), (12,2), (K,3), (12,4),
(K3,0), (H3,2), (H3,2), (H3,3), (13,4)}

Group Theory The Commutator Subgroup

Every nonabelian

The Commutator group G has two
Subgroup important normal
subgroups,

the center Z(G) of G
and the commutator
subgroup Cof G.

880
The Commutator Subgroup The Commutator Subgroup

Turning to the .
commutator subgroup, Suppose, for example, that we are studying the
recall that in forming a’ structure of a nonabelian group G.
factor group of G modulo Since Fundamental Theorem of Abelian Groups
a normal subgroup N, we gives complete information about the structure
are essentially putting of all sufficiently small abelian groups, it might
every element in G that is be of interest to try to form an abelian group as
in N equal to e, for N much like G as possible, an abelianized version of
forms our new identity in G, by starting with G and then requiring that
the factor group. ab=ba for all a and b in our new group structure.
This indicates another use
for factor groups.

881 882
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The Commutator Subgroup

To require that ab=ba is to say that ababl=e in
our new group.

An element abab?in a group is a commutator
of the group.

Thus we wish to attempt to form an abelianized
version of G by replacing every commutator of G
by e.

We should then attempt to form the factor group
of G modulo the smallest normal subgroup we
can find that contains all commutators of G.

The Commutator Subgroup

Theorem

Let G be a group.

The set of all
commutators abatb
for a, b € G generates a
subgroup C of G.

The Commutator Subgroup

Proof

Leta, b € G. Then,
(abab)(abatb?)?
=abalblbabla?l
=e€C

since e = eeelel isa
commutator.

885

The Commutator Subgroup

Definition

The set of all
commutators abatb
for a, b € G generates a
subgroup Cof G is
called the commutator
subgroup.

886

Group Theory

Generating Sets

Generating Sets

Let G be a group, and let
a € G. We have
described the cyclic
subgroup <a> of G,
which is the smallest
subgroup of G that
contains the element a.

Suppose we want to find
as small a subgroup as
possible that contains
both a and b for another
elementb in G.
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Generating Sets

We see that any
subgroup containing a
and b must contain a”
and b™for allm, n € Z,
and consequently must
contain all finite
products of such powers
of aandb.

Generating Sets

For example, such an expression might be
a%b%a=bas.

Note that we cannot "simplify" this expression by
writing first all powers of a followed by the powers
of b, since G may not be abelian. However, products
of such expressions are again expressions of the
same type.

Furthermore, e = a° and the inverse of such an
expression is again of the same type.

889 890
Generating Sets Generating Sets
For example, the inverse of a2b%a3b2a’ is
a’Sb2a3b?a2 Example
This shows that all such products of integral powers Th; Kle.m 4-group Z: le,
of aand b form a subgroup of G, which surely must a, b, c}is generated by
be the smallest subgroup containing both a and b. {a,b} since ab=c.
We call a and b generators of this subgroup. Itis also generated by
If this subgroup should be all of G, then we say that {a,c}, {b,c}, and {a,b,c}.
{a, b} generates G. If a group G is generated
We could have made similar arguments for three, by a subset S, then every
four, or any number of elemen'gs pf G, as long as we subset of G clontaining s
take only finite products of their integral powers. generates G.
891 892
Group Theory Generating Sets
Example
. The group Zg is
Generating Sets generated by {1} and {5}.
It is also generated by
{2,3} since 2+3=5, so
that any subgroup
containing 2 and 3 must
contain 5 and must
therefore be Z.
894
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Generating Sets

It is also generated by
{3,4},{2,3,4}, {1,3}, and
{3,5}

But it is not generated
by {2, 4} since
<2>={0,2,4}

contains 2 and 4.

Generating Sets

We have given an
intuitive explanation of
the subgroup of a group
G generated by a subset
of G.

What follows is a
detailed exposition of
the same idea
approached in another
way, namely via
intersections of

subgroups.
895 896
Generating Sets Group Theory
Definition
Let {S,|i € I} be a collection of sets. .
Here | may be any set of indices. Generating Sets
The intersection N;¢; S; of the sets S; is the set of
all elements that are in all the sets S;; that is,
Nier Si={x| x€ S, foralli€I}.
If Iis finite, 1= {1, 2,...,n}, we may denote N S; by
S;N..NS,.
897
Generating Sets Generating Sets
Proof
Theorem Let us show closure. Leta € N H; and
The intersection of some b € Njg H;, sothata € H;foralli€ | and
subgroups H; of a group
Gfori€ lisagaina b € H, foralli €. Thenab € H; foralli €|, since
subgroup of G. H; is a group. Thus ab € N;¢ H;.
Since H; is a subgroup for alli € |, we have e € H;
foralli €1, and hence e € N H;.
Finally, for a € Ni¢; H;, we have a € H;foralli €1,
so a'l € H; for all i € I, which implies that
al€ Nje H;
899 900
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Generating Sets

Let G be agroup andleta; € Gfori€l.

There is at least one subgroup of G containing all
the elements a; for i € |, namely G is itself.

The above theorem assures us that if we take the
intersection of all subgroups of G containing all a;
for i € 1, we will obtain a subgroup H of G.

This subgroup H is the smallest subgroup of G
containing all the a;fori € I.

Group Theory

Generating Sets

901
Generating Sets Generating Sets
Definition Definition
Let G be a group and L
leta, €Gfori€l. If there is a finite set
The smallest subgroup {a]i€l}
cl){ S fﬁ:gﬂg;%:‘l i€ that generates G, then
generated by {a,|i € I}. G is finitely generated.
If this subgroup is all of
G, then {a;[i € I}
generates G and the a;
are generators of G.
903 904
Generating Sets Generating Sets
Theorem
Note that this definition is consistent with our If Gisagroup and a, € G
previous definition of a generator for a cyclic fori €1, then the
group. subgroup H of G
Note also that the statement a is a generator of G generated by { a;| i € I}
may mean either that G = <a>or thatais a has as elements precisely
member of a subset of G that generates G. thosg ?Iements of G that
Our next theorem gives the structural insight .arte flane product?tc:
into the subgroup of G generated by {a; |i € I} |nhegra powers? f'e 3"’
that we discussed for two generators in the \:F:E:T/ ggx?rsse?/e?allxe
i i i
beginning of these modules. times in the product.
905 906
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Generating Sets

Proof

Let K denote the set of all finite products of
integral powers of the a;. Then KEH.

We need only observe that K is a subgroup and
then, since H is the smallest subgroup containing
a;fori € 1, we will be done.

