

Properties of Real Numbers
$0.131313 . . .=0.13+$ $0.0013+0.000013+$...
$=13 / 100+13 / 10000+$
13/1000000+..
$=(13 / 100)(1+1 / 100+$
1/10000+...)
$=(13 / 100)(100 / 99)$
=13/99

Properties of Real Numbers

- e=2.718281828459045... $\in \mathbb{Q}^{\prime}$
- $\sqrt{2}=1.414213562373095 \ldots \in \mathbb{Q}^{\prime}$
- $\sqrt{5}=2.23606797749978 \ldots \in \mathbb{Q}^{\prime}$
$-\forall a, \mathrm{~b} \in \mathbb{R}, a . \mathrm{b} \in \mathbb{R}$
- $\forall a, \mathrm{~b} \in \mathbb{R}, \mathrm{a}+\mathrm{b} \in \mathbb{R}$
- $\forall a, \mathrm{~b}, \mathrm{c} \in \mathbb{R},(a+\mathrm{b})+\mathrm{c}=a+(\mathrm{b}+\mathrm{c})$
- For example, $(1 / 4+3)+\sqrt{7}=(13+4 \sqrt{ } 7) / 4=1 / 4+(3+\sqrt{7})$

Properties of Real Numbers

- $\forall a, \mathrm{~b}, \mathrm{c} \in \mathbb{R},(\mathrm{ab}) \mathrm{c}=a(\mathrm{bc})$
- For instance, $((-2 / 3) 4) \sqrt{2}=(-8 / 3) \sqrt{ } 2=(-2 / 3)(4 \sqrt{ } 2)$
- For every $a \in \mathbb{R}$ and $0 \in \mathbb{R}, a+0=a=0+a$
- For every $a \in \mathbb{R}$ and $1 \in \mathbb{R}, a .1=a=1 . a$
- For every $a \in \mathbb{R}$ there exists $-a \in \mathbb{R}$ such that
$a+(-a)=0=(-a)+a$
- For every $a \in \mathbb{R} \backslash\{0\}$ there exists $1 / a \in \mathbb{R} \backslash\{0\}$ such that $a(1 / a)=1=(1 / a) a$
- $\forall a, \mathrm{~b} \in \mathbb{R}, a+\mathrm{b}=\mathrm{b}+a$
$-\forall a, \mathrm{~b} \in \mathbb{R}, a . \mathrm{b}=\mathrm{b} . a$

Group Theory

Properties of Complex Numbers

Properties of Complex Numbers

- $\forall a+\mathrm{bi}, \mathrm{c}+\mathrm{di}, \mathrm{e}+\mathrm{fi} \in \mathbb{C},[(a+\mathrm{bi}) .(\mathrm{c}+\mathrm{di})] .(\mathrm{e}+\mathrm{fi})$
$=[(a c-b d)+(b c+a d)] .(e+f i)$
$=[(a c-b d) e-(b c+a d) f]+[(b c+a d) e+(a c-b d) f] i$
$=[a(c e-d f)-b(d e+c f)]+[a(d e+c f)]+b(c e-d f)] i$
$=(a+$ bi) $)[(c e-d f)+($ de $+c f) i]=(a+b i) \cdot[(c+d i) .(e+f i)]$
- For every $a+b i \in \mathbb{C}$ and $0=0+0 i \in \mathbb{C},(a+b i)+0=$ $(a+b \mathrm{i})+(0+\mathrm{oi})=(a+0)+(\mathrm{b}+0) \mathrm{i}=a+\mathrm{bi}=0+(a+\mathrm{bi})$
- For every $a+b i \in \mathbb{C}$ and $1=1+0 \mathbf{i} \in \mathbb{C}$, $(a+b i) .1=$ $(a+\mathrm{bi}) \cdot(1+0 \mathrm{i})=(a \cdot 1-0 \mathrm{~b})+(\mathrm{b} \cdot 1+0 \cdot a) \mathrm{i}=a+\mathrm{bi}=1 .(a+\mathrm{bi})$
- For every $a+\mathrm{bi} \in \mathbb{C}$ there exists - a-bi $\in \mathbb{C}$ such that $(a+b i)+(-a-b i)=(a+(-a))+(b+(-b)) i=0+0 i=0=(-a-b i)+(a+b i)$
- For every $a+$ bi $\in \mathbb{C} \backslash\{0\}$ there exists $1 /(a+b i)=a /\left(a^{2}+b^{2}\right)-\left(b /\left(a^{2}+b^{2}\right)\right) \mathrm{i} \in \mathbb{C} \backslash\{0\}$ such that $(a+\mathrm{bi}) \cdot\left(a /\left(a^{2}+\mathrm{b}^{2}\right)-\left(\mathrm{b} /\left(a^{2}+\mathrm{b}^{2}\right)\right) \mathrm{i}\right)$ $=\left(a^{2}+b^{2}\right) /\left(a^{2}+b^{2}\right)+\left((a b-a b) /\left(a^{2}+b^{2}\right)\right) i=1+0 i=1$ $=\left(a /\left(a^{2}+\mathrm{b}^{2}\right)-\left(\mathrm{b} /\left(a^{2}+\mathrm{b}^{2}\right)\right) \mathrm{i}\right)(a+\mathrm{bi})$

Properties of Complex Numbers

- $\forall a+b i, c+d i \in \mathbb{C}$, $(a+b i)+(c+d i)=(a+c)+(b+d) i$
$=(c+a)+(d+b) i=(c+d i)+(a+b i)$
- $\forall a+b i, c+d i \in \mathbb{C}$, ($a+b i$). $(c+d i)$
$=(a \mathrm{c}-\mathrm{bd})+(a \mathrm{~d}+\mathrm{bc}) \mathrm{i}$ $=(\mathrm{c} a-\mathrm{db})+(\mathrm{cb}+\mathrm{d} a) \mathrm{i}$ $=(c+d i) \cdot(a+b i)$

Binary Operations

Definition
A binary operation * on a set S is a function
mapping $S \times S$ into S.
For each (a, b) $\in S \times S$, we will denote the element $*((a, b))$ of S by $a *$.

- Usual addition ' + ' is a binary operation on the sets $\mathbb{R}, \mathbb{C}, \mathbb{Q}, \mathbb{Z}, \mathbb{R}^{+}, \mathbb{Q}^{+}$, sets
\mathbb{Z}^{+}
- Usual multiplication ". ' is a binary operation on the sets $\mathbb{R}, \mathbb{C}, \mathbb{Q}, \mathbb{Z}, \mathbb{R}^{+}$, $\mathbb{Q}^{+}, \mathbb{Z}^{+}$
- Usual multiplication "" is
a binary operation on the sets $\mathbb{R} \backslash\{0\}, \mathbb{C} \backslash\{0\}$, $\mathbb{Q} \backslash\{0\}, \mathbb{Z} \backslash\{0\}$

Binary Operations

Let $M(\mathbb{R})$ be the set of all matrices with real entries. The usual matrix addition is not a binary operation on this set since $A+B$ is not defined for an ordered pair (A, B) of matrices having different numbers of rows or of columns.

Binary Operations

Usual addition ' + ' is not a binary operation on the sets $\mathbb{R} \backslash\{0\}, \mathbb{C} \backslash\{0\}, \mathbb{Q} \backslash\{0\}$, $\mathbb{Z} \backslash\{0\}$ since
$2+(-2)=0 \notin \mathbb{Z} \backslash\{0\} \subset \mathbb{Q} \backslash\{0\}$
$\subset \mathbb{R} \backslash\{0\} \subset \mathbb{C} \backslash\{0\}$.

Binary Operations

Definition
Let * be a binary
operation on S and let H
be a subset of S.
The subset H is closed under * if for all $a, b \in H$ we also have $a * b \in H$.

In this case, the binary operation on H given by operation on H given by
restricting * to H is the restricting * to H is the
induced operation of $*$ on H .

19

Binary Operations

Usual addition ' + ' on the
set \mathbb{R} of real numbers
does not induce a binary
operation on the set
$\mathbb{R} \backslash\{0\}$ of nonzero real
numbers because
$2 \in \mathbb{R} \backslash\{0\}$ and $-2 \in \mathbb{R} \backslash\{0\}$,
but $2+(-2)=0 \notin \mathbb{R} \backslash\{0\}$.
Thus $\mathbb{R} \backslash\{0\}$ is not
closed under + .

Binary Operations

Usual multiplication ". on the sets \mathbb{R} and \mathbb{Q} induces a binary operation on the sets $\mathbb{R} \backslash\{0\}, \mathbb{R}^{+}$and $\mathbb{Q} \backslash\{0\}$,
\mathbb{Q}^{+}, respectively.

Group Theory

Binary Operations

- Let S be a set and $a, b \in S$.
- Let S be a set and $a, b \in S$.
- A binary operation * on S is a rule which assigns to any ordered pair (a, b) an element $a * b \in S$.

Binary Operations

Examples

- For $S=\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, $a * b=a+b$
- For $S=\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$,
(For $\quad \begin{array}{r}S=\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \\ a \\ a * b=a-b\end{array}$

Binary Operations

Examples

- For $S=\{1,2,3\}$

$$
a * b=b
$$

Binary Operations

Examples

- For $S=\{1,2,3\}$

$$
\begin{array}{r}
a * b=b \\
\text { - For example }
\end{array}
$$

- For example

$$
1 * 2=2
$$

$$
1 * 1=1,
$$

$$
2 * 3=3 \text {. }
$$

Binary Operations

Examples

- For $S=\mathbb{Q}, a * b=a / b$ is not everywhere defined since no rational number is assigned by this rule to the pair $(3,0)$.

Binary Operations

Examples

- For $S=\mathbb{Q}, a * b=a / b$ is not everywhere defined since no rational number is assigned by this rule to the pair $(3,0)$.
- For $S=\mathbb{Z}^{+}, a * b=a / b$ is not a binary operation on \mathbb{Z}^{+}since \mathbb{Z}^{+}is not closed under *.
Binary Operations
Definition
" A binary operation *
on a set S is
commutative if and
only if $a * b=b * a$
for all $a, b \in S$.

Definition

- A binary operation *
on a set S is
associative if
$(a * b) * c=a *(b * c)$
for all $a, b, c \in S$.
Binary Operations
Examples $\left.\begin{array}{c} \\ \text { " The binary operation } * \text { defined by } \\ a * b=a+b \\ \text { is commutative and associative in } \mathbb{C} . \\ \\ \hline\end{array}\right]$

Binary Operations

Examples

- The binary operation * defined by
is commutative and associative in \mathbb{C}.
- The binary operation * defined by

$$
a * b=a b
$$

is commutative and associative in \mathbb{C}.

Binary Operations

- The binary operation defined by $a * b=a-b$ is not commutative in \mathbb{Z}.

Binary Operations

- The binary operation defined by $a * b=a-b$ is not commutative in \mathbb{Z}.
- The binary operation given by $a * b=a-b$ is not associative in \mathbb{Z}.

Binary Operations	
- The binary operation defined by $a * b=a-b$ is not commutative in \mathbb{Z}. - The binary operation given by $a * b=a-b$ is not associative in \mathbb{Z}. - For instance, $(a * b) * c=(4-7)-2=-5$ but $a *(b * c)=4-(7-2)=-1 .$	
	39

Group Theory
Bijective Maps

Definition

- A function $f: X \rightarrow Y$ is
called injective or one-to-
one if
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$
or
$x_{1} \neq x_{2} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$.

Bijective Maps

Definition

- A function $f: X \rightarrow Y$ is called surjective or onto if for any $y \in Y$, there exists $x \in X$ with $y=f(x)$.

Bijective Maps

Definition

- A function $f: X \rightarrow Y$ is called surjective or onto if for any $y \in Y$, there exists $x \in X$ with $y=f(x)$.
i.e. if the image $f(x)$ is the whole set Y.

| Bijective Maps |
| :--- | :--- |
| Definition |
| aA bijective function or one-
 to-one correspondence is a
 function that is both
 injective and surjective. |

Bijective Maps

Example

$f: \mathbb{R} \rightarrow \mathbb{R}^{+}, f(x)=10^{x}$

Bijective Maps
Bijective Maps

Example

$f: \mathbb{R} \rightarrow \mathbb{R}^{+}, f(x)=10^{x}$
$f(x)=f(y) \Rightarrow 10^{x}=10^{y} \Rightarrow x=y$
Therefore, f is one-to-one.

Example

$f: \mathbb{R} \rightarrow \mathbb{R}^{+}, f(x)=10^{x}$
$f(x)=f(y) \Rightarrow 10^{x}=10^{y} \Rightarrow x=y$
Therefore, f is one-to-one.
If $r \in \mathbb{R}^{+}$, then $\log _{10} r \in \mathbb{R}$ such that
$f\left(\log _{10} r\right)=10^{\log _{10} r}=r$.

Bijective Maps

Example

$f: \mathbb{R} \rightarrow \mathbb{R}^{+}, f(x)=10^{x}$
$f(x)=f(y) \Rightarrow 10^{x}=10^{y} \Rightarrow x=y$
Therefore, f is one-to-one.
If $r \in \mathbb{R}^{+}$, then $\log _{10} r \in \mathbb{R}$ such that
$f\left(\log _{10} r\right)=10^{\log _{10} r}=r$.
It implies that f is onto.

Bijective Maps

Example

$f: \mathbb{R} \rightarrow \mathbb{R}^{+}, f(x)=10^{x}$
$f(x)=f(y) \Rightarrow 10^{x}=10^{y} \Rightarrow x=y$
Therefore, f is one-to-one.
If $r \in \mathbb{R}^{+}$, then $\log _{10} r \in \mathbb{R}$ such that
$f\left(\log _{10} r\right)=10^{\log _{10} r}=r$.
It implies that f is onto.
Hence f is bijective.

Bijective Maps	
Example	
$f: \mathbb{Z} \rightarrow \mathbb{Z}, f(m)=3 m$	

Bijective Maps

Example
$f: \mathbb{Z} \rightarrow \mathbb{Z}, f(m)=3 m$
$f(m)=f(n) \Rightarrow 3 m=3 n \Rightarrow m=n$
Therefore, f is one-to-one.

Bijective Maps

Example

$f: \mathbb{Z} \rightarrow \mathbb{Z}, f(m)=3 m$
$f(m)=f(n) \Rightarrow 3 m=3 n \Rightarrow m=n$
Therefore, f is one-to-one.
We assume that $m \in \mathbb{Z}$ is the pre-image of $4 \in \mathbb{Z}$,
then $f(m)=3 m=4 \Rightarrow m=4 / 3 \notin \mathbb{Z}$.
It implies that f is not onto.

Bijective Maps

Example

$$
\begin{aligned}
& f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{2} . \\
& f(-3)=f(3)=9 \text { but }-3 \neq 3 . \\
& \text { Therefore, } f \text { is not one-to-one. }
\end{aligned}
$$

Bijective Maps

Example

```
f:\mathbb{R}->\mathbb{R},f(x)=\mp@subsup{x}{}{2}.
f(-3)=f(3)=9 but - 3\not=3.
Therefore, f}\mathrm{ is not one-to-one.
We assume that }x\in\mathbb{R}\mathrm{ is the pre-image of -5 低,
then }f(x)=\mp@subsup{x}{}{2}=-5=>x=\sqrt{}{-5}\not\in\mathbb{R}\mathrm{ .
It implies that f}\mathrm{ is not onto.
```

Bijective Maps
Definition
" Let $f: X \rightarrow Y$ be a
function and let H be a
subset of X. The image of
H under f is given by
$f[H]=\{f(h) \mid h \in H\}$.

Bijective Maps
Definition

- A function $f: X \rightarrow Y$ is called surjective or onto if $f[X]=Y$.

Example

$f: \mathbb{R} \rightarrow \mathbb{R}^{+}, f(x)=10^{x}$
$f[\mathbb{R}]=\mathbb{R}^{+}$
Therefore, f is onto.

Example
$f: \mathbb{R} \rightarrow \mathbb{R}^{+}, f(x)=10^{x}$

Bijective Maps

Example

$$
f: \mathbb{Z} \rightarrow \mathbb{Z}, f(m)=3 m
$$

Bijective Maps

Example

$f: \mathbb{Z} \rightarrow \mathbb{Z}, f(m)=3 m$
$f[\mathbb{Z}]=3 \mathbb{Z} \neq \mathbb{Z}$
It implies that f is not onto.

Bijective Maps

Example
$f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{2}$

Bijective Maps

Example

$f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{2}$
$f[\mathbb{R}]=\mathbb{R}^{+} \cup\{0\} \neq \mathbb{R}$
So, f is not onto.

| Group Theory |
| :--- | :--- |
| Inversion Theorem |
| |

Lemma

If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are two functions, then:
(i) If f and g are injective, $g \circ f$ is injective.

Inversion Theorem

Lemma

If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are two functions, then:
(i) If f and g are injective, $g \circ f$ is injective.
(ii) If f and g are surjective, $g \circ f$ is surjective.

Inversion Theorem

Lemma

If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are two functions, then:
(i) If f and g are injective, $g \circ f$ is injective.
(ii) If f and g are surjective, $g \circ f$ is surjective.
(iii) If f and g are bijective, $g \circ f$ is bijective.

Inversion Theorem

Proof
(i) Suppose that $(g \circ f)\left(x_{1}\right)=(g \circ f)\left(x_{2}\right)$ Then, $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right) \Rightarrow f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$

Inversion Theorem

Proof
(i) Suppose that $(g \circ f)\left(x_{1}\right)=(g \circ f)\left(x_{2}\right)$. Then,
$g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right) \Rightarrow f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$
(ii) Let $z \in Z$. Since g is surjective, there exists $y \in Y$
with $g(y)=z$

Inversion Theorem

Proof
(i) Suppose that $(g \circ f)\left(x_{1}\right)=(g \circ f)\left(x_{2}\right)$ Then, $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right) \Rightarrow f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$ (ii) Let $z \in Z$. Since g is surjective, there exists $y \in Y$ with $g(y)=z$. Since f is also surjective, there exists $x \in X$ with $f(x)=y$.