Observe that a product of elements in K is again
in K. Since (a;)°=e, we have e € K.

Generating Sets

For every element k in
K, if we form from the
product giving k a new
product with the order
of the a, reversed and
the opposite sign on

all exponents, we have
k* which is thus in K.

907 908
Group Theory The Commutator Subgroup
Theorem
Let G be a group.
The Commutator Then, the commutator
Subgroup subgroup Cof Gis a
normal subgroup of G.
910
The Commutator Subgroup The Commutator Subgroup
Proof . .
We must show that C is By inserting e = gg* _bet_ween each produ_ct_ of
normal in G. commutators occurring in x, we see that it is
sufficient to show for each commutator cdcd*
The last theorem then that g1 (cdcldY)g is in C.
shows that C consists 1 A\ — (oled ol -1
precisely of all finite But g (cdcd)g = (gcdc)(e)(d"g)
products of commutators. = (g'cdc?)(gd*dg?)(d%g)
For x € C, we must show = [(g'c)d(g*c) *d*][dg?dg], which is in C.
thatg'xg e Cforallg €G, Thus Cis normal in G.
or that if x is a product of
commutators, so is
glxgforallg €G.
911 912
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Group Theory

The Commutator
Subgroup

The Commutator Subgroup

Theorem

If N is a normal
subgroup of G, then
G/N is abelian if and
only if C<N.

914
The Commutator Subgroup The Commutator Subgroup
Proof Finally, if C <N, then
If N is a normal (aN)(bN)=abN
subgroup of G and G/N =ab(bla"ba)N
is abelian, then
! = (abbat)baN
()b N)=(bN) ) (obbaribe
that is, abalbIN=N, =baN
so abalbl€N, and = (bN)(aN).
C<N.
915 916
Group Theory The Commutator Subgroup
Example
For the group S, we find that one commutator is
The Commutator P1ky P17 = iy Pol= Hky= Py
Subgroup (12)(13)=(132)
We similarly find that
Paky P2y = Polly P1ky= HoHa= Py
(13)(12)=(123)
918
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The Commutator Subgroup

Thus the commutator
subgroup Cof S;
contains A;. Since A;
is anormal subgroup
of S; and

S/A; is abelian, above
theorem shows that

Group Theory

Automorphisms

C=A;.
919
Automorphisms Automorphisms
Recall that an We have seen that every
automorphism of a group g € G determines an
G is an isomorphism of G automorphism i, of G
onto G. (called an inner
The set of all automorphism)given by
automorphisms of G is ig(x):gxg'l. The set of all
denoted by Aut(G). inner automorphisms of
G is denoted by Inn(G).
921 922
Automorphisms Automorphisms
Theorem Proof
¢ Clearly, Aut(G) is nonempty. Let o, T € Aut(G).
The set A“th) of all Then for allx,y € G, ot(xy)=0 ((t(x) T(y)) =
automorphisms of a (oT(x))(oT(y)).
group G is a group under Hence, 0T € Aut(G). Again,
composition of o6~ (x)o~1(y))=
mappings, and cc'l(x)cc'l(y)=xy
Inn(G) < Aut(G). Hence o~ (x)a~1( .)- o~ 1(xy). Therefore,c™! €
Moreover, K Y= y). 1 )
. Aut(G). This proves that Aut( G) is a subgroup of
6/2(G)=Inn(G). the symmetric group Sgand, hence, is itself a group.
923 924
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Group Theory

Automorphisms

Automorphisms

Theorem

The set Aut(G) of all
automorphisms of a
group G is a group under
composition of
mappings, and

Inn(G) < Aut(G).
Moreover,
G/Z(G)=Inn(G).

Automorphisms

Consider the mapping ¢: G — Aut (G) given by
$(a)=i,=axa! for all x€ G.

Forany a, b € G, i y(x)=

abx(ab)!= a(bxb1)at =i,i,(x)

for allx € G.

Hence, ¢ isa

homomorphism, and,

therefore, Inn(G)=Im ¢ is a

subgroup of Aut(G).

Automorphisms

Further, i, is the identity automorphism if and only
if axal= x for all x € G. Hence, Ker ¢ = Z(G), and by
the fundamental theorem of homomorphisms
G/2(G)=Inn(G).

Finally, for any o € Aut(G),

(oi,0" )(x) = o(ac(x)a™)

=o(a)x o(a)?

= ig(a) (X); hence oi,07=i,(,) € Inn(G).

Therefore, Inn(G) < Aut(G).

Automorphisms

It follows from above theorem that if the center of a
group G is trivial, then G = Inn(G). A group G is said
to be complete if Z(G) = {e} and every
automorphism of G is an inner automorphism; that
is, G =Inn(G)=Aut(G).

When considering the possible automorphisms ¢
of a group G, it is useful to remember that, for any
X € G, x and o (x) must be of the same order.

929

Group Theory

Examples on
Automorphisms
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Examples on Automorphisms

Example

The symmetric group S;
has a trivial center {e}.
Hence, Inn(S;) =S;. We
have seen that

S;= {e,a,a?,b,ab,a?b} with
the defining relations
a3= e=b?, ba=a%b. The

Examples on Automorphisms

Hence, for any o €
Aut(Ss), o(a)= a or a2,
o(b)=b, ab, or azb.
Moreover, when o(a) and
o(b) are fixed, o(x) is
known for every x € Ss.
Hence, o is completely

determined.
elements a and a2 are of
order 3, and b, ab, and
a%b are all of order 2.
931 932
Examples on Automorphisms Group Theory
Thus, there cannot be
more than six
automorphisms of S;. Examples _on
Hence Automorphisms
Aut (S3)=Inn(S;) = S;.
Therefore, S, is a
complete group.
933
Examples on Automorphisms Examples on Automorphisms
Solution
Example » . (m,n) = 1 = there exist
Let G be a finite abelian integers u and v such
group of order n, and let thatmu +nv=1=
m be a positive integer forallx € G,
relative prime to n. Then XMUY=y MUy V= U sipce
the mapping o: x— x™is 0(G)=n. Now for all x € G,
an automorphism of G. x=(x¢ )™ implies that
o is onto. Further,
xM=e= xMi=e > x =g,
showing that o is 1-1.
935 936
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Examples on Automorphisms

Thatoisa
homomorphism follows
from the fact that Gis
abelian. Hence, ¢ is an
automorphism of G.

Group Theory

Examples on
Automorphisms

937
Examples on Automorphisms Examples on Automorphisms
Example When G is abelian, then
A finite group G having o:x e xtisan
more than two automorphism, and,
elements and with the clearly, o is not an
condition that x? #e for identity automorphism.
some x € G must have a When G is not abelian,
nontrivial automorphism. there exists a nontrivial
inner automorphism.
939 940
Examples on Automorphisms Examples on Automorphisms
Example Solution
Let G = <a|a"=e> be a If (m,n) = 1, then it has
finite cyclic group of been shown in Example
order n. Then the of last module that o is
mapping o :a—aMisan an automorphism. So let
automorphism of G iff us assume now that o is
(m,n) = 1. an automorphism. Then
the order of g(a) = a™ is
the same as that of a,
which is n.
941 942
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Examples on Automorphisms

Further, if (m,n)=d, then
(am)n/d=(an)m/d =e. Thus,
the order of a™ divides
n/d; that is, n|n/d.
Hence, d =1, and the
solution is complete.

Group Theory

Group Action on a Set

943
Group Action on a Set Group Action on a Set
We define a binary More generally, for any
operation * on aset S to sets A, B, and C, we can
be a function mapping view a map *: AxB—=Cas
SxS into S. The function * defining a
gives usa rule for "multiplication," where
"multlplylng" an element any element a of A times
S1 mSapd an elements, any element b of B has as
inS to yield an element s, value some element c of
*s,inS. C. Of course, we write a*
b =c, or simply ab=c.
945 946

Group Action on a Set

In these modules, we will
be concerned with the
case where Xis a set, G is
a group, and we have

amap *: Gx X— X. We
shall write *(g, x) as g * x
or gx.

Group Action on a Set

Definition
LetXbeasetand Ga
group. An action of G on
Xisamap *: GxX = X
such that
1.ex=xforallx € X,

2. (g18,)(x) = g(gx) forall
x € Xandallgy, g, €G.
Under these conditions,

Xis a G-set.
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Group Action on a Set

Example

Let X be any set, and let
H be a subgroup of the
group S, of all
permutations of X.

Then X isanH -set,
where the action of o €
H on X isits action as an
element of S, so that
ox=oa(x) forall x € X.

Group Theory

Group Action on a Set

949
Group Action on a Set Group Action on a Set
Condition 2 is a Our next theorem will
consequence of the show that for every G-set
definition of permutation X and ?a;ixgde f(';' tgeb
multiplication as function ma_p Og’ etined by
o f 0= gx is a permutation of
composition, an . X, and that there is a
Condition 1 is immediate homomorphism ¢: G—=S,
from the definition of the such that the action of G
identity permutation as on X is essentially the
the identity function. Note above Example action of
that, in particular, the image subgroup H =
) ¢ [G] of S, on X.

{1,2,3,-,n}isans$, set.

951 952

Group Action on a Set Group Action on a Set
So actions of subgroups Theorem
of S, on X describe all
possible group actions on Let X be a G-set. For each
X. When studying the set g € G, the function o,:
X, actions using X—X defined by Gg(X§ =
subgroups of S, suffice. gx for xeXis a
However, sometimes a permutation of X. Also,
set X is used to study G the map ¢p: G- S,
via a group action of G on : - ;
X. Thus we need the defined by ¢‘(g) 0} 53
more general concept homomorphism with the
given by above Definition. property that ¢(g)(x) =
gx.
953 954
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Group Action on a Set

Proof

To show that o, is a permutation of X, we must
show that it is a one-to-one map of X onto itself.
Suppose that 6,(xy) = 0,(x,) for x;, X, € X. Then gx,=
gx, Consequently, g?(gx,) = g(gx,). Using
Condition 2 in Definition, we see that (g g)x,= (g
g)x,, soex; =ex,. Condition 1 of the definition
then yields x; =X,, s0 0, is one to one. The two
conditions of the definition show that for x € X, we
have o,(g'x) = g(g*)x = (gg?)x =ex=x, s0 o, maps X
onto X. Thus o, is indeed a permutation.

Group Theory

Group Action on a Set

955
Group Action on a Set Group Action on a Set
Theorem To show that@): G-S, defined by ¢(g) = o, isa
Let X be a G-set. For each homomorphism, we must show that ¢(g1g2) =d(gy)
g € G, the function o,: d(g,) for all gy, g, € G. We show the equality of
X=X defined by 6 (x? - these two permutations in S, by showing they both
gx for xEX is a 8 carryan x € X into the same element. Using the two
permutation of X. Also, conditions in above Definition and the rule for
the map ¢: G- S ’ function composition, we obtain
. X
defined by ¢(g) =0, isa D(8182)(x) =0g,g,(x) = (818:)% =81(82%) =8, g, (X)
homomorphism with the =0g,(0g,(X))= (0g,0 0g,)(x) =(0g, g, )(x)=
property that ¢(g)(x) = ( ble1) bley) )ix).
gx.
957 958
Group Action on a Set Group Theory
Thus pisa
homomorphism. G Acti Set
roup Action on a Se
The stated property of ¢ P
follows at once since by
our definitions, we have
¢ (8)(x) = o(x) =gx.
959
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Group Action on a Set

Definition

LetXbe asetand G a
group. An action of G on
Xisamap *: GxX = X
such that

1l.ex=xforallx €X,
2. g(8,x)=(818,)(x) for all

x€Xandallg, g, €G.
Under these conditions,

Group Action on a Set

Example

Let G be the additive
group R, and X be the
set of complex numbers z
such that |z| =1. Then X
is a G-set under the
action y*c = eV¢, where

Yy € Rand c € X. Here the
action of y is the rotation
through an angle 6=y

Xis a G-set. radians, anticlockwise.
961 962
Group Action on a Set Group Action on a Set
Example Example
Let G=S.  and Let G=D, and X be the
. X= 5 vertices 1, 2, 3,4 of a
5 ={Xy, X2, X3, Xa, X5} be a .
. square. X is a G-set under
M X set of beads forming a the action
4 circular ring. Then X is a .
G-set under the action g * i=gli) g € Dy
0 % G*x =Xy, BESs. i€{1,2, 3,4}
963 964
Group Action on a Set Group Theory
Example
Let G be a group. Define .
a*x=ax,a € G, x € G. Group Action on a Set
Then, clearly, the set G is a
G-set.
This action of the group G
on itself is called
translation.
965
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Group Action on a Set

Example

Let G be a group.

Define

a*x =axa’l, a€G, x€G.

We show that G is a G-set.
Leta, b € G. Then
(ab)*x=(ab)x(ab)?!

= a(bxb1)al=a(b*x)a?t

Group Action on a Set

This proves G is a G-set.
This action of the group G
on itself is called
conjugation.