Inversion Theorem

Proof

(i) Suppose that $(g \circ f)\left(x_{1}\right)=(g \circ f)\left(x_{2}\right)$ Then, $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right) \Rightarrow f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$ (ii) Let $z \in Z$. Since g is surjective, there exists $y \in Y$ with $g(y)=z$. Since f is also surjective, there exists
$x \in X$ with $f(x)=y$. Hence,

$$
(g \circ f)(x)=g(f(x))=g(y)=z
$$

So, $g \circ f$ is surjective.

Inversion Theorem

Proof
(i) Suppose that $(g \circ f)\left(x_{1}\right)=(g \circ f)\left(x_{2}\right)$ Then,
$g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right) \Rightarrow f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$
(ii) Let $z \in Z$. Since g is surjective, there exists $y \in Y$
with $g(y)=z$. Since f is also surjective, there exists
$x \in X$ with $f(x)=y$. Hence,
$(g \circ f)(x)=g(f(x))=g(y)=z$.
So, $g \circ f$ is surjective.
(iii) This follows from parts (i) and (ii).

Inversion Theorem

Theorem

The function $f: X \rightarrow Y$ has an inverse if and only if f is bijective.
\quad Inversion Theorem
Proof
(i) Suppose that $(g \circ f)\left(x_{1}\right)=(g \circ f)\left(x_{2}\right)$ Then,
$g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right) \Rightarrow f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$
(ii) Let $z \in Z$. Since g is surjective, there exists $y \in Y$
with $g(y)=z$. Since f is also surjective, there exists
$x \in X$ with $f(x)=y$. Hence,
$\quad(g \circ f)(x)=g(f(x))=g(y)=z$.
So, $g \circ f$ is surjective.
(iii) This follows from parts (i) and (ii).
Inversion Theorem
$\left.\begin{array}{l}\text { Proof } \\ \text { Suppose that } h: Y \rightarrow X \text { is an inverse of } f . \\ \\ \end{array}\right]$

Inversion Theorem

Proof
Suppose that $h: Y \rightarrow X$ is an inverse of f.
The function f is injective because
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow(h \circ f)\left(x_{1}\right)=(h \circ f)\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$.

Inversion Theorem

Proof
Suppose that $h: Y \rightarrow X$ is an inverse of f.
The function f is injective because
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow(h \circ f)\left(x_{1}\right)=(h \circ f)\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$.
The function f is surjective because if for any $y \in Y$
with $x=h(y)$, it follows that $f(x)=f(h(y))=y$.

Inversion Theorem

Proof
Suppose that $h: Y \rightarrow X$ is an inverse of f.
The function f is injective because
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow(h \circ f)\left(x_{1}\right)=(h \circ f)\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$.
The function f is surjective because if for any $y \in Y$
with $x=h(y)$, it follows that $f(x)=f(h(y))=y$.
Therefore, f is bijective.

Inversion Theorem

Proof
Conversely, suppose that f is bijective. We define the function $h: Y \rightarrow X$ as follows

Inversion Theorem

Proof
Conversely, suppose that f is bijective. We define the function $h: Y \rightarrow X$ as follows. For any $y \in Y$, there exists $x \in X$ with $y=f(x)$.
Since f is injective, there is only one such element x.

Inversion Theorem
Proof Conversely, suppose that f is bijective. We define the function $h: Y \rightarrow X$ as follows. For any $y \in Y$, there exists $x \in X$ with $y=f(x)$. Since f is injective, there is only one such element x. Define $h(y)=x$. This function h is an inverse of f because $f(h(y))=f(x)=y$ and $h(f(x))=h(y)=x$.

Group Theory	
	Isomorphic Binary Structures

Isomorphic Binary Structures

- Let us consider a binary algebraic structure $\langle S, *\rangle$ to be a set S together with a binary operation $*$ on S.

Isomorphic Binary Structures

- Let us consider a binary algebraic structure $\langle S, *\rangle$ to be a set S together with a binary operation * on S.
- Two binary structures $\langle S, *\rangle$ and $\left\langle S^{\prime}, *^{\prime}\right\rangle$ are said to be isomorphic if there is a one-to-one correspondence between the elements x of S and the elements x^{\prime} of S^{\prime} such that

$$
x \leftrightarrow x^{\prime} \text { and } y \leftrightarrow y^{\prime} \Rightarrow x * y \leftrightarrow x^{\prime} *^{\prime} y^{\prime}
$$

Isomorphic Binary Structures

- Let us consider a binary algebraic structure ($S, *$) to be a set S together with a binary operation* on S.
- Two binary structures $(S, *)$ and $\left(S^{\prime}, *^{\prime}\right)$ are said to be isomorphic if there is a one-to-one correspondence between the elements x of S and the elements x^{\prime} of S^{\prime} such that

$$
x \leftrightarrow x^{\prime} \text { and } y \leftrightarrow y^{\prime} \Rightarrow x * y \leftrightarrow x^{\prime} *^{\prime} y^{\prime} .
$$

- A one-to-one correspondence exists if the sets S and S^{\prime} have the same number of elements.

Isomorphic Binary Structures

Definition

- Let $\langle S, *\rangle$ and $\left\langle S^{\prime}, *^{\prime}\right\rangle$ be binary algebraic structures. An isomorphism of S with S^{\prime} is a one-to-one function ϕ mapping S onto S^{\prime} such that

$$
\phi(x * y)=\phi(x) *^{\prime} \phi(y) \forall x, y \in S
$$

Isomorphic Binary Structures

How to show binary structures are isomorphic

- Step 1. Define the function ϕ that gives the isomorphism of S and S^{\prime}.

Isomorphic Binary Structures

How to show binary structures are isomorphic

- Step 1. Define the function ϕ that gives the isomorphism of S and S^{\prime}.
- Step 2. Show that ϕ is one-to-one.
- Step3. Show that ϕ is onto S^{\prime}.

Isomorphic Binary Structures

How to show binary structures are isomorphic

- Step 1. Define the function ϕ that gives the isomorphism of S and S^{\prime}.
- Step 2. Show that ϕ is one-to-one.
- Step3. Show that ϕ is onto S^{\prime}.
- Step 4. Show that

$$
\phi(x * y)=\phi(x) *^{\prime} \phi(y) \forall x, y \in S .
$$

Isomorphic Binary Structures

Example

- We show that the binary structure $\langle\mathbb{R},+\rangle$ is isomorphic to the structure $\left\langle\mathbb{R}^{+},.\right\rangle$.

Isomorphic Binary Structures

Example

- We show that the binary structure $\langle\mathbb{R},+\rangle$ is isomorphic to the structure $\left\langle\mathbb{R}^{+},.\right\rangle$.
- Step 1.

$$
\phi: \mathbb{R} \rightarrow \mathbb{R}^{+}, \phi(x)=e^{x}
$$

Isomorphic Binary Structures

Example

- We show that the binary structure $\langle\mathbb{R},+\rangle$ is
isomorphic to the structure $\left\langle\mathbb{R}^{+},.\right\rangle$.
- Step 1.

$$
\phi: \mathbb{R} \rightarrow \mathbb{R}^{+}, \phi(x)=e^{x}
$$

- Step 2.

$$
\phi(x)=\phi(y) \Rightarrow e^{x}=e^{y} \Rightarrow x=y .
$$

Isomorphic Binary Structures

Example

- We show that the binary structure $\langle\mathbb{R},+\rangle$ is isomorphic to the structure $\left\langle\mathbb{R}^{+},.\right\rangle$.
- Step 1.

$$
\phi: \mathbb{R} \rightarrow \mathbb{R}^{+}, \phi(x)=e^{x}
$$

- $\operatorname{Step} 2$.

$$
\phi(x)=\phi(y) \Rightarrow e^{x}=e^{y} \Rightarrow x=y .
$$

- Step3. If $r \in \mathbb{R}^{+}$, then $\ln (r) \in \mathbb{R}$ and

$$
\phi(\ln r)=e^{\ln r}=r .
$$

Isomorphic Binary Structures

Example

- We show that the binary structure $\langle\mathbb{R},+\rangle$ is isomorphic to the structure $\left\langle\mathbb{R}^{+},.\right\rangle$.
- Step 1. $\phi: \mathbb{R} \rightarrow \mathbb{R}^{+}, \phi(x)=e^{x}$
- Step 2. $\phi(x)=\phi(y) \Rightarrow e^{x}=e^{y} \Rightarrow x=y$.
- Step3. If $r \in \mathbb{R}^{+}$, then $\ln r \in \mathbb{R}$ and $\phi(\ln r)=e^{\ln r}=r$.
- Step 4. $\phi(x+y)=e^{x+y}=e^{x} e^{y}=\phi(x) \phi(y) \forall x, y \in \mathbb{R}$.

Group Theory

- Isomorphic Binary Structures

Isomorphic Binary Structures
Example

- We show that the binary structure $\langle\mathbb{Z},+\rangle$ is isomorphic to the structure $\langle 2 \mathbb{Z},+\rangle$.

Isomorphic Binary Structures

Example

- We show that the binary structure $\langle\mathbb{Z},+\rangle$ is isomorphic to the structure $\langle 2 \mathbb{Z},+\rangle$.
- Step 1. $\phi: \mathbb{Z} \rightarrow 2 \mathbb{Z}, \phi(m)=2 m$
- Step 2. $\phi(m)=\phi(n) \Rightarrow 2 m=2 n \Rightarrow m=n$.

Isomorphic Binary Structures

Example

- We show that the binary structure $\langle\mathbb{Z},+\rangle$ is isomorphic to the structure $\langle 2 \mathbb{Z},+\rangle$.
- Step 1. $\phi: \mathbb{Z} \rightarrow 2 \mathbb{Z}, \phi(m)=2 m$
- Step 2. $\phi(m)=\phi(n) \Rightarrow 2 m=2 n \Rightarrow m=n$.
- Step3. If $n \in 2 \mathbb{Z}$, then $m=n / 2 \in \mathbb{Z}$ and $\phi(m)=2(n / 2)=n$.
- Step 4.
$\phi(m+n)=2(m+n)=2 m+2 n=\phi(m)+\phi(n) \forall m, n \in \mathbb{Z}$.

Isomorphic Binary Structures

Example

- We show that the binary structure $\langle\mathbb{Z},+\rangle$ is isomorphic to the structure $\langle 2 \mathbb{Z},+\rangle$.
- Step 1. $\phi: \mathbb{Z} \rightarrow 2 \mathbb{Z}, \phi(m)=2 m$

Isomorphic Binary Structures

Example

- We show that the binary structure $\langle\mathbb{Z},+\rangle$ is isomorphic to the structure $\langle 2 \mathbb{Z},+\rangle$.
- Step 1. $\phi: \mathbb{Z} \rightarrow 2 \mathbb{Z}, \phi(m)=2 m$
- Step 2. $\phi(m)=\phi(n) \Rightarrow 2 m=2 n \Rightarrow m=n$.
- Step3. If $n \in 2 \mathbb{Z}$, then $m=n / 2 \in \mathbb{Z}$ and

$$
\phi(m)=2(n / 2)=n
$$

Isomorphic Binary Structures

How to show binary structures are not isomorphic

- How do we demonstrate that two binary structures $\langle S, *\rangle$ and $\left\langle S^{\prime}, *^{\prime}\right\rangle$ are not isomorphic?

Isomorphic Binary Structures

How to show binary structures are not isomorphic

- How do we demonstrate that two binary structures $\langle S, *\rangle$ and $\left\langle S^{\prime}, *^{\prime}\right\rangle$ are not isomorphic?
- There is no one-to-one function ϕ from S onto S^{\prime} with the property

$$
\phi(x * y)=\phi(x) *^{\prime} \phi(y) \forall x, y \in S
$$

Isomorphic Binary Structures

How to show binary structures are not isomorphic

- How do we demonstrate that two binary structures $\langle S, *\rangle$ and $\left\langle S^{\prime}, *^{\prime}\right\rangle$ are not isomorphic?
- There is no one-to-one function ϕ from S onto S^{\prime} with the property

$$
\phi(x * y)=\phi(x) *^{\prime} \phi(y) \forall x, y \in S
$$

- In general, it is not feasible to try every possible one-to-one function mapping S onto S^{\prime} and test whether it has homomorphism property.

Isomorphic Binary Structures

How to show binary structures are not isomorphic

- A structural property of a binary structure is one that must be shared by any isomorphic structure.

Isomorphic Binary Structures

How to show binary structures are not isomorphic

- A structural property of a binary structure is one that must be shared by any isomorphic structure.
- It is not concerned with names or some other nonstructural characteristics of the elements.

Isomorphic Binary Structures

How to show binary structures are not isomorphic

- A structural property of a binary structure is one that must be shared by any isomorphic structure.
- It is not concerned with names or some other nonstructural characteristics of the elements.
- A structural property is not concerned with what we consider to be the name of the binary operation.

Isomorphic Binary Structures

How to show binary structures are not isomorphic

- A structural property of a binary structure is one that must be shared by any isomorphic structure.
- It is not concerned with names or some other nonstructural characteristics of the elements.
- A structural property is not concerned with what we consider to be the name of the binary operation.
- The number of elements in the set S is a structural property of $\langle S, *\rangle$.

Isomorphic Binary Structures

How to show binary structures are not isomorphic

- In the event that there are one-to-one mappings of S onto S^{\prime}, we usually show that $\langle S, *\rangle$ is not isomorphic to $\left\langle S^{\prime}, *^{\prime}\right\rangle$ by showing that one has some structural property that the other does not possess.

Isomorphic Binary Structures

Possible Structural
Properties

- The set has four elements.

| Isomorphic Binary Structures |
| :--- | :--- |
| Possible Structural |
| Properties |
| - The set has four elements. |
| - The operation is |
| commutative. |

Possible Structural
Properties

- The set has four elements.
- The operation is commutative.
- $x * x=x$ for all $x \in S$.

Possible Structural

Properties

- The set has four elements

Properties

- The operation is commutative.
- $x * x=x$ for all $x \in S$.
- The equation $a * x=b$ has a solution x in S for all $a, b \in S$.

Isomorphic Binary Structures

Possible Nonstructural
Properties

- The number 4 is an element.
- The operation is called "addition".

Isomorphic Binary Structures

Possible Nonstructural

 Properties- The number 4 is an element.
- The operation is called "addition".
- The elements of S are matrices.

Isomorphic Binary Structures

Possible Nonstructural

Properties

- The number 4 is an element.
- The operation is called "addition".
- The elements of S are matrices.
- S is a subset of \mathbb{C}.

Isomorphic Binary Structures

Example

- We prove that the binary structures $\langle\mathbb{Q},+\rangle$ and
$\langle\mathbb{Z},+\rangle$ under the usual addition are not isomorphic.

Isomorphic Binary Structures

Example

- The binary structures
$\langle\mathbb{Q},+\rangle$ and $\langle\mathbb{R},+\rangle$ are
not isomorphic because
\mathbb{Q} has cardinality \aleph_{0} (aleph-null) while $|\mathbb{R}| \neq \aleph_{0}$.
Isomorphic Binary Structures
Example
: We prove that the binary structures $\langle\mathbb{Q},+\rangle$ and
$\langle\mathbb{Z},+\rangle$ under the usual addition are not isomorphic.

Isomorphic Binary Structures

Example

- We prove that the binary structures $\langle\mathbb{Q},+\rangle$ and
$\langle\mathbb{Z},+\rangle$ under the usual addition are not isomorphic.
- Both \mathbb{Q} and \mathbb{Z} have cardinality \aleph_{0}, so there are lots of one-to-one functions mapping \mathbb{Q} onto \mathbb{Z}.

Isomorphic Binary Structures

Example

- We prove that the binary structures $\langle\mathbb{Q},+\rangle$ and $\langle\mathbb{Z},+\rangle$ under the usual addition are not isomorphic.
- Both \mathbb{Q} and \mathbb{Z} have cardinality \aleph_{0}, so there are lots of one-to-one functions mapping \mathbb{Q} onto \mathbb{Z}.
- The equation $x+x=c$ has a solution x for all $c \in \mathbb{Q}$ but this is not the case in \mathbb{Z}.

Example

- The binary structures
$\langle\mathbb{C},$.$\rangle and \langle\mathbb{R},$.
under usual
multiplication are not isomorphic because
the equation $x . x=c$
has solution x for all
$c \in \mathbb{C}$ but $x . x=-1$ has no solution in \mathbb{R}.

Isomorphic Binary Structures

Example

- We prove that the binary structures $\langle\mathbb{Q},+\rangle$ and
$\langle\mathbb{Z},+\rangle$ under the usual addition are not isomorphic.
- Both \mathbb{Q} and \mathbb{Z} have cardinality \aleph_{0}, so there are lots of one-to-one functions mapping \mathbb{Q} onto \mathbb{Z}.
- The equation $x+x=c$ has a solution x for all $c \in \mathbb{Q}$ but this is not the case in \mathbb{Z}.
- For example, the equation $x+x=3$ has no solution in \mathbb{Z}.

Isomorphic Binary Structures
Example
- The binary structures
$\langle\mathbb{C},$.$\rangle and \langle\mathbb{R},\rangle$.
under usual
multiplication are
not isomorphic because
the equation $x . x=c$
has solution x for all
$c \in \mathbb{C}$ but $x . x=-1$ has
no solution in \mathbb{R}.

Isomorphic Binary Structures

Example

- The binary structures $\left\langle M_{2}(\mathbb{R}),.\right\rangle$ and $\langle\mathbb{R},$.
under usual matrix multiplication and number multiplication, respectively because multiplication of numbers is commutative, but multiplication of matrices is not.

Group Theory	
	" Isomorphic Binary Structures

Isomorphic Binary Structures

Example

- Is $\phi: \mathbb{Z} \rightarrow \mathbb{Z}, \phi(n)=3 n$ for $n \in \mathbb{Z}$ an isomorphism?