=a*(b*x).
Also, e*x=x.
967 968
Group Action on a Set Group Action on a Set
Example Example
Let G be a group and H<G. Let G be a group and
Then the set G/H of left H<G.
cosets can be made into a Then the set G/H of left
G-set defining cosets is a G-set if we
a*xH=axH, a€G, xHEG/H. define a*xH=axalH, a€G,
XHEG/H.
969 970
Group Action on a Set Group Theory
To see this, let a, beG and
XHEG/H. Then
(ab)*xH=abxb*a*H Group Action on a Set
=a*bxbIH =a*(b*xH).
Also, e*xH=xH.
Hence, G/H is a G-set.
971
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Group Action on a Set

Theorem

Let G be a group and let X
be a set.

(i) If X is a G-set, then the
action of G on X induces a
homomorphism

$:G-Sy.

(ii) Any homomorphism
$:G-Syinduces an action

Group Action on a Set

Proof

(i) We define ¢:G—S, by (d(a))(x)=ax, a€G, xEX.
Clearly ¢(a)€Sy, a€G. Let a, bEG. Then
(d(ab))(x)=(ab)x=a(bx)=a(((b))(x)) =
(S(@)(&(b)x)=(d(alb(b))x for all xeX.

Hence, ¢p(ab)= ¢p(a) d(b).

(i) Define a*x=(d(a))(x); that is, ax=(¢p(a))(x). Then
(ab)x = (d(ab))(x)=(d(a)d(b))(x)= d(a)(d(b)(x))=
d(a)(bx)=a(bx). Also, ex=(Pp(e))(x)=x.

Hence, X is a G-set.

of G onto X.
973 974
Group Theory Stabilizer
Definition
Let G be a group acting on
Stabilizer asetX, and letx € X. Then
the set
G={g€G|gx=x},
which can be shown to be
a subgroup, is called the
stabilizer (or isotropy)
group of x in G.
976
Stabilizer Stabilizer
Example Example
Let G be a group. Define a*x =axa, a€G, x€G. Let G be a group and H<G. We define action of G on
This action of the group G on itself is called the set G/H of left cosets by
conjugation. a*xH=axH, a€G, xHEG/H.
Then, forx € G, G, = {a€Gaxa’=x}=N(x), the Here the stabilizer of a left coset xH is the subgroup
normalizer of x in G. {g€G | gxH=xH} = {g€G | xgxEH}
Thus, in this c‘ase the s.tabilizer of any element x in G = {gEG | gExHx1} = xHx !
is the normalizer of x in G.
977 978
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Group Theory

Stabilizer

Stabilizer

Theorem
Let X be a G-set.

Then G, is a subgroup
of G foreachx € X.

980
Stabilizer Group Theory
Proof
Letx € X and let g;, g,EG,. Then g;x=x and gx=x. Orbits
Consequently, (g,8,)x=81(g,X)=g:x=X, 50 818,€G,,
and G, is closed under the induced operation of G.
Of course ex=x, so e€G,.
If gEG,, then gx = X, so x=ex=(g"'g)x= g™(gx)=g'x,
and consequently g1€G,.
Thus G, is a subgroup of G.
981
Orbits Orbits
Theorem Proof
Let X be a G-set. For x;, For each x€X, we have ex=x, so x~x and ~ is
X,€X, let x,~Xx, if and reflexive.
only if there exists g€G Suppose X; ~ X,, SO gx;=X, for some g€G. Then
such that gx;=x,. Then ~ . N N .
is an equivalence 87787 (gx:) =(g'8)x,=ex;=xy, 50 Xp~x;, and ~is
relation on X. symmetric.
Finally, if x;~x, and x,~X;, then g;x;=x, and g,x,=x;
for some g,, 8,€G. Then (g,81)x,= 8,(81%1)= 8%,=%3,
50 x;~X; and ~ is transitive.
983 984
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Orbits

Definition

Let G be a group acting
onasetX, and letx € X.
Then the set

Gx={ax | a € G}

is called the orbit

Orbits

Example

Let G be a group. Define
a*x=ax,a € G,x € G.
The orbit of x€G is
Gx={ax|a € G}=G.

of xin G.
985 986
Orbits Group Theory
Example
Let G b .
€ € a group Conjugacy and G-Sets
Define
a*x =axa’l, a€G, x€G.
The orbit of x€G is
Gx ={axa™|a€G}, called
the conjugate class of x
and denoted by C(x).
987
Conjugacy and G-Sets Conjugacy and G-Sets
Proof
Theorem We define a one-to-one map 1) from Gx onto the
Let X be a G-set and let xEX. Then |Gx|=(G:G,). collection of left cosets of G,in G.
o . . Let x,EGx. Then there exists g,€G such that g;x=x,.
If |G| is finite, then |Gx| is a divisor of |G]. We define 1(x;) to be the left coset g,G, of G,.
If Xis a finite set, |X|=Xyec(G: Gy), We must show that this map 1 is well defined,
where C is a subset of X containing exactly one independent of the ghoice of g,€G such that gyx=x,.
element from each orbit. Suppose also that g,'x=x,. Then, g;x=g,'x, so
8,(81%)= g, (g,'x), from which we deduce
x=(g,'g,')x. Therefore g,g,'€G,, so g,'€g,G,, and
8,G,=8,'G,. Thus the map 1 is well defined.
989 990
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Group Theory

Conjugacy and G-Sets

Conjugacy and G-Sets

Theorem

Let X be a G-set and let x€X. Then | Gx|=(G:G,).
If |G| is finite, then | Gx| is a divisor of |G].

If Xis a finite set, |X|=Yyec(G: Gy),

where C is a subset of X containing exactly one
element from each orbit.

992
Conjugacy and G-Sets Conjugacy and G-Sets

To show the map 1 is one to one, suppose x,, X,EGX, If |G| is finite, then the
and Y (x,)=(x,). Then there exist g,, g,EG such that equation '
X1=81X, X,=8,X, and g,€g,G,. Then g,=g,g for some

1=81% X2=8>: 8:€8, 82 g1$ |G|=|G,|(G:G,) shows
g €G,, SO X,=8,X=8,(gX)=g;x=X,. Thus 1 is one to one. that |Gx|=(G:Gx) is a
Finally, we show that each left coset of G, in G is of divisor of |G].
the form 1(x,) for some x,EGx. Let g,G, be a left Since X is the disjoint
coset. Then if g;x=x,, we have g,G,= {(x,). union of orbits Gx, it
Thus 1 maps Gx one to one onto the collection of follows that if X is finite,
left cosets so | Gx|=(G:G,). then |X|=X,ec(G: Gy).