Isomorphic Binary Structures
Example

- Is $\phi: \mathbb{Z} \rightarrow \mathbb{Z}, \phi(n)=3 n$ for $n \in \mathbb{Z}$ an isomorphism?
- $\phi: \mathbb{Z} \rightarrow \mathbb{Z}, \phi(n)=3 n$

Isomorphic Binary Structures

Example

- Is $\phi: \mathbb{Z} \rightarrow \mathbb{Z}, \phi(n)=3 n$ for $n \in \mathbb{Z}$ an isomorphism?
- $\phi: \mathbb{Z} \rightarrow \mathbb{Z}, \phi(n)=3 n$
- $\phi(m)=\phi(n) \Rightarrow 3 m=3 n \Rightarrow m=n$
- Choose $5 \in \mathbb{Z}, \phi(m)=3 m=5$ but $m=5 / 3 \notin \mathbb{Z}$

Isomorphic Binary Structures

Example

- Is $\phi: \mathbb{Z} \rightarrow \mathbb{Z}, \phi(n)=3 n$ for $n \in \mathbb{Z}$ an isomorphism?
- $\phi: \mathbb{Z} \rightarrow \mathbb{Z}, \phi(n)=3 n$
- $\phi(m)=\phi(n) \Rightarrow 3 m=3 n \Rightarrow m=n$

Isomorphic Binary Structures

Example

- Is $\phi: \mathbb{Z} \rightarrow \mathbb{Z}, \phi(n)=3 n$ for $n \in \mathbb{Z}$ an isomorphism?
- $\phi: \mathbb{Z} \rightarrow \mathbb{Z}, \phi(n)=3 n$
- $\phi(m)=\phi(n) \Rightarrow 3 m=3 n \Rightarrow m=n$
- Choose $5 \in \mathbb{Z}, \phi(m)=3 m=5$ but $m=5 / 3 \notin \mathbb{Z}$
- Is $\phi: \mathbb{Z} \rightarrow \mathbb{Z}, \phi(n)=3 n$ homomorphism? $\phi(m+n)=3(m+n)=3 m+3 n=\phi(m)+\phi(n) \forall m, n \in \mathbb{Z}$

Isomorphic Binary Structures

Example

- Is $\phi: \mathbb{Z} \rightarrow \mathbb{Z}, \phi(n)=3 n$ for $n \in \mathbb{Z}$ an isomorphism?
- $\phi: \mathbb{Z} \rightarrow \mathbb{Z}, \phi(n)=3 n$
- $\phi(m)=\phi(n) \Rightarrow 3 m=3 n \Rightarrow m=n$
- Choose $5 \in \mathbb{Z}, \phi(m)=3 m=5$ but $m=5 / 3 \notin \mathbb{Z}$
- Is $\phi: \mathbb{Z} \rightarrow \mathbb{Z}, \phi(n)=3 n$ homomorphism?
$\phi(m+n)=3(m+n)=3 m+3 n=\phi(m)+\phi(n) \forall m, n \in \mathbb{Z}$
- $\langle\mathbb{Z},+\rangle \cong\langle 3 \mathbb{Z},+\rangle$

Isomorphic Binary Structures

Example

- Is $\phi: \mathbb{Z} \rightarrow \mathbb{Z}, \phi(n)=n+1$ for $n \in \mathbb{Z}$ an isomorphism?

Isomorphic Binary Structures

Example

- Is $\phi: \mathbb{Z} \rightarrow \mathbb{Z}, \phi(n)=n+1$ for $n \in \mathbb{Z}$ an isomorphism?
- $\phi: \mathbb{Z} \rightarrow \mathbb{Z}, \phi(n)=n+1$

Isomorphic Binary Structures

Example

- Is $\phi: \mathbb{Z} \rightarrow \mathbb{Z}, \phi(n)=n+1$ for $n \in \mathbb{Z}$ an isomorphism?
- $\phi: \mathbb{Z} \rightarrow \mathbb{Z}, \phi(n)=n+1$
- $\phi(m)=\phi(n) \Rightarrow m+1=n+1 \Rightarrow m=n$
- For every $n \in \mathbb{Z}$, there exists $n-1 \in \mathbb{Z}$ such that $\phi(n-1)=n-1+1=n$.

Isomorphic Binary Structures

Example

- Is $\phi: \mathbb{Q} \rightarrow \mathbb{Q}, \phi(x)=x / 2$ for $x \in \mathbb{Q}$ isomorphism?

Isomorphic Binary Structures

Example

- Is $\phi: \mathbb{Z} \rightarrow \mathbb{Z}, \phi(n)=n+1$ for $n \in \mathbb{Z}$ an isomorphism?
- $\phi: \mathbb{Z} \rightarrow \mathbb{Z}, \phi(n)=n+1$
- $\phi(m)=\phi(n) \Rightarrow m+1=n+1 \Rightarrow m=n$
Isomorphic Binary Structures
Example
. Is $\phi: \mathbb{Z} \rightarrow \mathbb{Z}, \phi(n)=n+1$ for $n \in \mathbb{Z}$ an isomorphism?
- $\phi: \mathbb{Z} \rightarrow \mathbb{Z}, \phi(n)=n+1$
- $\phi(m)=\phi(n) \Rightarrow m+1=n+1 \Rightarrow m=n$
- For every $n \in \mathbb{Z}$, there exists $n-1 \in \mathbb{Z}$ such that
$\phi(n-1)=n-1+1=n$.

Isomorphic Binary Structures

Example

- Is $\phi: \mathbb{Z} \rightarrow \mathbb{Z}, \phi(n)=n+1$ for $n \in \mathbb{Z}$ an isomorphism?
- $\phi: \mathbb{Z} \rightarrow \mathbb{Z}, \phi(n)=n+1$
- $\phi(m)=\phi(n) \Rightarrow m+1=n+1 \Rightarrow m=n$
- For every $n \in \mathbb{Z}$, there exists $n-1 \in \mathbb{Z}$ such that $\phi(n-1)=n-1+1=n$.
- $\phi(m+n)=m+n+1 \neq \phi(m)+\phi(n)=m+n+2$

Example

- Is $\phi: \mathbb{Q} \rightarrow \mathbb{Q}, \phi(x)=x / 2$ for $x \in \mathbb{Q}$ isomorphism?
- $\phi: \mathbb{Q} \rightarrow \mathbb{Q}, \phi(x)=x / 2$

Isomorphic Binary Structures
Example

- Is $\phi: \mathbb{Q} \rightarrow \mathbb{Q}, \phi(x)=x / 2$ for $x \in \mathbb{Q}$ isomorphism?
- $\phi: \mathbb{Q} \rightarrow \mathbb{Q}, \phi(x)=x / 2$
- $\phi(x)=\phi(y) \Rightarrow x / 2=y / 2 \Rightarrow x=y$

Isomorphic Binary Structures

Example

- Is $\phi: \mathbb{Q} \rightarrow \mathbb{Q}, \phi(x)=x / 2$ for $x \in \mathbb{Q}$ isomorphism?
- $\phi: \mathbb{Q} \rightarrow \mathbb{Q}, \phi(x)=x / 2$
- $\phi(x)=\phi(y) \Rightarrow x / 2=y / 2 \Rightarrow x=y$
- For every $y \in \mathbb{Q}$, there exists $2 y \in \mathbb{Q}$ such that

$$
\phi(2 y)=2 y / 2=y .
$$

Isomorphic Binary Structures

Example

- Is $\phi: \mathbb{Q} \rightarrow \mathbb{Q}, \phi(x)=x / 2$ for $x \in \mathbb{Q}$ isomorphism?
- $\phi: \mathbb{Q} \rightarrow \mathbb{Q}, \phi(x)=x / 2$
- $\phi(x)=\phi(y) \Rightarrow x / 2=y / 2 \Rightarrow x=y$
- For every $y \in \mathbb{Q}$, there exists $2 y \in \mathbb{Q}$ such that $\phi(2 y)=2 y / 2=y$.
- $\phi(x+y)=\frac{x+y}{2}=\frac{x}{2}+\frac{y}{2}=\phi(x)+\phi(y)$

Example

Isomorphic Binary Structures

- We prove that the binary structures $\langle\mathbb{Z},$.$\rangle and$ $\left\langle\mathbb{Z}^{+},.\right\rangle$under the usual multiplication are not isomorphic.
- Both \mathbb{Z} and \mathbb{Z}^{+}have cardinality \aleph_{0}, so there are lots of one-to-one functions mapping \mathbb{Z} onto \mathbb{Z}^{+}.

Isomorphic Binary Structures

Example

- We prove that the binary structures $\langle\mathbb{Z},$.$\rangle and$ $\left\langle\mathbb{Z}^{+},.\right\rangle$under the usual multiplication are not isomorphic.

Isomorphic Binary Structures

Example

- We prove that the binary structures $\langle\mathbb{Z},$.$\rangle and$ $\left\langle\mathbb{Z}^{+},.\right\rangle$under the usual multiplication are not isomorphic.
- Both \mathbb{Z} and \mathbb{Z}^{+}have cardinality \mathbb{N}_{0}, so there are lots of one-to-one functions mapping \mathbb{Z} onto \mathbb{Z}^{+}.
- $\operatorname{In}\langle\mathbb{Z},$.$\rangle there are two elements x$ such that $x . x=x$, namely, 0 and 1 .

Isomorphic Binary Structures

Example

- We prove that the binary structures $\langle\mathbb{Z},$.$\rangle and$ $\left\langle\mathbb{Z}^{+}\right.$, ., under the usual multiplication are not isomorphic.
- Both \mathbb{Z} and \mathbb{Z}^{+}have cardinality \aleph_{0}, so there are lots of one-to-one functions mapping \mathbb{Z} onto \mathbb{Z}^{+}.
- In $\langle\mathbb{Z},$.$\rangle there are two elements x$ such that $x . x=x$, namely, 0 and 1 .
- However, in $\left\langle\mathbb{Z}^{+},.\right\rangle$, there is only the single element 1.

Group Theory
Groups

Group Theory

Associative Binary Operation

- A binary operation * is called associative if
$(a * b) * c=a *(b * c)$.

Group Theory	
Example	
"	Can we solve
$3+x=2$	
in \mathbb{N} ?	
"	The equation is
unsolvable in \mathbb{N} since	
$-3 \notin \mathbb{N}$.	

Example

- Can we solve $3+x=2$
in \mathbb{Z} ?
$\left.\begin{array}{|l|l|}\hline \text { Group Theory } \\ \text { Example } \\ \text { " } & \text { Can we solve } 3+x=2 \\ \text { in } \mathbb{Z} \text { ? } \\ \text { " add }-3 \text { on both sides } \\ -3+(3+x)=-3+2\end{array}\right]$

Group Theory

Group(Definition)

A group $\langle G, *\rangle$ is a set G with binary operation * satisfying the following axioms for all $a, b, c \in G$:
property $(-3+3)+x=-3+2$
2. Existence of 0 - Thus

Existence of -3

Group Theory
Group(Definition) A group $(G, *)$ is a set G with binary operation $*$ satisfying the following axioms for all $a, b, c \in G:$ 1. For $a, b \in G, \quad a * b \in G$ (closure)

Group Theory

Group(Definition)

A group ($G, *$) is a set G with binary operation * satisfying the following axioms for all $a, b, c \in G$:

1. For $a, b \in G, \quad a * b \in G$	(closure) 2.$(a * b) * c=a *(b * c)$
(associative)	

Group Theory	
Group(Definition) A group $\langle G, *\rangle$ is a set G with binary operation $*$ satisfying the following axioms for all $a, b, c \in G:$ 1. For $a, b \in G, \quad a * b \in G$	(closure) 2. $(a * b) * c=a *(b * c)$ 3. There exists $e \in G$ such that $e * a=a * e=a$
(identity)	

Group Theory

Group(Definition)

A group ($G, *$) is a set G with binary operation *
satisfying the following axioms for all $a, b, c \in G$:

1. For $a, b \in G, \quad a * b \in G$	(closure) 2. $(a * b) * c=a *(b * c)$ (associative)
3. There exists $e \in G$ such that	(identity)
$e * a=a * e=a$	
4. For every $a \in G$, there exists $a^{-1} \in G$ such that	
$a^{-1} * a=a * a^{-1}=e$	(inverse)

Group Theory

Example
"
Can we solve equations of the form
$a * x=b$ in a group $\langle G, *\rangle ?$

Example

- Can we solve equations of the form
$a * x=b$ in a group $\langle G, *\rangle$?
$a^{\prime} *(a * x)=a^{\prime} * b$
Group Theory
Example
" Can we solve equations of the form
$a * x=b$ in a group $\langle G, *\rangle$?

$a^{\prime} *(a * x)=a^{\prime} * b$
$\left(a^{\prime} * a\right) * x=a^{\prime} * b$

Group Theory
Example
" \quad Can we solve equations of the form
$a^{*} x=b$ in a group $\langle G, *\rangle$?
$a^{\prime} *(a * x)=a^{\prime} * b$
$\left(a^{\prime} * a\right) * x=a^{\prime} * b$
$e * x=a^{\prime} * b$
$x=a^{\prime} * b$

Group Theory
Examples of Groups

Group Theory
$\left.\begin{array}{l}\text { Example } \\ \langle\mathbb{Z},+\rangle \\ \text { " Closure } \quad \forall m, n \in \mathbb{Z}, m+n \in \mathbb{Z} \\ \\ \end{array}\right]$

$\left.\begin{array}{|c|}\hline \text { Group Theory } \\ \text { Example } \\ \langle\mathbb{Z},-\rangle\end{array}\right]$

Group Theory
Example
$\langle\mathbb{Z},-\rangle$
" closure
$\forall m, n \in \mathbb{Z}, m-n \in \mathbb{Z}$
" associative
$(2-3)-4=-5 \neq 3=2-(3-4)$

Group Theory
Example
$\langle\mathbb{Z},$.
" closure $\quad \forall m, n \in \mathbb{Z}, m \cdot n \in \mathbb{Z}$
" associative
$\forall m, n, p \in \mathbb{Z},(m . n) . p=m .(n . p)$

Group Theory			
Example			
$\langle\mathbb{Q},+\rangle$			

$\left.\begin{array}{|c|c|}\hline \text { Group Theory } \\ \text { Example } \\ \langle\mathbb{Q}, .\rangle\end{array}\right]$

| Group Theory |
| :---: | :---: |
| Example |
| $\langle\mathbb{Q},\rangle$. |
| " closure $\quad \forall r, s \in \mathbb{Q}, r . s \in \mathbb{Q}$ |
| |
| |

Group Theory	
Examples	
	$=\langle\mathbb{Q}-\{0\},$.$\rangle is a group.$

Group Theory	
	Examples
	$=\langle\mathbb{Q}-\{0\},$.$\rangle is a group.$
	$=\langle\mathbb{R}-\{0\},$.$\rangle is a group.$

Group Theory	
Examples	
	$=\langle\mathbb{Q}-\{0\},$.$\rangle is a group.$
	$=\langle\mathbb{R}-\{0\},$.$\rangle is a group.$
	$=\langle\mathbb{C}-\{0\},$.$\rangle is a group.$

$\left.\begin{array}{|l|l|}\hline \text { Group Theory } \\ \text { Proposition } \\ \text { " } & \text { Let }\langle G, *\rangle \text { be a } \\ \text { group. Then } \\ \text { 1) } \\ G \text { has exactly one } \\ \text { identity element }\end{array}\right]$

Group Theory
Proof
1)Suppose e, e^{\prime} are identity elements. So $e * x=x * e=x$ $e^{\prime} * x=x * e^{\prime}=x$

| Group Theory |
| :--- | :--- |
| Proof |
| 2)Let $x \in G$ and
 suppose $x^{\prime}, x^{\prime \prime}$ are
 inverses of x. |
| |

Group Theory
Proof
2)Let $x \in G$ and suppose $x^{\prime}, x^{\prime \prime}$ are inverses of $x . ~ S o ~$ $x^{\prime} * x=x * x^{\prime}=e$

Group Theory
Proof
2)Let $x \in G$ and suppose $x^{\prime}, x^{\prime \prime}$ are inverses of x. So $x^{\prime} * x=x * x^{\prime}=e$ $x^{\prime \prime} * x=x * x^{\prime \prime}=e$

| Group Theory |
| :---: | :---: |
| Proof |
| 2) Let $x \in G$ and |
| suppose $x^{\prime}, x^{\prime \prime}$ are |
| inverses of x. So |
| $x^{\prime} * x=x * x^{\prime}=e$ |
| $x^{\prime \prime} * x=x * x^{\prime \prime}=e$ |
| " Then |
| $x^{\prime}=x^{\prime} * e$ |

Group Theory	
Proof	
2)Let $x$$\in G$ and	
suppose $x^{\prime}, x^{\prime \prime}$ are	
inverses of x. So	
$x^{\prime} * x$	$=x * x^{\prime}=e$
$x^{\prime \prime} * x$	$=x * x^{\prime \prime}=e$
" Then	
x^{\prime}	$=x^{\prime} * e$
	$=x^{\prime} *\left(x * x^{\prime \prime}\right)$
	$=\left(x^{\prime} * x\right) * x^{\prime \prime}$
	$=e * x^{\prime \prime}=x^{\prime \prime}$.

Group Theory
An Interesting
Example of Group

An Interesting Example of Group
Example
Let $G=\{x \in \mathbb{R} \mid x \neq 1\}$
and define
$x * y=x y-x-y+2$
Prove that $(G, *)$ is a
group.

An Interesting Example of Group
Solution Closure: Let $a, b \in G$, so $a \neq 1$ and $b \neq 1$. Suppose $a^{*} b=1$. Then $a b-a-b+2=1$ and so $(a-1)(b-1)=0$ which implies that $a=1$ or $b=1$, a contradiction.

An Interesting Example of Group

Associative:

$(a * b) * c$
$=(a * b) c-(a * b)-c+2$
$=(a b-a-b+2) c-$
$(a b-a-b+2)-c+2$
$=a b c-a c-b c+2 c-a b$
$+a+b-2-c+2$
$=a b c-a b-a c-b c+a+$
$b+c$
Similarly $a *(b * c)$ has the same value.

An Interesting Example of Group	
Identity:	
An identity, e, would	
have to satisfy:	
$e * x=x=x * e$ for all x	
$\in \mathrm{G}$,	
that is,	
$e x-e-x+2=x$,	
or	
$(e-2)(x-1)=0$ for all x.	
Clearly $e=2$ works.	

An Interesting Example of Group

Inverses:

If $x * y=2$, then
$x y-x-y+2=2$.
So
$y(x-1)=x$ and
hence
$y=x /(x-1)$.

| Group Theory |
| :--- | :--- |
| Elementary Properties
 of Groups |

Elementary Properties of Groups

Theorem
If G is a group with binary operation * then the left and right cancellation laws hold in G , that is, $a^{*} b=a^{*} c$ implies $b=c$, and $b^{*} a=c * a$ implies $b=c$ for all $a, b, c \in G$.

Elementary Properties of Groups
Proof
Suppose $a^{*} b=a^{*} c$.
Then, there exists $a^{\prime} \in G$, and
$a^{\prime *}\left(a^{*} b\right)=a^{\prime *}\left(a^{*} c\right)$.
$\left(a^{\prime *} a\right)^{*} b=\left(a^{\prime *} a\right)^{*} c$.
So, $e^{*} b=e^{*} c$ implies $b=c$.
Similarly, from $b * a=c^{*} a$
one can deduce that $b=c$
upon multiplication by $a^{\prime} \in G$
on the right.

Elementary Properties of Groups

Theorem

If G is a group with binary operation ${ }^{*}$, and if a and b are any elements of G , then the linear equations $a^{*} x=b$ and $y^{*} a=b$ have unique solutions x and y in G.

Elementary Properties of Groups	
Proof First we show the existence of at least one solution by just computing that $a^{\prime *} b$ is a solution of $a^{*} x=b$. Note that $a^{*}\left(a^{\prime *} b\right)=\left(a^{*} a^{\prime}\right)^{*} b=e^{*} b=b$ Thus $x=a^{\prime *} \mathrm{~b}$ is a solution of $a^{*} x=b$. In a similar fashion, $y=b^{*} a^{\prime}$ is a solution of $y^{*} a=b$.	
	${ }^{221}$

Elementary Properties of Groups
Theorem
Let G be a group. For all
$a, b \in \mathrm{G}$, we have
$\left(a^{*} b\right)^{\prime}=b^{*} a^{\prime}$.

Elementary Properties of Groups
Proof
Note that in a group G,
we have
$\left(a^{*} b\right) *\left(b^{\prime} a^{\prime}\right)$
$=a^{*}\left(\mathrm{~b}^{*} \mathrm{~b}^{\prime}\right){ }^{*} a^{\prime}$
$=\left(a^{*}\right.$ e) ${ }^{*} a^{\prime}$
$=a^{*} a^{\prime}=e$.

Elementary Properties of Groups

It shows that $b^{\prime *} a^{\prime}$ is
the unique inverse of
$a^{*} b$.
That is,
$\left(a^{*} b\right)^{\prime}=b^{\prime *} a^{\prime}$.

Elementary Properties of Groups

Theorem
For any $\mathrm{n} \in \mathbb{N},\left(\mathrm{a}^{\mathrm{n}}\right)^{-1}=\left(\mathrm{a}^{-1}\right)^{\mathrm{n}}$.

Elementary Properties of Groups

which by induction on n equals e (the cases $n=0$ and $n=1$ are trivial).

Similarly, the product of a^{n} and $\left(a^{-1}\right)^{n}$ in the other order is e .

This proves that $\left(a^{-1}\right)^{n}$ is the inverse of a^{n}.

Groups of Matrices

Is $\left\langle M_{m n}(\mathbb{R}),+\right\rangle$ group?

- $\forall\left[a_{i j}\right],\left[b_{i j}\right] \in M_{m n}(\mathbb{R}),\left[a_{i j}\right]+\left[b_{i j}\right]=\left[a_{i j}+b_{i j}\right] \in M_{m n}(\mathbb{R})$
$-\forall\left[a_{i j}\right],\left[b_{i j}\right],\left[c_{i j}\right] \in M_{m n}(\mathbb{R})$,
$\left(\left[a_{i j}\right]+\left[b_{i j}\right]\right)+\left[c_{i j}\right]=\left[a_{i j}+b_{i j}\right]+\left[c_{i j}\right]$
$=\left[\left(a_{i j}+b_{i j}\right)+c_{i j}\right]$
$=\left[a_{i j}+\left(b_{i j}+c_{i j}\right)\right]$
$=\left[a_{i j}\right]+\left[b_{i j}+c_{i j}\right]$
$=\left[a_{i j}\right]+\left(\left[b_{i j}\right]+\left[c_{i j}\right]\right)$

Groups of Matrices - For every $\left[a_{i j}\right] \in \mathrm{M}_{\mathrm{mn}}(\mathbb{R})$ and $[0] \in \mathrm{M}_{\mathrm{mn}}(\mathbb{R})$, $\left[a_{\mathrm{ij}}\right]+[0]=\left[a_{\mathrm{ij}}+0\right]=\left[a_{\mathrm{ij}}\right]=[0]+\left[a_{\mathrm{ij}}\right]$ - For every $\left[a_{i j}\right] \in \mathrm{M}_{\mathrm{mn}}(\mathbb{R})$ there exists $\left[-a_{\mathrm{ij}}\right] \in \mathrm{M}_{\mathrm{mn}}(\mathbb{R})$ such that $\left[a_{i j}\right]+\left[-a_{i j}\right]=\left[a_{i j}+\left(-a_{\mathrm{ij}}\right)\right]=[0]=\left[-a_{\mathrm{ij}}\right]+\left[a_{\mathrm{ij}}\right]$	
	231

Group Theory

Groups of Matrices

Groups of Matrices

Is $\left\langle\mathrm{M}_{\mathrm{nn}}(\mathbb{R})\right.$, . \rangle group?

- $\forall A, B \in M_{n n}(\mathbb{R})$,
$A B \in M_{n n}(\mathbb{R})$
$-\forall A, B, C \in M_{n n}(\mathbb{R})$, (AB) $C=A(B C)$
- For every $A \in M_{n n}(\mathbb{R})$
and $\mathrm{I}_{\mathrm{n}} \in \mathrm{M}_{\mathrm{nn}}(\mathbb{R})$, $A I_{n}=A=I_{n} A$
- A^{-1} does not exist for all those $A \in M_{n n}(\mathbb{R})$ having $\operatorname{det}(A)=0$

Groups of Matrices

Field
($F,+$, .)

- $\langle\mathrm{F},+\rangle$ is abelian group
- $\langle\mathrm{F} \backslash\{0\}$.. \rangle is abelian group
$\forall a, \mathrm{~b}, \mathrm{c} \in \mathrm{F}$,
- $a(\mathrm{~b}+\mathrm{c})=a \mathrm{~b}+a \mathrm{c}$
- $(a+b) c=a c+b c$

Groups of Matrices

$$
\langle\mathbb{Z},+\rangle
$$

$\langle\mathbb{Q},+\rangle$
$\langle\mathbb{Q}-\{0\},$.
$\langle\mathbb{R},+\rangle$
$\langle\mathbb{R}-\{0\},$.
$\langle\mathbb{C},+\rangle$
$\langle\mathbb{C}-\{0\},$.

Group Theory
Abelian Groups

Group Theory	
	" Let $F=\mathbb{R}$ or \mathbb{C}.

Group Theory	
	" Let $F=\mathbb{R}$ or \mathbb{C}.
	"Let $\left[a_{i j}\right]$ be a matrix over F i.e. all $a_{i j} \in F$
	Let $G L(n, F)$ denotes the set of all $n \times n$ invertible matrices over F.

Group Theory
Axioms
" Let $G=G L(n, F)$.

Group Theory

Axioms

- Let $G=G L(n, F)$.
- Closure: For all $A, B \in G, A B \in G$.
Group Theory
Axioms
" Let $G=G L(n, F)$.
" Closure: For all $A, B \in G, A B \in G$.
" Associative property also holds in G.

Group Theory

Axioms

- Let $G=G L(n, F)$.
- Closure: For all $A, B \in G, A B \in G$.
- Associative property also holds in G.
- I_{n} is the identity matrix.

Group Theory

Axioms

- Let $G=G L(n, F)$.
- Closure: For all $A, B \in G, A B \in G$.
- Associative property also holds in G.
- I_{n} is the identity matrix.
- Since both A and A^{-1}
are invertible so inverse exists.

Group Theory

Example

- Let $G=G L(2, \mathbb{R})$ and $A, B \in G$ such that

$$
A=\left(\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right), \quad B=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Group Theory Example - Let $G=G L(2, \mathbb{R})$ and $A, B \in G$ such that - then $A=\left(\begin{array}{cc} 1 & -1 \\ 0 & 2 \end{array}\right), \quad B=\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right)$ $\begin{aligned} & A B=\left(\begin{array}{cc} 1 & -1 \\ 0 & 2 \end{array}\right)\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right)=\left(\begin{array}{cc} -1 & 1 \\ 2 & 0 \end{array}\right) \\ & B A=\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right)\left(\begin{array}{cc} 1 & -1 \\ 0 & 2 \end{array}\right)=\left(\begin{array}{cc} 0 & 2 \\ 1 & -1 \end{array}\right) \end{aligned}$	
	${ }^{250}$

Group Theory
Examples
$\langle\mathbb{R},+\rangle$
$\langle\mathbb{C},+\rangle$
$\langle\mathbb{R}-\{0\},\rangle$.
$\langle\mathbb{C}-\{0\},\rangle$.

| Group Theory |
| :---: | :---: |
| Examples |
| $G L(n, \mathbb{Z})$ |
| |
| |

Abelian Groups

Theorem

If $a * b=b * a$, then for all/any one $n \in \mathbb{Z},(a * b)^{n}=a^{n} * b^{n}$.

Abelian Groups

Proof
If $\mathrm{n}=0$ or $\mathrm{n}=1$, this holds trivially. Now let $\mathrm{n}>1$
By commutativity, $b^{m} * a=a * b^{m}$ for all $m \geq 0$.
Then by induction on n,
$(a * b)^{n}=(a * b)^{n-1} *(a * b)=\left(a^{n-1} * b^{n-1}\right) *(a * b)$
$=\left(\left(a^{n-1} * b^{n-1}\right) * a\right) * b=\left(a^{n-1} *\left(b^{n-1} * a\right)\right) * b$
$\left.=\left(a^{n-1} *\left(a * b^{n-1}\right)\right) * b=\left(a^{n-1} * a\right) * b^{n-1}\right) * b$
$=a^{n} *\left(b^{n-1} * b\right)=a^{n} * b^{n}$.
Thus the result holds for all $n \in \mathbb{N}$.

Abelian Groups	
	If $n<0$, then by the positive case
and commutativity,	
	$(a * b)^{n}$
	$=(b * a)^{n}$
	$=\left((b * a)^{-n}\right)^{-1}$
	$=\left(b^{-n} * a^{-n}\right)^{-1}$
	$\left.=(a)^{-n}\right)^{-1} *\left(b^{-n}\right)^{-1}$
	$=a^{n} * b^{n}$

Modular Arithmetic	
	Definition Let n be a fixed positive integer and a and b any two integers. We say that a is congruent to b modulo n if n divides $\mathrm{a}-\mathrm{b}$. We denote this by $\mathrm{a} \equiv \mathrm{b}$ mod n.

Modular Arithmetic

Definition

Theorem
Show that the congruence
relation modulo n is an
equivalence relation on \mathbb{Z}.

Modular Arithmetic	
	Proof Write " $n \mid m$ " for " n divides $m, "$ which means that there is some integer k such that $\mathrm{m}=$ nk. Hence $\mathrm{a} \equiv \mathrm{b}$ mod n if and only if $\mathrm{n} \mid(\mathrm{a}-\mathrm{b})$. (i) For all $\mathrm{a} \in \mathbb{Z}, \mathrm{n} \mid(\mathrm{a}-\mathrm{a})$, so $\mathrm{a} \equiv \mathrm{a}$ mod n and the relation is reflexive.

Modular Arithmetic
(ii) If $a \equiv b \bmod n$, then $n \mid(a-b)$,
so $n \mid-(a-b)$.
Hence $n \mid(b-a)$ and $b \equiv a \bmod n$.
(iii) If $a \equiv b \bmod n$ and $b \equiv c$
mod n, then $n \mid(a-b)$ and
$n \mid(b-c)$, so $n \mid(a-b)+(b-c)$.
Therefore, $n \mid(a-c)$ and $a \equiv c$
mod n.
Hence congruence modulo n is
an equivalence relation on \mathbb{Z}.

Modular Arithmetic
The set of equivalence classes is called the set of integers modulo n and is denoted by \mathbb{Z}_{n}.

Modular Arithmetic

In the congruence relation modulo 3 , we have the following equivalence classes:
$[0]=\{\ldots,-3,0,3,6,9, \ldots\} \quad[1]=\{\ldots,-2,1,4,7,10, \ldots\}[2]=\{\ldots,-1,2,5,8,11, \ldots\}$
$[3]=\{\ldots, 0,3,6,9,12, \ldots\}=[0]$
Any equivalence class must be one of [0], [1], or [2], so
$\mathbb{Z}_{3}=\{[0],[1],[2]\}$.
In general, $\mathbb{Z}_{n}=\{[0],[1],[2], \ldots,[\mathrm{n}-1]\}$, since any integer is congruent modulo n to its remainder when divided by n.

Group Theory
Order of a Group

| Order of a Group |
| :--- | :--- |
| |
| Definition |
| The number of elements of a |
| group G is called the order of |
| G. |
| We denote it as IG\|. |
| We call G finite if it has only |
| finitely many elements; |
| otherwise we call G infinite. |

Order of a Group

Definition

Let G be a group and a $\in \mathrm{G}$.
If there is a positive integer n such that $a^{\text {n }}$ $=\mathrm{e}$, then we call the smallest such positive integer the order of a.
If no such n exists,
we say that a has
infinite order.
The order of a is
denoted by $|a|$.

Order of a Group

In the congruence relation modulo 4, we have the following equivalence classes:
$[0]=\{\ldots,-4,0,4,8,12, \ldots\} \quad[1]=\{\ldots,-3,1,5,9,13, \ldots\}$
$[2]=\{\ldots,-2,2,6,10,14, \ldots\} \quad[3]=\{\ldots,-1,3,7,11,15, \ldots\}$
Any equivalence class must be one of [0], [1], [2] or [3]
so $\mathbb{Z}_{4}=\{[0],[1],[2],[3]\}$.
Let ${ }_{4}$ be addition modulo 4 . Then, $2+{ }_{4} 3=1$.

Order of a Group

We can write out its Cayley table:

$[44$	$[0]$	$[1]$	$[2]$	$\left[{ }^{[3]}\right.$
$\left[\begin{array}{lll}{[0]} & {[0]} & {[1]}\end{array}\right.$	$[2]$	$\left[{ }^{[3]}\right.$		
$[1]$	$[1]$	$[2]$	$[3]$	$[0]$
$[2]$	$[2]$	$[3]$	$[0]$	$[1]$
$[3]$	$[3]$	$[0]$	$[1]$	$[2]$

Therefore, $\left\langle\mathbb{Z}_{4},{ }_{4}\right\rangle$ is a group.

Order of a Group

- $\left|\mathbb{Z}_{4}\right|=4$
- $1+{ }_{4} 1+{ }_{4} 1+{ }_{4} 1=4(1)=0 \Rightarrow|[1]|=4$
- $2+{ }_{4} 2=2(2)=0 \Rightarrow|[2]|=2$
- $3+{ }_{4} 3+{ }_{4} 3+{ }_{4} 3=4(3)=0 \Rightarrow|[3]|=4$
- $1(0)=0 \Rightarrow|[0]|=1$
- $\mathbb{Z}_{4}=\langle 1\rangle=\langle 3\rangle$
- Let $\mathbb{Z}_{n}=\{[0],[1],[2], \ldots,[n-1]\}$. Then, $\left\langle\mathbb{Z}_{n},{ }_{n}\right\rangle$ is a group.
- $\left|\mathbb{Z}_{\mathrm{n}}\right|=\mathrm{n}$

| Group Theory |
| :--- | :--- |
| Finite Groups |
| |

Finite Groups

- $\left|\mathrm{U}_{4}\right|=4$
- $(-1)(-1)=(-1)^{2}=1 \Rightarrow|-1|=2$
- i.i.i.i. $=i^{4}=1 \Rightarrow|i|=4$
- $(-i)(-i)(-i)(-i)=(-i)^{4}=1 \Rightarrow|-i|=4$
- $1^{1}=1 \Rightarrow|1|=1$
- $\mathrm{U}_{4}=\langle\mathrm{i}\rangle=\langle-\mathrm{i}\rangle$

Finite Groups

Let $U_{n}=\left\{e^{i 2 k \pi / n: k=0,1}, \ldots, n-1\right\}$.
Then, $\left\langle\mathrm{U}_{\mathrm{n}},\right\rangle$ is a group.
$\left\langle U_{n},.\right\rangle \cong\left\langle\mathbb{Z}_{n},+_{n}\right\rangle$

| Group Theory |
| :--- | :--- |
| Finite Groups |
| |
| |

Finite Groups

Since a group has to have at least one element, namely, the identity, a minimal set that might give rise to a group is a one-element set $\{\mathrm{e}\}$.
The only possible binary operation on
$\{\mathrm{e}\}$ is defined by $e * e=e$.
The three group axioms hold.
The identity element is always its own
inverse in every group.

Finite Groups

Let us try to put a group structure on a set of two elements.
Since one of the elements must play the role of identity element, we may as well let the set be $\{e, a\}$.
Let us attempt to find a table for a binary operation $*$ on $\{e, a\}$ that gives a group structure on $\{e, a\}$.

Finite Groups
Since e is to be the
identity, so $\mathrm{e} * \mathrm{x}=\mathrm{x} * \mathrm{e}=\mathrm{x}$
for all $\mathrm{x} \in\{\mathrm{e}, a\}$.
Also, a must have an
inverse a^{\prime} such that
$a * a^{\prime}=a^{\prime} * a=e$.
In our case, a^{\prime} must be
either e or a. Since $a^{\prime}=$
e obviously does not
work, we must have
$a^{\prime}=a$.