993 994

Group Theory

Isomorphism
Theorems

Isomorphism Theorems

There are several
theorems concerning
isomorphic factor groups
that are known as the
isomorphism theorems of
group theory.
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Isomorphism Theorems

Theorem

Let ¢: G—G'be a
homomorphism with
kernel K, and let

Yx: G = G/K be the
canonical homomorphism.
There is a unique
isomorphism

Ww: G/K— ¢[G] such that
d(x) = plyy(x)) for each
XEG.

997

Isomorphism Theorems

The first isomorphism
theorem is diagrammed
in Figure below.

c— . ¢la

AN

G/K

Isomorphism Theorems

Lemma

Let N be a normal
subgroup of a group G and
let y: G = G/N be the
canonical homomorphism.
Then the map ¢ from the
set of normal subgroups of
G containing N to the set
of normal subgroups of
G/N given by ¢(L)=y[L] is
one to one and onto.

Isomorphism Theorems

Proof

If L is a normal subgroup of G containing N, then
®(L)=y[L] is a normal subgroup of G/N.

Because N<L, for each x€L the entire coset xN in
G is contained in L. Thus, y[¢(L)]=L.
Consequently, if Land M are normal subgroups of
G, both containing N, and if ¢(L)= $(M) =H,
then L=y![H]=M. Therefore ¢ is one to one.

Isomorphism Theorems

If His a normal subgroup
of G/N, then y''[H] isa
normal subgroup of G.
Because NEH and
y[{N}]=N, we see that
NCy[H]. Then

Gy [H)=yly'[H]]=H.
This shows that ¢ is onto
the set of normal

subgroups of G/N.

Group Theory

Isomorphism
Theorems
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Isomorphism Theorems

If Hand N are subgroups
of a group G, then we let
HN=f{hn| h €H, n € N}.
We define the joinHV N
of Hand N as the
intersection of all
subgroups of G that
contain HN; thus HV N
is the smallest subgroup
of G containing HN.

Isomorphism Theorems

Of course HV N is also
the smallest subgroup of
G containing both H and
N, since any such
subgroup must contain
HN. In general, HN need
not be a subgroup of G.

1003 1004
Isomorphism Theorems Isomorphism Theorems
Lemma Proof
If N is a normal subgroup We show that HN is a subgroup of G, from which
of G, and if H is any H V N=HN follows at once. Let h,, h,€H and n,, n,EN.
112 1 2
subgroup of G, then Since N is a normal subgroup, we have n;h,=h,n, for
H V N=HN=NH. some nz€N. Then (hyn;)(hyn,)=hy(nshy)n=h, (hons)n,=
Furthermore, if H is also (h;h,)(n3n,)EHN, so HN is closed under the induced
normal in G, then HN is operation in G. Clearly e=ee is in HN. For h€H and
normal in G. neEN, we have (hn)'=n"h-= h'n, for some n,EN,
since N is a normal subgroup. Thus (hn)€HN, so
HN <G.
1005 1006

Isomorphism Theorems

A similar argument shows
that NH is a subgroup, so
NH=H V N=HN.

Now suppose that H is
also normal in G, and let
h€H,n€EN, andg € G.
Then
ghng'=(ghg™)(gng")€HN,
so HN is indeed normal in
G.

1007

Group Theory

Second Isomorphism
Theorem
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Second Isomorphism Theorem

Theorem

Let H be a subgroup of G
and let N be a normal
subgroup of G. Then
(HN)/N=H/(H N N).

1009

Second Isomorphism Theorem

Proof

Let y: G=G/N be the canonical homomorphism and
let H<G. Then y[H] is a subgroup of G/N. Now the
action of y on just the elements of H (called y
restricted to H) provides us with a homomorphism
mapping H onto y[H], and the kernel of this restriction
is clearly the set of elements of N that are also in H,

that is, the intersection HNN. By first isomorphism
theorem, there is an isomorphism

gz H/(HON)-y[H].

1010

Second Isomorphism Theorem

On the other hand, y restricted to HN also provides a
homomorphism mapping HN onto y[H], because y(n)
is the identity N of G/N for all nEN. The kernel of y
restricted to HN is N. The first isomorphism theorem
then provides us with an isomorphism

Myt (HN)/N-y[H].

Because (HN)/N and H/(HNN) are both isomorphic to
y[H], they are isomorphic to each other. Indeed,

¢: (HN)/N—H/(HNN) where ¢=p,"u, will be an
isomorphism. More explicitly,
®((hn)N)=pt; (i (()N))= iy HBN)=h(HNN).

1011

Group Theory

Isomorphism Theorems

Isomorphism Theorems

Example

Let G be a group such that
for some fixed integer

n >1, (ab)" =a"b"for all a,
b€EG. Let G,={aEG|a"=e}
and G"=(a" |aE€G}.

Then G,<G, G"<G, and
G/G,~G".

1013

Isomorphism Theorems

Solution

Leta, bEG, and XEG. Then (ab™)"=a"(b")'=e, so abl€
G,. Also, (xax1)"=(xax 1)...(xax )=xa"x ! =e implies

xax '€G,. Hence, G,<G.

Let a, b, xEG. Then a"(b")1=(ab)"eG".

Also, xa"x! =(xax 1)...(xax )= (xax})"€G". Therefore,
G"<G.

1014
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Group Theory

Isomorphism Theorems

Isomorphism Theorems

Example

Let G be a group such that
for some fixed integer

n >1, (ab)" =anb" for all a,
b€EG. Let G,={aEG|a"=e}
and G"={a" |a€G}.

Then G,<G, G"<G, and

G/G,~G".
1016
Isomorphism Theorems Isomorphism Theorems
Define a mapping f: G-G" Example
by f(a) = a". Let G=Zx ZxZ,
Then, foralla, b €G, HfZXZX{O}' aEd earl
f(ab)=(ab)=a"b"=F(a)f(b). N={O}XZxZ. Then clearly
Thus. fis a h hi HN=ZXZXZ and
us, fis a homomorphism. HNN={O}XZx{0}. We have
Now Ker f={a|a" = e}=G,,. (HN)/N= Z and we also
Therefore, by the first have H/(HNN)= Z.
isomorphism theorem
G/G,~G".
1017 1018
Group Theory Third Isomorphism Theorem
If Hand K are two normal
subgroups of G and K<H,
Third Isomorphism then H/K is a normal
Theorem subgroup of G/K.
The third isomorphism
theorem concerns these
groups.
1020
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Third Isomorphism Theorem

Theorem

Let H and K be normal
subgroups of a group G
with K<H.