Finite Groups
Suppose that G is any group of three
elements and imagine a table for G with identity element appearing first.
Since our filling out of the table for $G=\{e, a, b\}$ could be done in only one way, we see that if we take the table for G and rename the identity e, the next element listed a, and the last element b, the resulting table for G gives an isomorphism of the group G with the group $\mathrm{G}^{\prime}=\{[0],[1],[2]\}$.

Finite Groups

Our work above can be summarized by saying that all groups with a single element are isomorphic, all groups with just two elements are isomorphic, and all groups with just three elements are isomorphic. We may say:
There is only one group of single element (up to Isomorphism), there is only one group of two elements (up to isomorphism) and there is only one group of three elements (up to isomorphism).

Finite Groups

There are two different types of group structures of order 4.

- The group $\left\langle\mathbb{Z}_{4},{ }_{4}\right\rangle$ is isomorphic to the group $\mathrm{U}_{4}=\{1, \mathrm{i},-1,-\mathrm{i}\}$ of fourth roots of unity under multiplication.
- The group $V=\left\langle a, b \mid a^{2}=b^{2}=(a b)^{2}=e\right\rangle$ is the Klein 4 -group, and the notation V comes from the German word Vier for four.

Finite Groups
We describe Klein 4-group by its group table.

| Group Theory |
| :--- | :--- |
| Finite Groups |
| |

Finite Groups
Is $\left\langle\mathbb{Z}_{6} \backslash\{[0]\},{ }_{6}\right\rangle$ a group?

-6	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$
$[1]$	$[1]$	$[5]$	$[3]$	$[4]$	$[5]$
$[2]$	$[2]$	$[4]$	$[0]$	$[2]$	$[4]$
$[3]$	$[3]$	$[0]$	$[3]$	$[0]$	$[3]$
$[4]$	$[4]$	$[2]$	$[0]$	$[4]$	$[2]$
$[5]$	$[5]$	$[4]$	$[3]$	$[2]$	$[1]$

Finite Groups					
Is $\left\langle\mathbb{Z}_{5} \backslash\{[0]\}, ._{5}\right\rangle$ a group?					
	[1]	[2]	[3]	[4]	
[1]	[1]	[2]	[3]		
[2]	[2]	[4]	[1]	[3]	
[3]	[3]	[1]	[4]	[2]	
[4]	[4]	[3]	[2]	[1]	
$\left\langle\mathbb{Z}_{\mathrm{p}} \backslash\{[0]\},{ }_{\mathrm{p}}\right\rangle$ is a group, where p is a prime number					
299					

Group Theory
Subgroups

Examples - $\langle\mathbb{Z},+\rangle$ is a subgroup of $\langle\mathbb{R},+\rangle$ - $\langle\mathbb{Q}-\{0\},$.$\rangle is not a subgroup of \langle\mathbb{R},+\rangle$	
	${ }^{303}$

Subgroups	
	Examples
$=$	$\langle\mathbb{Z},+\rangle$ is a subgroup of $\langle\mathbb{R},+\rangle$
	$=\langle\mathbb{Q}-\{0\},$.$\rangle is not a subgroup of \langle\mathbb{R},+\rangle$
	$=\langle\{1,-1\},$.$\rangle is a subgroup of \langle\{1,-1, i,-i\},\rangle$.
	$=\langle\{1, i\},$.$\rangle is not a subgroup of$
	$\langle\{1,-1, i,-i\},\rangle$.

Subgroups
Proposition
" Let G be a group. Let
$H \subseteq G$. Then H is a
subgroup of G if the
following are true:

Subgroups
Proposition
" Let G be a group. Let
$H \subseteq G$. Then H is a
subgroup of G if the
following are true:
1) $e \in H$
2) if $h, k \in H$ then
$h k \in H$
3) if $h \in H$ then
$h^{-1} \in H$

Subgroups
Example
" Let $G=G L(2, \mathbb{R})$
" Let $H=\left\{\left.\left(\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}$

Subgroups

Example

- Let $G=G L(2, \mathbb{R})$
- Let $H=\left\{\left.\left(\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}$

1) $e \in H$

Subgroups

Example

- Let $G=G L(2, \mathbb{R})$
- Let $H=\left\{\left.\left(\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}$

1) $e \in H$
2) let $h=\left(\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right), k=\left(\begin{array}{ll}1 & p \\ 0 & 1\end{array}\right)$
then

$$
h k=\left(\begin{array}{cc}
1 & p+n \\
0 & 1
\end{array}\right) \in H
$$

Groups of Matrices

If F is a field $\mathbf{G L}(\boldsymbol{n}, \boldsymbol{F})$ denotes the group of all invertible $n \times n$ matrices over F under multiplication. This group is called the general linear group of degree \boldsymbol{n} over \boldsymbol{F}.
We know that the associative law holds for matrix multiplication. Checking the closure law requires us to know that the product of two invertible matrices is invertible. And we need to know more than just the fact that every invertible matrix has an inverse. We need to observe that such an inverse is itself invertible.

Groups of Matrices

An interesting subgroup of $\mathrm{GL}(n, F)$ is $\mathbf{T}^{+}(\boldsymbol{n}, \boldsymbol{F})$ the set of all $n \times n$ upper- triangular matrices over F, that is, $n \times n$ matrices of the form:

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
0 & a_{22} & a_{23} & \ldots & a_{2 n} \\
0 & 0 & a_{33} & \ldots & a_{3 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & a_{n n}
\end{array}\right]
$$

where each diagonal component is non-zero.

Groups of Matrices

Then there are the lower triangular matrices $\mathbf{T}^{-}(\boldsymbol{n}, \boldsymbol{F})$ which are the transposes of the upper triangular ones.

$$
\left[\begin{array}{ccccc}
a_{11} & 0 & 0 & \ldots & 0 \\
a_{12} & a_{22} & 0 & \ldots & 0 \\
a_{13} & a_{23} & a_{33} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{1 n} & a_{2 n} & a_{3 n} & \ldots & a_{n n}
\end{array}\right]
$$

Groups of Matrices

Diagonal matrices $\mathbf{D}(\boldsymbol{n}, \boldsymbol{F})$. It's closed under multiplication, identity and inverses simply because each of $\mathrm{T}^{+}(n, F)$ and $\mathrm{T}^{-}(n, F)$ are.

This is a special case of the general fact that: The intersection of any collection of subgroups is itself a subgroup.

$$
\left[\begin{array}{ccccc}
a_{11} & 0 & 0 & \ldots & 0 \\
0 & a_{22} & 0 & \ldots & 0 \\
0 & 0 & a_{33} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & a_{n n}
\end{array}\right]
$$

Groups of Matrices

Another interesting subgroup of $\mathrm{T}^{+}(n, F)$ is the group of uni-upper-triangular matrices UT $^{+}(n, F)$
These are the upper-triangular matrices with 1's down the diagonal:

$$
\left[\begin{array}{ccccc}
1 & a_{12} & a_{13} & \ldots & a_{1 n} \\
0 & 1 & a_{23} & \ldots & a_{2 n} \\
0 & 0 & 1 & \ldots & a_{3 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right]
$$

Groups of Matrices

We can summarize the connections between these subgroups in a "lattice diagram":

Groups of Matrices

Within $\mathrm{D}(n, F)$ we have the non-zero scalar matrices $\mathbf{S}(\boldsymbol{n}, \boldsymbol{F})$. These are simply the diagona matrices that have the same non-zero entry down the diagonal, that is, non-zero scalar multiples of the identity matrix

$$
\left[\begin{array}{ccccc}
\lambda & 0 & 0 & \ldots & 0 \\
0 & \lambda & 0 & \ldots & 0 \\
0 & 0 & \lambda & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & \lambda
\end{array}\right]=\lambda\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right]=\lambda I_{n}, \lambda \neq 0
$$

Groups of Matrices
$\left.\begin{array}{c}\text { And inside } \mathrm{T}^{-}(n, F) \text { we have the uni-lower-triangular } \\ \text { matrices } \mathbf{U T}^{-}(\boldsymbol{n}, \boldsymbol{F}) \text {. } \\ {\left[\begin{array}{cccccc}1 & 0 & 0 & \ldots & 0 \\ a_{12} & 1 & 0 & \ldots & 0 \\ a_{13} & a_{23} & 1 & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ a_{1 n} & a_{2 n} & a_{3 n} & \ldots & 1\end{array}\right]} \\ \end{array}\right]$

And inside $\mathrm{T}^{-}(n, F)$ we have the uni-lower-triangular matrices $\mathrm{UT}^{-}(\boldsymbol{n}, \boldsymbol{F})$.

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
a_{12} & 1 & 0 & \ldots & 0 \\
a_{13} & a_{23} & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{1 n} & a_{2 n} & a_{3 n} & \ldots & 1
\end{array}\right]
$$

Another very important subgroup of GL (n, F) is $\mathbf{S L}(\boldsymbol{n}, \boldsymbol{F})$ consisting of
all the matrices with determinant 1

It's called the special linear group of degree n over F.

The Two Step Subgroup Test

Theorem

A subset H of a group G is a
subgroup of G if and only if

1. H is closed under the binary operation $*$ of G ,
2. for all $a \in H$ it is true that $a^{-1} \in H$ also.

The Two Step Subgroup Test

Proof
The fact that if H is subgroup of G then conditions
1 and 2 must hold follows at once from the
definition of a subgroup.
Conversely, suppose H is a subset of a group G such that conditions 1 and 2 hold.
By 1 we have at once that closure property is satisfied. The inverse law is satisfied by 2.
Therefore, for every $a \in H$ there exists $a^{-1} \in H$ such that $\mathrm{e}=\mathrm{a} * \mathrm{a}^{-1} \in \mathrm{H}$ by 1 . So, $\mathrm{e} * \mathrm{a}=\mathrm{a} * \mathrm{e}=\mathrm{a}$ by 1 .

The Two Step Subgroup Test	
	It remains to check the associative axiom. But surely for all $a, b, c \in$ Hit is true that (ab)c = a(bc) in H, for we may actually view this as an equation in G, where the associative law holds.

It remains to check the
associative axiom
ut surely for all $a, b, c \in$
(ab)c =a(bc)
in H , for we may actually
view this as an equation
in G, where the
associative law holds.

Examples on Subgroup Test

To Apply the Two Step Subgroup Test:

- Note that \mathbf{H} is
nonempty
- Show that \mathbf{H} is closed with respect to the group operation
- Show that \mathbf{H} is closed with respect to inverses.
Conclude that \mathbf{H} is a
subgroup of \mathbf{G}.

| Group Theory |
| :--- | :--- |
| Topic No. 30 |
| |

Examples on Subgroup Test

Example
Show that $\mathbf{3 Q}^{\mathbf{*}}$ is a subgroup of \mathbf{Q}^{*}, the non-zero rational numbers.
$3 Q^{*}$ is non-empty because 3 is an element of $3 Q^{*}$ For a, b in $\mathbf{3 Q}^{*}, a=3 i$ and $b=3 j$ where i, j are in \mathbf{Q}^{*} For a, b in $3 \mathrm{Q}^{*}, \mathrm{a}=3 \mathrm{i}$ and $\mathrm{b}=3 \mathrm{j}$ where i, j are in Q^{*}
Then $a b=3 i 3 j=3(3 i j)$, an element of $\mathbf{3 Q ^ { * }}$ (closed)
Then $a b=3 i 3 j=3(3 i j)$, an element of $\mathbf{3 Q}^{*}$ (cle
For a in $\mathbf{3 Q} \mathbf{Q}^{*}, a=3 i$ for i an element in \mathbf{Q}^{*}.
For a in $3 \mathbf{Q}^{*}, a=3 i$ for i an element in \mathbf{Q}^{*}.
Then $\mathrm{a}^{-1}=\left(\mathrm{i}^{-1} 3^{-1}\right)$, an element of $\mathbf{3 Q ^ { * }}$. (inverses)
Therefore $\mathbf{3 Q}^{*}$ is a subgroup of \mathbf{Q}^{*}.

The one Step Subgroup Test

Theorem

If S is a subset of the group G, then S is a subgroup of G if and only if S is nonempty and whenever $a, b \in S$, then $a b^{-1} \in S$.

The one Step Subgroup Test

Proof
If S is a subgroup, then of course S is nonempty
and whenever $a, b \in S$,
then $a b^{-1} \in S$.

The one Step Subgroup Test

Conversely suppose S is a nonempty subset of
the Group G such that whenever $a, b \in S$, then $a b^{-1} \in S$.
Let $a \in S$, then $e=a a^{-1} \in S$ and so $a^{-1}=e a^{-1} \in S$.
Finally, if $a, b \in S$, then $b^{-1} \in S$ by the above and so $a b=a\left(b^{-1}\right)^{-1} \in S$.

Group Theory
Examples on Subgroup
Test

| Examples on Subgroup Test |
| :--- | :--- |
| Recall |
| Suppose \mathbf{G} is a a group and \mathbf{H} |
| is a non-empty subset of \mathbf{G}. |
| If, whenever a and b are in |
| \mathbf{H}, ab $\mathbf{- 1}$ i a also in \mathbf{H}, |
| then \mathbf{H} is a subgroup of \mathbf{G}. |
| Or, in additive notation: |
| If, whenever a and b are in |
| $\mathbf{H}, \mathrm{a}-\mathrm{b}$ is also in \mathbf{H}, |
| then \mathbf{H} is a subgroup of \mathbf{G}. |

Examples on Subgroup Test
Example Show that the even integers are a subgroup of the Integers. Note that the even integers is not an empty set because 2 is an even integer. Let a and b be even integers. Then $a=2 j$ and $b=2 k$ for some integers j and k. $a+(-b)=2 j+2(-k)=2(j-k)=$ an even integer Thus $a-b$ is an even integer Thus the even integers are a subgroup of the integers.

Group Theory
The Finite Subgroup
Test

The finite Subgroup Test

Theorem

If S is a subset of the
finite group G, then S is
a subgroup of G if and
only if S is nonempty
and whenever $a, b \in S$,
then $a b \in S$.

The finite Subgroup Test

Proof

If S is a subgroup then obviously S is nonempty
and whenever $a, b \in S$, then $a b \in S$.
Conversely suppose S is nonempty and whenever $a, b \in S$, then $a b \in S$.
Then let $a \in S$. The above property says that
$a^{2}=a a \in S$ and so $a^{3}=a a^{2} \in S$ and so $a^{4}=a a^{3} \in S$
and so on and on and on.

The finite Subgroup Test

$$
\begin{aligned}
& \text { That is } a^{n} \in S \text { for all integers } \\
& n>0 \text {. } \\
& \text { But } G \text { is finite and thus so is } S \text {. } \\
& \text { Consequently the sequence, } \\
& a, a^{2}, a^{3}, a^{4}, \ldots, a^{n}, \ldots \\
& \text { cannot continue to produce } \\
& \text { new elements. } \\
& \text { That is there must exist } m<n \\
& \text { such that } a^{m}=a^{n} \text {. } \\
& \text { Thus } e=a^{n-m} \in S \text {. }
\end{aligned}
$$

The finite Subgroup Test

Therefore for all $a \in S$, there
is a smallest integer $\mathrm{k}>0$ such that $\mathrm{a}^{\mathrm{k}}=\mathrm{e}$. Moreover, $a^{-1}=a^{k-1} \in S$. Finally if $a, b \in S$, then $b^{-1} \in S$ by the above and so by the assume property we have $a b^{-1} \in S$.
Therefore S is a subgroup as desired.

Examples on Subgroup Test

Example

- ($\{1,-1, i,-i\}, \cdot)$
- $\{1, \mathrm{i}\}$
- $\{1,-\mathrm{i}\}$
- $\{1,-1\}$
- $\{1,-1, \mathrm{i}\}$
- $\{1,-1,-\mathrm{i}\}$

Cyclic Groups

Definition

Let G be a group and let
$a \in G$.
Then the subgroup
$H=\left\{a^{n} \mid n \in \mathbb{Z}\right\}$
of G is called the cyclic subgroup of G generated by a, and denoted by $\langle a\rangle$.

| Cyclic Groups |
| :--- | :--- |
| |
| |
| Definition |
| Let G be a group and let |
| $a \in G$. |
| Then the subgroup |
| $H=\left\{a^{n} \mid n \in \mathbb{Z}\right\}$ |
| of G is called the cyclic |
| subgroup of G generated |
| by a, and denoted by $\langle a\rangle$. |

Group Theory

- Cyclic Groups

Cyclic Groups

Definition

- An element a of a group G generates G and is a generator for G if $\langle a\rangle=\mathrm{G}$.
- A group G is cyclic if there is
some element a in G that generates G.

Cyclic Groups

- Let a be an element of a group G.
- If the cyclic subgroup $\langle a\rangle$ is finite, then the order of a is the order $|\langle a\rangle|$ of this cyclic subgroup.
- Otherwise, we say that a is of infinite order.

Cyclic Groups

Example

- For each positive integer n, let U_{n} be the multiplicative group of the nth roots of unity in \mathbb{C}.
- These elements of U_{n} can be represented geometrically by equally spaced points on a circle about the origin.
- $U_{n}=\left\langle\omega \left\lvert\, \omega=\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n}\right.\right\rangle<U=\{z \in \mathbb{C}| | z \mid=1\}$

Examples of Cyclic Groups

Cyclic groups may be infinite:

- In $\mathbb{Z},\langle 1\rangle=\{\ldots,-2,-1,0,1,2, \ldots\}=\mathbb{Z}=\langle-1\rangle$
- ..., $-2(1)=-2,-1(1)=-1, \quad 0(1)=0$, $1(1)=1, \quad 2(1)=2$,
$-\ldots,-2(-1)=2,-1(-1)=1, \quad 0(-1)=0$,
$1(-1)=-1, \quad 2(-1)=-2, \ldots$
$=\ln \mathbb{Z},\langle 2\rangle=\{\ldots,-4,-2,0,2,4, \ldots\}=2 \mathbb{Z}=\langle-2\rangle$
$-\ln \mathbb{Z},\langle n\rangle=\{\ldots,-2 n,-n, 0, n, 2 n, \ldots\}=n \mathbb{Z}=\langle-n\rangle$ for $n \in \mathbb{Z}$

Examples of Cyclic Groups

Cyclic groups may be finite:
$=\ln \mathbb{Z}_{4},\langle\overline{1}\rangle=\{\overline{1}, \overline{2}, \overline{3}, \overline{0}\}=\mathbb{Z}_{4}=\langle\overline{3}\rangle \neq\langle\overline{2}\rangle$

- \mathbb{Z}_{4} is cyclic.
- In $\mathbb{Z}_{5},\langle\overline{1}\rangle=\{\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{0}\}=\mathbb{Z}_{5}=\langle\overline{2}\rangle=\langle\overline{3}\rangle=\langle\overline{4}\rangle$
- \mathbb{Z}_{5} is cyclic.
$-\ln \mathbb{Z}_{6},\langle\overline{1}\rangle=\{\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{0}\}=\mathbb{Z}_{6}=\langle\overline{5}\rangle$
- \mathbb{Z}_{6} is cyclic.
- In $\mathbb{Z}_{n},\langle\overline{1}\rangle=\{\overline{1}, \overline{2}, \ldots, \overline{n-1}, \overline{0}\}=\mathbb{Z}_{n}=\langle\bar{m}\rangle$ if g.c. $d(m, n)=1$ for $m=1,2, \ldots, n-1$.

Examples of Cyclic Groups

Cyclic groups may be infinite:

- In $\mathbb{Q}-\{0\},\langle 2\rangle=\left\{\ldots, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1,2,4,8, \ldots\right\}=\left\langle\frac{1}{2}\right\rangle$
- In $\mathbb{Q}-\{0\},\langle r\rangle=\left\{\ldots, \frac{1}{r^{3}}, \frac{1}{r^{2}}, \frac{1}{r}, 1, r, r^{2}, r^{3}, \ldots\right\}=\left\langle\frac{1}{r}\right\rangle$ for $r \in \mathbb{Q}$.
$-\operatorname{In} G L(2, \mathbb{R}),\left\langle\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\right\rangle=\left\{\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right]: n \in \mathbb{Z}\right\}$

Group Theory	
	Elementary Properties of Cyclic Groups

Elementary Properties of Cyclic Groups

Theorem

Every cyclic group is abelian.

Elementary Properties of Cyclic Groups

Proof

- Let G be a cyclic group and let a be a generator of G so that $G=\langle a\rangle=\left\{a^{n} \mid n \in \mathbb{Z}\right\}$.
- If g_{1} and g_{2} are any two elements of G, there exists integers r and s such that $g_{1}=a^{r}$ and $g_{2}=a^{s}$.
- Then

$$
g_{1} g_{2}=a^{r} a^{s}=a^{r+s}=a^{s+r}=a^{s} a^{r}=g_{2} g_{1}
$$

- So, G is abelian.

Elementary Properties of Cyclic Groups

- U_{n}
- \mathbb{Z}_{n}
- $n \mathbb{Z}$
- In $\mathbb{Q}-\{0\},\langle r\rangle=\left\{\ldots, \frac{1}{r^{3}}, \frac{1}{r^{2}}, \frac{1}{r}, 1, r, r^{2}, r^{3}, \ldots\right\}=\left\langle\frac{1}{r}\right\rangle$ for $r \in \mathbb{Q}$.
$=\ln G L(2, \mathbb{R}),\left\langle\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\right\rangle=\left\{\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right]: n \in \mathbb{Z}\right\}$

Elementary Properties of Cyclic Groups

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]^{2}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]
$$

$\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]^{-1}=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$
$\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]^{-2}=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right]$

Elementary Properties of Cyclic Groups

Definition: G is cyclic if G $=\langle a\rangle$ for some a in G .
Elementary Properties of Cyclic Groups

Group Theory

- Elementary

Properties of Cyclic Groups

Theorem

- If $|a|=\infty, a^{i}=a^{j}$ iff $\mathrm{i}=\mathrm{j}$

Group Theory
- Elementary Properties of Cyclic Groups

- If $|a|=\mathrm{n}, a^{i}=a^{i}$ iff $\mathrm{n} \mid \mathrm{i}-\mathrm{j}$
$\bullet\langle a\rangle=\left\{a, a^{2}, \ldots a^{n-1}, e\right\}$
Corollary 1: $|a|=|<a>|$
Corollary 2: $a^{\mathrm{k}}=e$ implies $|a| \mid \mathrm{k}$
Example: $\mathrm{U}_{5}=\left\langle\omega \mid \omega^{5}=1\right\rangle=\left\langle\omega^{2}\right\rangle=\left\langle\omega^{3}\right\rangle=\left\langle\omega^{4}\right\rangle, \omega=\mathrm{e}^{\mathrm{i}(2 \pi / 5)}$ $\omega^{2} \neq \omega^{4} \quad 5 \nmid 4-2 ; \quad \omega^{5}=\omega^{10} \quad 5 \mid 10-5$

Elementary Properties of Cyclic Groups
Example
$\mathrm{U}_{6}=<\omega \mid \omega^{6}=1>=\left\{\omega, \omega^{2}, \omega^{3}, \omega^{4}, \omega^{5}, 1\right\}$ with $\omega=\mathrm{e}^{\mathrm{i}(2 \pi / 6)}$
$\left(\omega^{5}\right)^{2}=\omega^{10}=\omega^{6} \omega^{4}=\omega^{4}$
$\left(\omega^{5}\right)^{3}=\omega^{15}=\left(\omega^{6}\right)^{2} \omega^{3}=\omega^{3}$
$\left(\omega^{5}\right)^{4}=\omega^{20}=\left(\omega^{6}\right)^{3} \omega^{2}=\omega^{2}$
$\left(\omega^{5}\right)^{5}=\omega^{25}=\left(\omega^{6}\right)^{4} \omega=\omega$
$\left(\omega^{5}\right)^{6}=\omega^{30}=\left(\omega^{6}\right)^{5}=1$
$U_{6}=<\omega^{5}>=\left\{\omega^{5}, \omega^{4}, \omega^{3}, \omega^{2}, \omega, 1\right\}$

Elementary Properties of Cyclic Groups

Example

$\mathrm{U}_{6}=<\omega \mid \omega^{6}=1>=\left\{\omega, \omega^{2}, \omega^{3}, \omega^{4}, \omega^{5}, 1\right\}$ with $\omega=\mathrm{e}^{\mathrm{i}(2 \pi / 6)}$
$\left\langle\omega^{2}\right\rangle=\left\{\omega^{2}, \omega^{4}, 1\right\}<U_{6}$
$<\omega^{3}>=\left\{\omega^{3}, 1\right\}<U_{6}$
$\left\langle\omega^{4}\right\rangle=\left\{\omega^{4}, \omega^{2}, 1\right\}=\left\langle\omega^{2}\right\rangle$
$\left.\begin{array}{ll|}\hline \text { Group Theory } \\ \text { - Elementary } \\ \text { Properties of Cyclic } \\ \text { Groups }\end{array}\right]$

Elementary Properties of Cyclic Groups

Theorem 1
If $|a|=n$, then

- <ak $\left\langle a^{\operatorname{gcd}(n, k)}\right\rangle$
- $\left|a^{k}\right|=n / \operatorname{gcd}(n, k)$

Elementary Properties of Cyclic Groups

To prove the $\left|a^{k}\right|=n / \operatorname{gcd}(n, k)$, we begin with a little lemma.
Elementary Properties of Cyclic Groups

Now, we prove that $\left|a^{k}\right|=n / \operatorname{gcd}(n, k)$.
Prove: If $d|n=|a|$, then $| a^{d} \mid=n / d$.
Proof: Let $\mathrm{n}=\mathrm{dq}$. Then $e=a^{\mathrm{n}}=\left(a^{\mathrm{d}}\right)^{\mathrm{a}}$
So $\left|a^{d}\right| \leq q$.
If $0<\mathrm{i}<\mathrm{q}$, then $0<\mathrm{di}<\mathrm{dq}=\mathrm{n}=|a|$
so $\left(a^{d}\right)^{i} \neq e$
Hence, $\left|a^{\mathrm{d}}\right|=\mathrm{q}$ which is n / d as required.
Let $\mathrm{d}=\operatorname{gcd}(\mathrm{n}, \mathrm{k})$. Then, we have
$\left|a^{k}\right|=\left|<a^{k}\right\rangle \mid \quad$ by Corollary 1
$=\left|\left\langle a^{d}\right\rangle\right| \quad$ by Part 1 of Theorem 1
$=\left|a^{d}\right| \quad$ by Corollary 1
= n / d by above Lemma.
This concludes the proof.

Elementary Properties of Cyclic Groups

Example

- Suppose G = <a> with $|a|=30$.

Find $\left|a^{21}\right|$ and $\left.<a^{21}\right\rangle$.

- By Theorem 1, $\left|a^{21}\right|=30 / \operatorname{gcd}(30,21)=10$
- Also $\left\langle a^{21}\right\rangle=\left\langle a^{3}\right\rangle$
$=\left\{a^{3}, a^{6}, a^{9}, a^{12}, a^{15}, a^{18}, a^{21}, a^{24}, a^{27}, e\right\}$

Elementary Properties of Cyclic Groups

Theorem 1
If $|a|=n$, then $\left\langle a^{k}\right\rangle=\left\langle a^{g d d}(n, k\rangle\right.$ and $| a^{k} \mid=n / \operatorname{gcd}(n, k)$.
Corollaries to Theorem 1
1.In a finite cyclic group, the order of an element divides the order of the group.
2.Let $|a|=\mathrm{n}$ in any group. Then
a) $\left\langle a^{i}\right\rangle=\left\langle a^{i}\right\rangle$ iff $\operatorname{gcd}(n, i)=\operatorname{gcd}(n, j)$
b) $\quad\left|a^{i}\right|=\left|a^{i}\right|$ iff $\operatorname{gcd}(n, i)=\operatorname{gcd}(n, j)$

Example

Find all the generators of $U(50)=\langle 3\rangle$.
$U(50)=\{1,3,7,9,11,13,17,19,21,23,27,29,31,33$,
$37,39,41,43,47,49\} \quad|U(50)|=20$
The numbers relatively prime to 20 are 1, 3, 7, 9, 11, 13, 17, 19
The generators of $U(50)$ are therefore
$3^{1}, 3^{3}, 3^{7}, 3^{9}, 3^{11}, 3^{13}, 3^{17}, 3^{19}$
i.e. $3,27,37,33,47,23,13,17$

Elementary Properties of Cyclic Groups

Corollaries to Theorem 1

3. Let $|a|=\mathrm{n}$.

Then $\left\langle a^{i}\right\rangle=a^{i}$ iff $\operatorname{gcd}(\mathrm{n}, \mathrm{i})=\operatorname{gcd}(\mathrm{n}, \mathrm{j})$
4. An integer k in \mathbb{Z}_{n} is a generator of \mathbb{Z}_{n} iff $\operatorname{gcd}(n, k)$
=1

Elementary Properties of Cyclic Groups

Fundamental Theorem of Cyclic Groups

Fundamental Theorem of Cyclic Groups

a) Every subgroup of a cyclic group is cyclic.
b) If $|a|=n$, then the order of any subgroup of $\langle a\rangle$ is a divisor of n
c) For each positive divisor k of n, the group $\langle a\rangle$ has exactly one subgroup of order k, namely < $a^{n / k}>$

Fundamental Theorem of Cyclic Groups

Subgroups are cyclic
Proof: Let $\mathrm{G}=\langle a\rangle$ and suppose $\mathrm{H} \leq \mathrm{G}$. If H is trivial, then H is cyclic. Suppose H is not trivial.
Let m be the smallest positive integer with a^{m} in H .
(Does m exist?) \qquad
\qquad
Fundamental Theorem of Cyclic Groups

By closure, $<a^{m}>$ is contained in H.
We claim that $\mathrm{H}=<a^{m}>$. To see this,
choose any $\mathrm{b}=a^{k}$ in H . There exist integers q,r with
$0 \leq \mathrm{r}<\mathrm{m}$ such that
$a^{k}=a^{\text {am+r }+r}$ (Why?)

Fundamental Theorem of Cyclic Groups

Since $b=a^{k}=a^{q m} a^{r}$, we have
$a^{r}=\left(a^{m}\right)^{-a} b$
Since b and a^{m} are in H , so is a^{r}.
But $\mathrm{r}<\mathrm{m}$ (the smallest power of a in H)
so $r=0$.
Hence $b=\left(a^{m}\right)^{q}$ and b is in H .
It follows that $\mathrm{H}=\left\langle a^{\mathrm{m}}\right\rangle$ as required.

$|\mathrm{H}|$ is a divisor of $|a|$

Proof: Given $|\langle a\rangle|=\mathrm{n}$ and $\mathrm{H} \leq\langle a\rangle$. We showed $\mathrm{H}=\left\langle a^{m}\right\rangle$ where m is the
smallest positive integer with a^{m} in H .
Now $e=a^{\mathrm{n}}$ is in H , so as we just showed, $\mathrm{n}=\mathrm{mq}$ for
Say $\mathrm{n}=\mathrm{kq}$. Note that $\operatorname{gcd}(\mathrm{n}, \mathrm{q})=\mathrm{q}$
some q.
So $\left|a^{q}\right|=n / \operatorname{gcd}(n, q)=n / q=k$.
Hence there exists a subgroup of order k, namely <an/q>
Now $\left|a^{m}\right|=q$ is a divisor of n as required.

Fundamental Theorem of Cyclic Groups

- (Uniqueness) Let H be any subgroup of $\langle a\rangle$ with order k . We claim $\mathrm{H}=$ <an ${ }^{n / k}$
From (a), $\mathrm{H}=\left\langle a^{m}\right\rangle$ for some m.
From (b), $m \mid n$ so $\operatorname{gcd}(n, m)=m$.
So $\mathrm{k}=\left|a^{\mathrm{m}}\right|=\mathrm{n} / \operatorname{gcd}(\mathrm{n}, \mathrm{m})$ by Theorem 1
$=\mathrm{n} / \mathrm{m}$
Hence $m=n / k$
So $\mathrm{H}=\left\langle a^{\mathrm{n} / k}\right\rangle$ as required.

Theorem

Let G be a cyclic group with n elements and generated by a. Let $\mathrm{b} \in \mathrm{G}$ and let $\mathrm{b}=a^{\mathrm{k}}$. Then b generates a cyclic subgroup H of G containing n / d elements, where $\mathrm{d}=\operatorname{gcd}(\mathrm{n}, \mathrm{k})$.
Also $\left\langle a^{k}\right\rangle=\left\langle a^{s}\right\rangle$ if and only $\operatorname{gcd}(k, n)=\operatorname{gcd}(s, n)$.

Subgroups of Finite Cyclic Groups

Example

using additive notation, consider in \mathbb{Z}_{12}, with the generator $a=1$.

- $3=3 \cdot 1, \operatorname{gcd}(3,12)=3$, so $\langle 3\rangle$ has $12 / 3=4$ elements.
$\langle 3\rangle=\{0,3,6,9\}$
- Furthermore, $\langle 3\rangle=\langle 9\rangle$ since $\operatorname{gcd}(3,12)=\operatorname{gcd}(9,12)$.

Subgroups of Finite Cyclic Groups

Example

- $8=8 \cdot 1, \operatorname{gcd}(8,12)=4$, so $\langle 8\rangle$ has $12 / 4=3$ elements
$\langle 8\rangle=\{0,4,8\}$
- $5=5 \cdot 1, \operatorname{gcd}(5,12)=1$, so $\langle 5\rangle$ has 12 elements
$\langle 5\rangle=\mathbb{Z}_{12}$.

Subgroups of Finite Cyclic Groups

Corollary

If a is a generator of a finite cyclic group G of order n, then the other generators of G are the elements of the form a^{r}, where r is relatively prime to n.

Subgroups of Finite Cyclic Groups
Example
Find all subgroups of \mathbb{Z}_{18} and give their subgroup diagram.
- All subgroups are cyclic
- By above Corollary is the generator of Z_{18}, so is $5,7,11$,
13, and 17 .
- Starting with $2,\langle 2\rangle=\{0,2,4,6,8,10,12,14,16\}$ is of
order 9 , and gcd $(2,18)=2=$ gcd $(\mathrm{k}, 18)$ where k is $2,4,8,10$,
14, and 16 . Thus $2,4,8,10,14$, and 16 are all generators
of $\langle 2\rangle$.

Subgroups of Finite Cyclic Groups	
Example - $\langle 3\rangle=\{0,3,6,9,12,15\}$ is of order 6 , and $\operatorname{gcd}(3$, 18) $=3=\operatorname{gcd}(\mathrm{k}, 18)$ where $\mathrm{k}=15$ - $\langle 6\rangle=\{0,6,12\}$ is of order 3 , so is 12 - $\langle 9\rangle=\{0,9\}$ is of order 2	
	398

Theorem on Cyclic Group	
	Theorem
Let G be a cyclic group	
with generator a.	
If the order of G is	
infinite, then G is	
isomorphic to $(\mathbb{Z},+)$.	
If G has finite order n,	
then G is isomorphic to	
$\left(\mathbb{Z}_{n},+_{n}\right)$.	

| Theorem on Cyclic Group |
| :--- | :--- |
| Proof
 Case 1
 For all positive integers $m, a^{m} \neq e$.
 In this case we claim that no two distinct
 exponents h and k can give equal elements a^{h}
 and a^{k} of G.
 Suppose that $a^{h}=a^{k}$ and say $h>k$.
 Then $a^{h} a^{-k}=a^{h-k}=e$, contrary to our Case 1
 assumption. |

Theorem on Cyclic Group	
	Case $\mathbf{1}$
	Hence every element
of G can be expressed	
as am for a unique m	
	$\in \mathbb{Z}$.
	The map $\varphi: G \rightarrow \mathbb{Z}$
given by $\varphi\left(a^{\prime}\right)=\mathrm{Z}$ is	
thus well defined, one	
to one, and onto \mathbb{Z}.	