Then G/H=(G/K)/(H/K).

1021

Third Isomorphism Theorem

Proof

Let ¢:G—(G/K)/(H/K) be given by ¢(a)= (aK)(H/K)
fora €G.

Clearly ¢ is onto (G/ K)/(H/ K), and for a, beG,
$(ab)=[(ab)K](H/K)

=[(aK)(bK)1(H/K)

= [(aK)(H / K)I[(bK)(H / K)]=d(a) d(b),

so ¢ is a homomorphism.

1022

Third Isomorphism Theorem

The kernel consists of
those x € G such that
d(x)=H/K.

These x are just the
elements of H.

Then first isomorphism
theorem shows that
G/H=(G/K)/(H/K).

1023

Group Theory

Third Isomorphism
Theorem

Third Isomorphism Theorem

A nice way of viewing third
isomorphism theorem is to
regard the canonical map
Y4:G—G/H as being factored
via a normal subgroup K of
G, KSH<ZG, to give
Yu=Yn/k Y UP to @ natural
isomorphism, as illustrated
in Figure.

1025

Third Isomorphism Theorem

Yu

G G/H

Yk Natural Isomorphism

G/KT'(G/K)/(H/K)

1026
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Third Isomorphism Theorem

Another way of visualizing
this theorem is to use the
subgroup diagram in Figure,
where each group is a
normal subgroup of G and is
contained in the one above
it.

Third Isomorphism Theorem

The larger the normal subgroup, the smaller the factor
group.

Thus we can think of G collapsed by H, that is, G/H, as
being smaller than G collapsed by K.

Third isomorphism theorem states that we can collapse
G all the way down to G/H in two steps.

G First, collapse to G/K, and then, using H/K, collapse this
| to (G/ K)/(H/K). The overall result is the same (up to
H isomorphism) as collapsing G by H.
\
K
1027 1028
Group Theory Third Isomorphism Theorem
Theorem
. . Let H and K be normal
Third Isomorphism subgroups of a group G
Theorem with K<H.
Then G/H=(G/K)/(H/K).
1030
Third Isomorphism Theorem Third Isomorphism Theorem
Example Thus (Z/6Z)/(2Z/6Z) has
Consider two elements and is
K = 6Z<H=27<G=T7. isomorphic to Z, also.
Alternatively, we see that
Then G/H=Z/2Z = Z, 7/67. ~ T, and 2Z/67.
Now G/K=Z/6Z has corresponds under this
elements 67, 1+6Z, 2+67, isomorphism to the cyclic
3+6Z, 4+6Z, and 5+6Z. subgroup <2> of Zg.
Of these six cosets, 6Z, Thus (Z/6Z)/(2Z/6T)
2+67Z, and 4+6Z lie in
27/61. = Z/<2>= T~ 7/ 2.
1031 1032
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Group Theory Sylow Theorems

The fundamental theorem
for finitely generated
Sylow Theorems abelian groups gives us
complete information
about all finite abelian
groups. The study of finite
nonabelian groups is
much more complicated.
The Sylow theorems give
us some important
information about them.

1034
Sylow Theorems Sylow Theorems
We know the order of a subgroup of a finite group The Sylow theorems give a weak converse. Namely,
G must divide |G|. If G is abelian, then there exist they show that if d is a power of a prime and d divides
subgroups of every ordgr dividing |G|. |G|, then G does contain a subgroup of order d.
xi sroouwegftg\%tef% which has order 12, has no Note that 6 is not a power of a prime. The Sylow
group o theorems also give some information concerning the

Thus a nonabelian group G may have no subgroup number of such subgroups and their relationship to
of some order d dividing |G|; the "converse of the each other.
theorem of Lagrange" does not hold. .

We will see that these theorems are very useful in

studying finite nonabelian groups.

1035 1036

Sylow Theorems Group Theory

Proofs of the Sylow
theorems give us another
application of action of a
group on a set. This time, Sylow Theorems
the set itself is formed
from the group; in some
instances the set is the
group itself, sometimes it
is a collection of cosets of
a subgroup, and
sometimes it is a
collection of subgroups.

1037

173



12/16/2018

Sylow Theorems Sylow Theorems
. There may be one-element orbits in X.
Let X be a finite G-set. Let X.={x€X | gx=x for all gEG}
Recall that for x€X, the St AemixAlgx=xlor all gEG .
orbit of x in X under G is Thus X is precisely the union of the one-element
Gx={gx| gEG}. Suppose orbits in X.
that there are r orbits in X Let us suppose there are s one-element orbits,
under G, and let {x;, Xy, where 0<s<r. Then |X;|=s, and reordering the x; if
x.} contain one element necessary, we may rewrite above equation as
v
from each orbit in X. Now IXI=1X6]+ izs 41 |Gxi]-
every element of X is in Most of the results of these modules will flow from
precisely one orbit, so above equation.
[X|=Xi=1 |Gxil-
1039 1040
Sylow Theorems Sylow Theorems
Theorem Proof
Let G be a group of order p" - r :
and let X be a finite G-set. Recall [X]=1Xs ]+ Kizss1 G-
Then In the notation of above Equation, we know that
IX] = |Xs| (mod p). |Gx;| divides |G].

Consequently p divides |Gx;| for s + 1<i<r. Above
equation then shows that |X|-|X| is divisible by p,
so [X|=|Xs| (modp).

1041 1042

Sylow Theorems Group Theory

Definition

Let p be a prime. A group ,
G is a p-group if every Cauchy’s Theorem
elementin G has order a
power of the prime p.

A subgroup of a group G is
a p-subgroup of G if the
subgroup is itself a p-
group.

1043
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Cauchy’s Theorem

Our goal in these modules is
to show that a finite group G
has a subgroup of every
;l)gline»power order dividing

As a first step, we prove
Cauchy's theorem, which
says that if p divides |G|
then G has a subgroup of
order p.

Cauchy’s Theorem

Cauchy’s Theorem

Let p be a prime. Let G be
a finite group and let p
divide |G].

Then G has an element of
order p and,
consequently, a subgroup
of order p.