Theorem on Cyclic Group	
Case 1	
Also, $\varphi\left(a^{i} a^{j}\right)=\varphi\left(a^{i+j}\right)$	
= i +j	
$=\varphi\left(a^{\text {a }}\right)+\varphi\left(a^{\text {a }}\right.$),	
so the homomorphism property is satisfied and φ is an isomorphism.	
	404

Theorem on Cyclic Group
Theorem on Cyclic Group

Case 2
Thus the elements
$a^{m}=e$ for some positive integer m.
Let n be the smallest positive integer such that
$a^{n}=e$.
If $s \in \mathbb{Z}$ and $s=n q+r$ for $0<r<n$, then
$a^{0}=e, a, a^{2}, a^{3}, \cdots, a^{n-1}$
are all distinct and
comprise all elements
of G .
The map $\Psi: G \rightarrow \mathbb{Z}_{\mathrm{n}}$
given by $\Psi\left(\mathrm{a}^{\mathrm{a}}\right)=\mathrm{i}$ for i
$=0,1,2, \cdots, n-1$ is
thus well defined, one
to one, and onto \mathbb{Z}_{n}.

Group Theory
Permutation Groups

$\left.\begin{array}{|l|l|}\hline \text { Permutation Groups } \\ & \\ & \text { Definition } \\ \text { A permutation of a set } \\ \text { A is a function from A to } \\ \text { A that is both one to } \\ \text { one and onto. }\end{array}\right]$

Permutation Groups

Array Notation

- Let $\mathrm{A}=\{1,2,3,4\}$
- Here are two permutations of A:

$$
\begin{array}{ll}
\alpha=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 1 & 4
\end{array}\right) & \beta=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right) \\
\alpha(2)=3 & \beta(4)=3 \\
\alpha(4)=4 & \beta(1)=2 \\
\beta \alpha(2)=\beta(3)=4 &
\end{array}
$$

Permutation Groups Composition in Array Notation	
	411

Permutation Groups Composition in Array Notation $\begin{aligned} \beta \alpha & =\left(\begin{array}{llll} 1 & 2 & \sqrt{3} & 4 \\ 2 & 1 & \sqrt{4} & 3 \end{array}\right)\left(\begin{array}{lll} 1 \\ 2 & \boxed{2} & 3 \\ \sqrt{3} & 1 & 4 \end{array}\right) \\ & =\left(\begin{array}{ll} 1 & 2 \\ 1 & 4 \end{array}\right) \end{aligned}$	
	412

Permutation Groups Composition in Array Notation $\begin{aligned} \beta \alpha & =\left(\begin{array}{llll} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{array}\right)\left(\begin{array}{lll} 1 & 2 \\ 2 & 3 & 3 \\ 1 & 4 \end{array}\right) \\ & =\left(\begin{array}{llll} 1 & 2 & 3 & 4 \\ 1 & 4 \leftrightarrow 2 \end{array}\right) \end{aligned}$	
	413

Permutation Groups
Composition in Array Notation
$\beta \alpha=\left(\begin{array}{llll}1 & 2 & 3 & \frac{4}{4} \\ 2 & 1 & 4 & \frac{3}{3}\end{array}\right)\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1 \\ \hline\end{array}\right)$

$=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 4 & 2 & \frac{4}{3}\end{array}\right)$

S_{3}

- The permutations of $\{1,2,3\}$:

$$
\begin{array}{lr}
\varepsilon=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right) & \alpha=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) \\
\alpha^{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right) & \beta=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) \\
\alpha \beta=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) & \alpha^{2} \beta=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)
\end{array}
$$

Examples of Permutation Groups

Examples of Permutation Groups

Simplified Computations in $\mathbf{S}_{\mathbf{3}}$

- $\alpha \beta \alpha^{2} \beta=\alpha(\beta \alpha) \alpha \beta=\alpha\left(\alpha^{2} \beta\right) \alpha \beta$

$$
\begin{aligned}
& =\alpha^{3}(\beta \alpha) \beta=\varepsilon\left(\alpha^{2} \beta\right) \beta \\
& =\alpha^{2} \beta^{2} \\
& =\alpha^{2}
\end{aligned}
$$

- Double the exponent of α when switching with β.
- We can simplify any expression in S_{3} !

Examples of Permutation Groups

Symmetric Groups, $\mathbf{S}_{\mathbf{n}}$

- Let $A=\{1,2, \ldots n\}$. The symmetric group on n letters, denoted S_{n}, is the group of all permutations of A under composition.
- S_{n} is a group for the same reasons that S_{3} is group.
- $\left|S_{n}\right|=n$!

Examples of Permutation Groups

Symmetries of a Square, $\mathrm{D}_{\mathbf{4}}$

$R_{0}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{array}\right) H=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{array}\right)$
$R_{90}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1\end{array}\right) V=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{array}\right){ }^{3} \square{ }_{1}^{2}$
$R_{180}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2\end{array}\right) D=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2\end{array}\right) \quad{ }_{4}^{2}$
$R_{270}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3\end{array}\right) D^{\prime}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4\end{array}\right) \quad \mathrm{D}_{4} \leq \mathrm{S}_{4}$
425

Examples of Permutation Groups

Why do we care?

- Every group turns out to be a permutation group on some set! (To be proved later).

Group Theory
Permutation Groups

Permutation Groups

Definition

Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ be a
function and let H be a
subset of A. The image
of H under f is
$\{f(h) I h \in H\}$ and is
denoted by $\mathrm{f}[\mathrm{H}]$.

Permutation Groups

Proof
Let $x^{\prime}, y^{\prime} \in \varphi[G]$. Then there exist $x, y \in G$ such that $\varphi(x)$ $=x^{\prime}$ and $\varphi(y)=y^{\prime}$.
By hypothesis, $\varphi(x y)=\varphi(x) \varphi(y)=x^{\prime} y^{\prime}$, showing that $x^{\prime} y^{\prime} \in$ $\varphi[\mathrm{G}]$.
We have shown that $\varphi[G]$ is closed under the operation of G^{\prime}.

Then $\varphi[G]$ is a subgroup of G^{\prime} and φ provides an $\varphi[\mathrm{G}]$.

Permutation Groups

> Let e' be the identity of G^{\prime}.
> Then
> $\mathrm{e}^{\prime} \varphi(\mathrm{e})=\varphi(\mathrm{e})$
> $=\varphi(\mathrm{ee})$
> $=\varphi(\mathrm{e}) \varphi(\mathrm{e})$.
> Cancellation in G^{\prime} shows
> that $\mathrm{e}^{\prime}=\varphi(\mathrm{e})$ so $\mathrm{e}^{\prime} \in \varphi[\mathrm{G}]$.

Permutation Groups

For $\mathrm{x}^{\prime} \in \varphi[\mathrm{G}]$ where $\mathrm{x}^{\prime}=$
$\varphi(x)$, we have
$e^{\prime}=\varphi(\mathrm{e})$
$=\varphi\left(x x^{-1}\right)$
$=\varphi(\mathrm{x}) \varphi\left(\mathrm{x}^{-1}\right)$
$=\mathrm{x}^{\prime} \varphi\left(\mathrm{x}^{-1}\right)$
which shows that
$x^{\prime-1}=\varphi\left(x^{-1}\right) \in \varphi[G]$.
Therefore, $\varphi[\mathrm{G}]<\mathrm{G}^{\prime}$.

Cayley's Theorem

| Cayley's Theorem | |
| :--- | :--- | :--- |
| | Theorem
 Every group is isomorphic
 to a group of permutations. |
| | 435 |

Proof
Let G be a group
We show that G is
isomorphic to a
subgroup of S_{G}.
We Need only to define a one-to-one function
$\varphi: G \rightarrow S_{G}$ such that
$\varphi(\mathrm{xy})=\varphi(\mathrm{x}) \varphi(\mathrm{y})$
for all $x, y \in \mathrm{G}$.

We now define φ : $\mathrm{G} \rightarrow \mathrm{S}_{\mathrm{G}}$ by defining $\varphi(\mathrm{x})=\lambda_{\mathrm{x}}$ for all $x \in G$.
To show that φ is one to one, suppose that $\varphi(\mathrm{x})=\varphi(\mathrm{y})$.
Then $\lambda_{x}=\lambda_{y}$ as functions mapping G into G. In particular $\lambda_{x}(e)=\lambda_{y}(e)$, so $x e=y e$ and $x=y$. Thus φ is one to one.

Cayley's Theorem

It only remains to show that $\varphi(x y)=\varphi(x) \varphi(y)$,
that is, $\lambda_{x y}=\lambda_{x} \lambda_{y}$.
Now for any $\mathrm{g} \in \mathrm{G}$, we have $\lambda_{\mathrm{xy}}(\mathrm{g})=(\mathrm{xy}) \mathrm{g}$.
Permutation multiplication is function
composition, so $\left(\lambda_{x} \lambda_{y}\right)(\mathrm{g})=\lambda_{x}\left(\lambda_{y}(\mathrm{~g})\right)=\lambda_{x}(\mathrm{yg})=$ $\mathrm{x}(\mathrm{yg})$.
Thus by associativity, $\lambda_{x y}=\lambda_{x} \lambda_{y}$.

Examples of Permutation Groups

There is a natural correspondence between the elements of S_{3} and the ways in which two copies of an equilateral triangle with vertices 1,2 , and 3 can be placed, one covering the other with vertices on top of vertices.
For this reason, S_{3} is also the group D_{3} of symmetries of an equilateral triangle. We used ρ, for rotations and μ; for mirror images in bisectors of angles. The notation D_{3} stands for the third dihedral group.
The nth dihedral group D_{n} is the group of symmetries of the regular n-gon.

Examples of Permutation Groups

Examples of Permutation Groups

Recall

We form the dihedral group D_{4} of permutations corresponding to the ways that two copies of a square with vertices $1,2,3$, and 4 can be placed, one covering the other with vertices on top of vertices.
D_{4} is the group of symmetries of the square. It is also called the octic group.

Examples of Permutation Groups

Symmetries of a Square, D_{4}
$\rho_{0}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{array}\right) \mu_{1}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{array}\right)$
$\rho_{1}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1\end{array}\right) \mu_{2}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{array}\right)^{3} \square$
$\rho_{2}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2\end{array}\right) \quad \delta_{1}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2\end{array}\right) \square_{4}^{2}$
$\rho_{3}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3\end{array}\right) \quad \delta_{2}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4\end{array}\right) \quad \mathrm{D}_{4} \leq \mathrm{S}_{4}$

Group Theory

Orbits

447

Orbits

Definition

An orbit of a permutation p is an equivalence class under the relation:
$a \sim b \Leftrightarrow b=p^{n}(a)$,
for some n in \mathbb{Z}.

Orbits

Find all orbits of $\alpha=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4\end{array}\right)$
Method:
Let S be the set that the permutation works on.
0) Start with an empty list

1) If possible, pick an element of the S not already visited and apply permutation repeatedly to get an orbit.
2) Repeat step 1 until all elements of S have been visited.

Orbits	
- Look at what happens to elements as a permutation is applied. $\begin{align*} & \alpha=\left(\begin{array}{lllll} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{array}\right) \\ & \alpha(1)=2, \alpha^{2}(1)=3, \alpha^{3}(1)=1 \\ & \alpha(4)=5, \alpha^{2}(4)=4 \end{align*}$	
	451

Group Theory
Orbits

Orbits	
	Theorem Let p be a permutation of a set S. The following relation is an equivalence relation: $a \sim b \Leftrightarrow b=p^{n}(a)$, for some n in \mathbb{Z}.

Orbits

3) transitive:
$a \sim b$ and $b \sim c$
$\Rightarrow \mathrm{b}=p^{n_{1}}(\mathrm{a})$ and $\mathrm{c}=p^{n_{2}}(\mathrm{~b})$, for some n_{1} and n_{2} in
\mathbb{Z}
$\Rightarrow \mathrm{c}=p^{n_{2}}\left(p^{n_{1}}(\mathrm{a})\right)$, for some n_{1} and n_{2} in \mathbb{Z}
$\Rightarrow \mathrm{c}=p^{n_{2}+n_{1}}(\mathrm{a})$, with $\mathrm{n}_{2}+\mathrm{n}_{1}$ in \mathbb{Z}
$\Rightarrow \mathrm{a}$ c

Cycles

Definition
A cycle of length 2 is called a transposition.

Cycles

Composition in cycle notation

$\alpha \beta=\left(\begin{array}{ll}1 & 2\end{array}\right)\binom{1}{2}(34)$

$$
=\left(\begin{array}{ll}
1 & 3
\end{array} 4\right)(2)
$$

$$
=\left(\begin{array}{lll}
1 & 3 & 4
\end{array}\right)
$$

$\beta \alpha=(12)(34)(123)$
$=(1)(243)$
$=\left(\begin{array}{ll}2 & 3\end{array}\right)$

Group Theory
Disjoint Cycles

| Disjoint Cycles | |
| :--- | :--- | :--- |
| | |
| | Definition
 Two permutations are
 disjoint if the sets of
 elements moved by
 the permutations are
 disjoint. |

Disjoint Cycles

Symmetries of a Square, $D_{4} \leq S_{4}$
$\rho_{0}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{array}\right)=\left(\begin{array}{ll}1 & 2)(12)\end{array}\right.$
$\rho_{1}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1\end{array}\right)=\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)=\left(\begin{array}{ll}1 & 4\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}1 & 2\end{array}\right)$
$\rho_{2}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2\end{array}\right)=\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}2 & 4\end{array}\right)$
$\rho_{3}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3\end{array}\right)=\left(\begin{array}{llll}1 & 4 & 3 & 2\end{array}\right)=\left(\begin{array}{ll}1 & 2\end{array}\right)(13)(14)$

Disjoint Cycles

Symmetries of a Square, $D_{4} \leq S_{4}$
$\mu_{1}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{array}\right)=\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)$
$\mu_{2}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{array}\right)=\left(\begin{array}{lll}1 & 4\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)$
$\delta_{1}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2\end{array}\right)=\left(\begin{array}{ll}2 & 4\end{array}\right)$
$\delta_{2}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4\end{array}\right)=\left(\begin{array}{ll}1 & 3\end{array}\right)$

Group Theory
Cycle Decomposition

Cycle Decomposition

Theorem:
Every permutation of a finite set is a product of disjoint cycles.

Cycle Decomposition		
	Proof: Let σ be a permutation. Let $B_{1}, B_{2}, \ldots, B_{r}$ be the orbits. Let μ_{i} be the cycle defined by $\mu_{i}(x)=\sigma(x)$ if x in B_{i} and x otherwise. Then $\sigma=\mu_{1} \mu_{2} \ldots \mu_{r}$. Note: Disjoint cycles commute.	

Cycle Decomposition

Lemma

Every cycle is a product
of transpositions.
Proof
Let $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a
cycle, then
$\left(a_{1}, a_{n}\right)\left(a_{1}, a_{n-1}\right) \ldots\left(a_{1}, a_{2}\right)$
$=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

| Cycle Decomposition | |
| :--- | :--- | :--- |
| | Theorem
 Every permutation can
 be written as a product
 of transpositions.
 Proof
 Use the lemma plus the
 previous theorem. |

Group Theory
Parity of Permutation

Parity of a Permutation	
	Definition The parity of a permutation is said to be even if it can be expressed as the product of an even number of transpositions, and odd if it can be expressed as a product of an odd number of transpositions.

Parity of a Permutation

Theorem
The parity of a
permutation is even or odd, but not both.

Parity of a Permutation

Parity of a Permutation

Proof

We show that for any positive integer n, parity is a homomorphism from S_{n} to the group \mathbb{Z}_{2}, where 0 represents even, and 1 represents odd.
These are alternate names for the equivalence classes
$2 \mathbb{Z}$ and $2 \mathbb{Z}+1$ that make up the group \mathbb{Z}_{2}.
There are several ways to define the parity map.
They tend to use the group $\{1,-1\}$ with multiplicative
notation instead of $\{0,1\}$ with additive notation.
One way uses linear algebra: For the permutation π define a map from R^{n} to R^{n} by switching coordinates as follows
$L_{\pi}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(n)}\right)$.
Then L_{π} is represented by a $n \times n$ matrix M_{π} whose rows are the corresponding permutation of the rows of the $\mathrm{n} \times \mathrm{n}$ identity matrix.
The map that takes the permutation π to $\operatorname{Det}\left(M_{\pi}\right)$ is a homomorphism from S_{n} to the multiplicative group $\{-1,1\}$.

Parity of a Permutation
Another way uses the action of the permutation on the polynomial $\quad P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\operatorname{Product}\left\{\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}\right) \mid \mathrm{i}<\mathrm{j}\right\}$. Each permutation changes the sign of P or leaves it alone. This determines the parity: change sign $=$ odd parity, leave sign $=$ even parity.

Alternating Group

Theorem

If $n \geq 2$, then the
collection of all even permutations of

$$
\{1,2, \ldots, n\}
$$

forms a subgroup of order $n!/ 2$ of the symmetric group S_{n}.

Alternating Group
$\rho_{0}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right)=(12)(12)$
$\rho_{1}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 2\end{array}\right)=\left(\begin{array}{ll}1 & 3\end{array}\right)(12)$
$\rho_{2}=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right)=(132)=(12)(13)$
$\mu_{1}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right)=\left(\begin{array}{ll}2 & 3\end{array}\right)$
$\mu_{2}=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 3\end{array}\right)$
$\mu_{3}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right)=\left(\begin{array}{ll}12)\end{array}\right.$

Direct Products	
	Definition The Cartesian product of sets S_{1}, \ldots, S_{n} is the set of all n-tuples $\left(a_{1}, \cdots, a_{n}\right)$, where $a_{i} \in S_{i}$ for $i=1, \cdots, n$. The Cartesian product is denoted by either $S_{1} X \ldots \times S_{n}$ or by $\Pi_{i=1}{ }^{n} S_{i}$.

Direct Products

Let $\mathrm{G}_{1}, \cdots, \mathrm{G}_{\mathrm{n}}$ be groups, and let us use multiplicative notation for all the group operations. Regarding the G as sets, we can form $\prod_{i=1}{ }^{n} G_{i}$.
Let us show that we can make $\prod_{i=1}{ }^{n} G_{i}$ into a group by means of a binary operation of multiplication by components.