1045 1046
Cauchy’s Theorem Cauchy’s Theorem
We claim p divides |X]. In
Proof form:ntg ap-tuplein Xt,’ we
may let gy, 8, 8.1 beany
We form the set X of all p- elements of G, and g, is then
tuples (gy, g5, -, 8,) of uniquely determined as
elements of G having the o
property that the product of (8182 Bpa) ™
the coordinates in G is e. Thus |X| = |G| and since
That is, p.d.ivides |G|, we see that p
X={(g1, 8, &) |g:€ G and divides |X]. Let o be the
818, "'8,=e}. cycle(1,2,3,..., p)inS,.
1047 1048
Cauchy’s Theorem Cauchy’s Theorem
We letg acton X bv_crigl. 821 Bp) Now |<o>|=p, so we may apply above Theorem, and we
=(8ouy o@), r Botp) =(B2r B B 81)- o know that |X| =|X.,| (mod p). Since p divides |X|, it must
PR Ve e RS B be that pdivides |, | also. Let us examine X.,.-
consider the SubeFQUP > Now (g;, 8,,..., 8,) is left fixed by o, and hence by <o>, if and
of S, to act on X by iteration in the natural way. only if 8,78 . We know at least one element in Xepmr
namely (e, e, ..., e). Since p divides |X_,,|, there must be at
least p elements in X_,,. Hence there exists some element
a€G, a#e, such that (a, a, ... ,a)€X_,,and hence a® = e, so a
has order p. Of course, <a> is a subgroup of G of order p.
1049 1050
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Group Theory

Sylow Theorems

Sylow Theorems

Corollary

Let G be a finite group.
Then G is a p-group if
andonly if |G| isa
power of p.

1052
Sylow Theorems Sylow Theorems
Let G be a group, and let Now G={g€G |gHg'=H} is
S be the collection of all ?3335551 e
subgroups of G. normal subgrc;up of Gy,.
We make § into a G-set Since Gy, consists of all
by letting G act on S by elements of G that leave
conjugation. H invariant under
. conjugation, Gy is the
Thatis, if HE S so H$G largest subgroup of G
and g € G, then g acting having H as a normal
on H yields the conjugate subgroup.
subgroup gHgL.
1053 1054
Sylow Theorems Sylow Theorems
Definition Lemma
The subgroup Let H be a p-subgroup of a
B G finite group G. Then
§H ={g€G | gHg _H}. (N[H]:H)=(G:H) (mod p).
is the normalizer of H in
G and is denoted by
N[H].
1055 1056

176



12/16/2018

Sylow Theorems Sylow Theorems
Proof Thus xH=h(xH) for all heH if and only if xthx
Let £ be the set of left cosets of Hin G, and let H =xth(xt)2€H for all heH, or if and only if x1EN[H],
act on L by left translation, so that h(xH) = (hx)H. or if and only if xEN[H]. Thus the left cosets in L, are
Then £ becomes an H-set. Note that | £|=(G:H). those contained in N[H]. The number of such cosets
Let us determine £y, that is, those left cosets that is (N[H]:H), so | L] = (N[H]:H).
are fixed under action by all elements of H. Since H is a p-group, it has order a power of p. Then
Now xH= h(xH) if and only if H=x"hxH, or if and |£] = |£Ly| (mod p), thatis,
only if xthx € H. (G:H) = (N[H]:H) (mod p).

1057 1058
Group Theory First Sylow Theorem
Theorem

Let G be a finite group and
let |G|=p"m where n>1
First Sylow Theorem and where p does not
divide m. Then

1. G contains a subgroup
of order p' for each i
where 1<i<n,

2. Every subgroup H of G
of order p'is a normal
subgroup of a subgroup of
order p*! for 1 <i<n.

1060
First Sylow Theorem First Sylow Theorem
Proof Let H be a subgroup of order p'. Since i < n, we see p
We know G contains a divides (G:H). We then know p divides (N[H]:H).
subgroup of order p b Since H is a normal subgroup of N[H], we can form
caugchy'_ftheorem_p v N[H]/H, and we see that p divides |N[H]/H|.
. . By Cauchy's theorem, the factor group N[H]/H has a
Z\l{guuriee::a::guschtg\);that subgroup K which is of order p.
the existence of a If y:N[H]—>N[H]/H is the canonical homomorphism,
subgroup of order o' for then y1[K]={xEN[H] | y(x)EK} is a subgroup of N[H]
i<n igmpliF()es the exisE()ence and hence of G. This subgroup contains H and is of
f order p'*t,
of a subgroup of order p**1. P
1061 1062
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2. We repeat the
construction in part 1 and
note that H < y1[K] < N[H]
where |y[K]|= p'L.

Since H is normal in N[H],
it is of course normal in
the possibly smaller group

First Sylow Theorem

Definition

A Sylow p-subgroup P of a
group G is a maximal
p-subgroup of G,

that is,

y K] a p-subgroup contained in
no larger p-subgroup.
1063 1064
Group Theory Second Sylow Theorem
Let G be a finite group,
where |G|=p"m as in first
Second Sylow Theorem Sylow theorem.
The theorem shows that
the Sylow p-subgroups of
G are precisely those
subgroups of order p".
If P is a Sylow p-
subgroup, every
conjugate gPg of P is
also a Sylow p-subgroup.
1066
Second Sylow Theorem Second Sylow Theorem
The second Sylow Theorem
theorem states that Let P, and P, be Sylow p-
every Sylow p-subgroup subgroups of a finite
can be obtained from P group G.
in this fashion; that is,
any two Sylow p- Thep P,and P, are
subgroups are conjugate. conjugate subgroups of G.
1067 1068
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Proof

Here we will let one of the subgroups act on left cosets of
the other. Let £ be the collection of left cosets of P;, and
let P, act on £ by z(xP,)=(zx)P, for zEP,. Then L is a P,-set.
We have |Lp,| = |£]| (mod p), and |L]=(G: P,) is not
divisible by p, so | Lp, | #0. Let xP; € Lp,.

Then zxP,=xP, for all zEP,, so x'zxP,=P, for all zEP,. Thus x°
1zx€P, for all ZEP,, 50 x1P,x<P;.

Since |P,|=|P,|, we must have P,=x'P,x, so P, and P, are
indeed conjugate subgroups.

Group Theory

Third Sylow Theorem

1069
Third Sylow Theorem Third Sylow Theorem
Proof
The final Sylow theorem .
gives information on the Let P be one Sylow p-subgroup of G. Let § be the
number of Sylow p- set of all Sylow p-subgroups and let P act on S by
subgroups. conjugation, so that x€P carries T € § into xTx %
Theorem We have |S|=|Sp|(mod p). Let us find Sp.
If G is a finite group and p 1=
divides |G|, then the If TE Sp, then xTx =T for all x € P. Thus P<N[T].
nutr)nber of Sylow p- o1 Of course T<NIT] also.
?r‘{lo L?A“F’,Saﬁdcgi@.gég?igﬁ Since P and T are both Sylow p-subgroups of G, they
are also Sylow p-subgroups of N[T].
But then they are conjugate in N[T] by second Sylow
theorem.
1071 1072
Third Sylow Theorem Group Theory
Since T is a normal subgroup of N[T], it is its only
conjugate in N[T]. Thus T=P.
Then Sp={P}. Since |§|=|Sp|=1 (mod p), we see
the number of Sylow p-subgroups is congruent to 1 Sylow Theorems
modulo p.
Now let G act on § by conjugation. Since all Sylow
p-subgroups are conjugate, there is only one orbit in
S under G.
If P € S then |S|=]orbit of P|= (G:Gp). G is, in fact,
the normalizer of P. But (G:Gy) is a divisor of |G|, so
the number of Sylow p-subgroups divides |G|.
1073
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Example

The Sylow 2-subgroups of
S; have order 2.

The subgroups of order 2
inSzare

{po i}, {Po M2, {Pos 3}
Note that there are three
subgroups and that

Sylow Theorems

Also, 3 divides 6, the order
of S,.
We can readily check that

ip, [{po, tiH={po, 3} and
i, [{po, mi}1={po, 1}

where i‘Ji (X)=pxp;?,
illustrating that they are all
conjugate. For instance,
ipz(lh):PzPllpz'l:PzUlPl:

3=1 (mod2). (1,3,2)(2.3)(1,2,3)=(1,2)=
H3.
1075 1076
Sylow Theorems Sylow Theorems
Example
But for each g€G, the
Let us use the Sylow theorems to show that no group of inner automorphism i_ of
order 15 is simple. Let G have order 15. G with ig(x):gxg-l mapgs p
We claim that G has a normal subgroup of order 5. onto a subgroup gPg?,
By first Sylow theorem G has at least one subgroup of again of order 5.
order 5, and by third Sylow theorem the number of Hence we must have
such subgroups is congruent to 1 modulo 5 and divides gPgl=P forallg € G, so P
15. Since 1, 6, and 11 are the only positive numbers less is a normal subgroup of G.
than 15 that are congruent to 1 modulo 5, and since Theref Gi imol
among these only the number 1 divides 15, we see that erefore, G is not simple.
G has exactly one subgroup P of order 5.
1077 1078
Group Theory Application of Sylow Theory
Let X be a finite G-set
where G is a finite group.
Application of Sylow Let Xg={x€X | gx=x for all
Theory gEG}. Then
IX[=1X6]+ Xizs 41 1Gxil,
where x; is an element in
the ith orbit in X.
1080
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Consider now the special case of above equation,
where X=G and the action of G on G is by
conjugation, so g € G carries x € X = G into gxg'L.
Then Xs={x € G| gxg''=x for all g € G}

= {x € G| xg=gx for all g € G}=Z(G), the center of G.

If we let c=|Z(G)| and n=|Gx;| in above equation,
then we obtain |G|=c+n,,+..+n,, where n; is the
number of elements in the ith orbit of G under
conjugation by itself.
Note that n;divides |G| for c+1<i < r since we know
|Gx;|=(G: Gy;), which is a divisor of |G].
1081

Application of Sylow Theory

Definition

The equation
|G|=c+ng, +...4n,, where
c=|Z(G)| and n; is the
number of elements in
the ith orbit of G under
conjugation by itself, is
the class equation of G.
Each orbit in G under
conjugation by Gisa
conjugate class in G.

1082

Application of Sylow Theory

Example

ip,(P0)=Plpop1'1=Po iy, (p1)=t1p1k1=p;
iy, (P2)=h1 P2l =1 P2l =ps

ip, (y)=p1iyp1=(1,2,3)(2,3)(1,3,2)=(1,3)=p,
ip, (12)=P112p1 =13 ip, (M3)=p1hspy =iy
Therefore, the conjugate classes of S; are

{pol,  {P1 P2} {Hy, o, 3}
The class equation of S3 is 6 = 1+2+3.

1083

Application of Sylow Theory

Theorem

The center of a finite
nontrivial p-group G is
nontrivial.

1084

Application of Sylow Theory

Proof

We have |G|=c+n,,+...+n,, where n; is the number
of elements in the ith orbit of G under conjugation
by itself.

For G, each n; divides |G| for c+1<i<r, so p divides
eachn, and p divides |G|. Therefore p divides c.
Now e€Z(G), so c=1. Therefore c=p, and there exists
some a€Z(G) where a#e.

1085

Group Theory

Application of Sylow
Theory
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Lemma

Let G be a group
containing normal
subgroups H and K such
that HNK = {e} and

HVK=G.ThenGis
isomorphic to H X K.

Application of Sylow Theory

Proof

We start by showing that hk=kh for kEK and heH.
Consider the commutator
hkhk1=(hkh-1)k-1=h(khk1).

Since H and K are normal subgroups of G, the two

groupings with parentheses show that hkhk!is
in both Kand H.

Since KNH={e}, we see that hkhk1=e, so hk=kh.

1087 1088
Application of Sylow Theory Group Theory
Let ¢: H x K=G be defined by ¢(h,k) = hk.
Th h, k)(h', k)= (hh', kk')=hh'kk'= hkh'k' .
en dith, ki( ) ¢F ) X Application of Sylow
=d(h, k) p(h', k'), so ¢ is a homomorphism. Theory
If d(h, k)=e, then hk=e, so h =k, and both h and k
arein H N K. Thus h=k=e, so Ker($p)={(e, e)} and ¢ is
one to one.
We know that HK=H V K, and HV K = G by
hypothesis.
Thus ¢ is onto G, and H x K=G.
1089
Application of Sylow Theory Application of Sylow Theory
Theorem Proof
For a prime number p, If G is not cyclic, then every element except e must
every group G of order p? be of order p.
is abelian. Let a be such an element. Then the cyclic subgroup
<a> of order p does not exhaust G.
Also let beG with bg<a>. Then <a>N<b>={e}, since
an element c in <a>N<b> with c#e would generate
both <a> and <b>, giving <a>=<b>, contrary to
construction.
1091 1092
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From first Sylow theorem, <a> is normal in some
subgroup of order p2 of G, that is, normal in all of G.
Likewise <b> is normal in G.

Now <a> V <b> is a subgroup of G properly
containing <a> and of order dividing p2.

Hence <a>V <b> must be all of G.

Thus the hypotheses of last lemma are satisfied, and
G is isomorphic to <a> x <b> and therefore abelian.

1093
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