Direct Products

Direct Products

Theorem

Let $\mathrm{G}_{1}, \ldots, \mathrm{G}_{\mathrm{n}}$ be groups.
For $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{n}\right)$ in $\prod_{i=1}{ }^{n} G_{i}$,
define $\left(a_{1}, \ldots, a_{n}\right)\left(b_{1}, \ldots, b_{n}\right)$ to be the element
$\left(a_{1} b_{1}, \ldots, a_{n} b_{n}\right)$.
Then $\prod_{i=1}{ }^{n} G_{i}$ is a group, the direct product of the groups G_{i}, under this binary operation.

Note that since $a_{i}, b_{i} \in G$, and G_{i} is a group, we have $a_{i} b_{i} \in G$.
Thus the definition of the binary operation on
$\prod_{i=1}{ }^{n} G_{i}$ given in the statement of the theorem makes sense, that is, $\prod_{i=1}{ }^{n} G_{i}$ is closed under the binary operation.

Direct Products

The associate law in
$\prod_{i=1}{ }^{n} G_{i}$ is thrown back onto the associative law in each component as follows:
$\left(a_{1}, \cdots, a_{n}\right)\left[\left(b_{1}, \cdots, b_{n}\right)\left(c_{1}, \cdots, c_{n}\right)\right]$
$=\left(a_{1}, \cdots, a_{n}\right)\left(b_{1} c_{1}, \cdots, b_{n} c_{n}\right)=\left(a_{1}\left(b_{1} c_{1}\right), \cdots, a_{n}\left(b_{n} c_{n}\right)\right)$
$=\left(\left(a_{1} b_{1}\right) c_{1}, \cdots,\left(a_{n} b_{n}\right) c_{n}\right)=\left(a_{1} b_{1}, \ldots, a_{n} b_{n}\right)\left(c_{1}, \ldots, c_{n}\right)$
$=\left[\left(a_{1}, \ldots, a_{n}\right)\left(b_{1}, \ldots, b_{n}\right)\right]\left(c_{1}, \ldots, c_{n}\right)$

Direct Products

If e_{i} is the identity element in G_{i}, then clearly, with multiplication by components, $\left(\mathrm{e}_{1}, \cdots, \mathrm{e}_{\mathrm{n}}\right)$ an identity in $\prod_{i=1}{ }^{n} G_{i}$.
Finally, an inverse of $\left(a_{1}, \cdots, a_{n}\right)$ is $\left(a_{1}{ }^{-1}, \cdots, a_{n}{ }^{-1}\right)$; compute the product by components.
Hence $\prod_{i=1}{ }^{n} G_{i}$ is a group.

Group Theory

Direct Products

Direct Product

Proposition

A direct product of
abelian groups is abelian.

Direct Products

> Proof
> Let G_{1}, \ldots, G_{n} be abelian
> groups. For $\left(a_{1}, \ldots, a_{n}\right)$
> and $\left(b_{1}, \ldots, b_{n}\right)$ in
> $\prod_{i=1}{ }^{n} G_{i}$,
> $\left(a_{1}, \ldots, a_{n}\right)\left(b_{1}, \ldots, b_{n}\right)$
> $=\left(a_{1} b_{1}, \ldots, a_{n} b_{n}\right)$
> $=\left(b_{1} a_{1}, \ldots, b_{n} a_{n}\right)$
> $=\left(b_{1}, \ldots, b_{n}\right)\left(a_{1}, \ldots, a_{n}\right)$.

Direct Products

If the S_{i} has r_{i} elements for $i=1, \cdots, n$, then $\prod_{i=1}^{n} S_{i}$ has $r_{1} \ldots r_{n}$ elements, for in an n-tuple, there are r_{1} choices for the first component from S_{1}, and for each of these there are r_{2} choices for the next component from S_{2}, and so on.

Direct Products

Direct Products

Example

Consider the group $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$, which has 2-3=6
elements, namely $(0,0),(0,1),(0,2),(1,0),(1,1)$, and (1,2). We claim that $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$ is cyclic. It is only necessary to find a generator. Let us try (1,1). Here the operations in \mathbb{Z}_{2} and \mathbb{Z}_{3} are written additively, so we do the same in the direct product $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$.

Direct Products

- $1(1,1)=(1,1)$
- $2(1.1)=(I, I)+(1,1)=(0,2)$
- $3(1,1)=(1,1)+(1,1)+(1,1)=(1,0)$
- $4(1,1)=3(1.1)+(1,1)=(1,0)+(1.1)=(0,1)$
- $5(1,1)=4(1,1)+(1,1)=(0,1)+(1,1)=(1,2)$
- $6(1,1)=5(1.1)+(1,1)=(1,2)+(1,1)=(0,0)$

Thus $(1,1)$ generates all of $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$. Since there is, up to isomorphism, only one cyclic group structure of a given order, we see that $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$ is isomorphic to \mathbb{Z}_{6}.

Direct Products

Example

Consider $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$. This is a group of nine elements. We claim that $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ is not cyclic.
Since the addition is by components, and since in \mathbb{Z}_{3} every element added to itself three times gives the identity, the same is true in $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$. Thus no element can generate the group, for a generator added to itself successively could only give the identity after nine summands. We have found another group structure of order 9 . A similar argument shows that $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is not cyclic. Thus $\mathbb{Z}_{2} \times$ \mathbb{Z}_{2} must be isomorphic to the Klein 4-group.

Direct Products

Theorem

The group $\mathbb{Z}_{\mathrm{m}} \times \mathbb{Z}_{\mathrm{n}}$ is cyclic and is isomorphic to \mathbb{Z}_{mn} if and only if m and n are relatively prime, that is, the gcd of m and n is 1 .

Direct Products

Proof

Consider the cyclic subgroup of $\mathbb{Z}_{\mathrm{m}} \times \mathbb{Z}_{\mathrm{n}}$ generated by (1,1). The order of this cyclic subgroup is the smallest power of $(1,1)$ that gives the identity $(0,0)$ Here taking a power of $(1,1)$ in our additive notation will involve adding $(1,1)$ to itself repeatedly. Under addition by components, the first component $1 \in \mathbb{Z}_{\mathrm{m}}$ yields 0 only after m summands, 2 m summands, and so on, and the second component $1 \in \mathbb{Z}_{n}$ yields 0 only after n summands, 2 n summands, and so on.

Direct Products

For them to yield 0 simultaneously, the number of summands must be a multiple of both m and n. The smallest number that is a multiple of both m and n will be $m n$ if and only if the gcd of m and n is 1 ; in this case, $(1,1)$ generates a cyclic subgroup of order mn , which is the order of the whole group. This shows that $\mathbb{Z}_{\mathrm{m}} \times \mathbb{Z}_{\mathrm{n}}$ is cyclic of order mn , and hence isomorphic to \mathbb{Z}_{mn} if m and n are relatively prime.

Direct Products

For the converse, suppose that the gcd of m and n is $d>1$. The $m n / d$ is divisible by both m and n. Consequently, for any (r, s) in $\mathbb{Z}_{\mathrm{m}} \times \mathbb{Z}_{n}$, we have
$(r, s)+\cdots+(r, s)=(0,0)$.
mn/dsummands
Hence no element (r, s) in $\mathbb{Z}_{\mathrm{m}} \times \mathbb{Z}_{\mathrm{n}}$ can generate the entire group, so $\mathbb{Z}_{\mathrm{m}} \times \mathbb{Z}_{\mathrm{n}}$ is not cyclic and therefore not isomorphic to \mathbb{Z}_{mn}.

Direct Products	
	Corollary The group $\Pi_{i=1}{ }^{n} \mathbb{Z}_{m_{i}}$ is cyclic and isomorphic to $\mathbb{Z}_{m_{1} \ldots m_{n}}$ if and only if the numbers m_{i} for $i=$ $1, \ldots, n$ are such that the gcd of any two of them is 1.

Direct Products

Example

If n is written as a product
of powers of distinct prime
numbers, as in
$\mathrm{n}=p_{1}{ }^{n_{1}} \ldots p_{r}{ }^{n_{r}}$
then \mathbb{Z}_{n} is isomorphic to
$\mathbb{Z}_{p_{1} n_{1}} \times \ldots \times \mathbb{Z}_{p_{r} n_{r}}$
In particular, \mathbb{Z}_{72} is
isomorphic to $\mathbb{Z}_{8} \times \mathbb{Z}_{9}$.

Group Theory
Direct Products

Direct Products

We remark that changing the order of the factors in a direct product yields a group isomorphic to the original one. The names of elements have simply been changed via a permutation of the components in the n tuples.

Direct Products

It is straightforward to prove that the subset of \mathbb{Z} consisting of all integers that are multiples of both r and s is a subgroup of \mathbb{Z}, and hence is cyclic group generated by the least common multiple of two positive integers r and s.
Likewise, the set of all common multiples of n positive integers r_{1}, \cdots, r_{n} is a subgroup of \mathbb{Z}, and hence is cyclic group generated by the least common multiple of n positive integers r_{1}, \cdots, r_{n}.

Direct Products

Theorem

Let $\left(a_{1}, \cdots, a_{n}\right) \in \prod_{i=1}{ }^{n} G_{i}$. If a_{i} is of finite order r_{i} in G_{i}, then the order of $\left(\mathrm{a}_{1}, \cdots, a_{n}\right)$ in $\prod_{i=1}{ }^{n} \mathrm{G}_{\mathrm{i}}$ is equal to the least common multiple of all the r_{i}.

Direct Products

Definition

Let r_{1}, \cdots, r_{n} be positive integers. Their least common multiple (abbreviated Icm) is the positive generator of the cyclic group of all common multiples of the r_{i}, that is, the cyclic group of all integers divisible by each r_{i}, for $i=1, \cdots, n$.

Direct Products
Theorem Let $\left(a_{1}, \cdots, a_{n}\right) \in \prod_{i=1}{ }^{n} G_{i}$. If a_{i} is of finite order r_{i} in G_{i}, then the order of $\left(a_{1}, \cdots, a_{n}\right)$ in $\prod_{i=1}{ }^{n} G_{i}$ is equal to the least common multiple of all the r_{i}.

Direct Products

Proof

This follows by a repetition of the argument used in the proof of previous Theorem. For a power of (a_{1}, \cdots, a_{n}) to give (e_{1}, \cdots, e_{n}), the power must simultaneously be a multiple of r_{1} so that this power of the first component a_{1} will yield e_{1}, a multiple of r_{2}, so that this power of the second component a_{2} will yield e_{2}, and so on.

Group Theory
Direct Products

Direct Products

Example

Find the order of $(8,4,10)$ in the group $\mathbb{Z}_{12} \times \mathbb{Z}_{60} \times$
\mathbb{Z}_{24}.
Solution
Since the gcd of 8 and 12 is 4 , we see that 8 is of order 3 in \mathbb{Z}_{12}. Similarly, we find that 4 is of order 15 in \mathbb{Z}_{60} and 10 is of order 12 in \mathbb{Z}_{24}. The Icm of 3,15 , and 12 is $3 \cdot 5 \cdot 4=60$, so $(8,4,10)$ is of order 60 in the group $\mathbb{Z}_{12} \times \mathbb{Z}_{60} \times \mathbb{Z}_{24}$.

Direct Products

Example

The group $\mathbb{Z} \times \mathbb{Z}_{2}$ is generated by the elements $(1,0)$ and (0,1). More generally, the direct product of n cyclic groups, each of which is either \mathbb{Z} or \mathbb{Z}_{m} for some positive integer m , is generated by then n -tuples
$(1,0, \cdots, 0),(0,1, \cdots, 0), \ldots,(0,0, \cdots, 1)$. Such a direct product might also be generated by fewer elements. For example, $\mathbb{Z}_{3} \times \mathbb{Z}_{4} \times \mathbb{Z}_{35}$ is generated by the single element ($1,1,1$).

Theorem

Every finitely generated abelian group G is isomorphic to a direct product of cyclic groups in the form
$\mathbb{Z}_{p_{1}} r_{1} \times \ldots \times \mathbb{Z}_{p_{n}}{ }^{r_{n}} \times \mathbb{Z} \times \ldots \times \mathbb{Z}$
where the p_{i} are primes, not necessarily distinct, and the r_{i} are positive integers. The direct product is unique except for possible rearrangement of the factors; that is, the number (Betti number of G) of factors \mathbb{Z} is unique and the prime powers $p_{i}{ }^{r_{i}}$ are unique.

Fundamental Theorem of Finitely Generated Abelian Groups

Example

Find all abelian groups, up to isomorphism, of order 360. The phrase up to isomorphism signifies that any abelian group of order 360 should be structurally identical (isomorphic) to one of the groups of order 360 exhibited.
\qquad

Fundamental Theorem of Finitely Generated Abelian Groups

Solution

Since our groups are to be of the finite order 360, no factors \mathbb{Z} will appear in the direct product shown in the statement of the fundamental theorem of finitely generated abelian groups.
First we express 360 as a product of prime powers $2^{3} .3^{2} .5$.

Fundamental Theorem of Finitely Generated Abelian Groups

Then, we get as possibilities

1. $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}$
2. $\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}$
3. $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{9} \times \mathbb{Z}_{5}$
4. $\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{9} \times \mathbb{Z}_{5}$
5. $\mathbb{Z}_{8} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}$
6. $\mathbb{Z}_{8} \times \mathbb{Z}_{9} \times \mathbb{Z}_{5}$

Thus there are six different abelian groups (up to isomorphism) of order 360.

| Group Theory |
| :--- | :--- |
| Applications |
| |
| |

Applications

Definition

A group G is decomposable if it is isomorphic to a direct product of two proper nontrivial subgroups. Otherwise G is indecomposable.

Applications

Theorem

The finite indecomposable abelian groups are exactly the cyclic groups with order a power of a prime.

Applications

Proof

Let G be a finite indecomposable abelian group. Then, G is isomorphic to a direct product of cyclic groups of prime power order. Since G is indecomposable, this direct product must consist of just one cyclic group whose order is a power of a prime number.
Conversely, let p be a prime. Then $\mathbb{Z}_{\mathrm{p}^{\prime}}$ is indecomposable, for if $\mathbb{Z}_{p^{\prime}}$, were isomorphic to $\mathbb{Z}_{p^{i}} \times \mathbb{Z}_{p}{ }^{j}$, where $\mathrm{i}+\mathrm{j}=\mathrm{r}$, then every element would have an order at most $\mathrm{p}^{\text {max }}[\mathrm{i}, \mathrm{j}<\mathrm{p}$ r.

Group Theory
Applications

Applications

Theorem
If m divides the order of a finite abelian group
G, then G has a subgroup of order m.

Applications

Proof

We can think of G as being
$\mathbb{Z}_{p_{1}} r_{1} \mathbf{X} \ldots \mathbf{X} \mathbb{Z}_{p_{n}}{ }^{r_{n}}$ where not all primes p_{i} need be generated by a, we see that
$<p_{1}{ }^{r_{1}-s_{1}}>\mathrm{x} \ldots \mathrm{x}<p_{n}{ }^{r_{n}-s_{n}}>$ distinct. Since $p_{1}{ }^{r_{1}} \ldots p_{n}{ }^{r_{n}}$ is the order of G , then m is the required subgroup of order m. must be of the form $p_{1}{ }^{s_{1}} \ldots p_{n}^{s_{n}}$, where $0 \leq \mathrm{s}_{\mathrm{i}} \leq \mathrm{r}_{\mathrm{i}}$. $p_{i}{ }^{r_{i}-s_{i}}$ generates a cyclic subgroup of $\mathbb{Z}_{p_{i}}{ }^{r_{i}}$ of order equal to the quotient of $p_{i}^{r_{i}}$ by the gcd of $p_{i}^{r_{i}}$ and $p_{i}{ }^{r_{i}-s_{i}}$. But the gcd of $p_{i}{ }^{r_{i}}$ and $p_{i}{ }^{r_{i} s_{i}}$ is $p_{i}^{r_{i}-s_{i}}$. Thus $p_{i}{ }^{r_{i}-s_{i}}$ generates a cyclic subgroup

Applications

Recalling that <a> denotes the cyclic subgroup

$$
\mathbb{Z}_{p_{i}}^{r_{i}} \text { of order }\left[p_{i}^{r_{i}}\right] /\left[p_{i}^{r_{i}{ }^{r_{i}}}{ }^{s_{i}}\right]=p_{i}^{s_{i}} .
$$

Group Theory
Applications

| Applications |
| :--- | :--- |
| Proof |
| Let G be an abelian group of square free order |
| m . Then, G is isomorphic to |
| $\mathbb{Z}_{p_{1}} r_{1} \mathrm{X} \ldots \times \mathbb{Z}_{p_{n}}{ }^{r_{n},}$ |
| where $m=p_{1} r_{1} \ldots p_{n}{ }_{n}$. Since m is square free, |
| we must have all $r_{i}=1$ and all p_{i} distinct |
| primes. Then, G is isomorphic to $\mathbb{Z}_{p_{1} \ldots p_{n}}$ so G |
| is cyclic. |

Cosets

Definition
Let H be a subgroup of a group G , which may be of finite
or infinite order and a in G .
The left coset of H containing a is the set

$$
a \mathrm{H}=\{a \mathrm{~h} \mid \mathrm{h} \text { in } \mathrm{H}\}
$$

The right coset of H containing a is the set

$$
\mathrm{H} a=\{\mathrm{h} a \mid \mathrm{h} \text { in } \mathrm{H}\}
$$

In additive groups, we use $a+\mathrm{H}$ and $\mathrm{H}+a$ for left and right cosets, respectively.

Cosets

Example

We exhibit the left cosets and the right cosets of the subgroup $3 \mathbb{Z}$ of \mathbb{Z}.
$0+3 \mathbb{Z}=3 \mathbb{Z}=\{\ldots,-6,-3,0,3,6, \ldots\}$
$1+3 \mathbb{Z}=\{\ldots,-5,-2,1,4,7, \ldots\}$
$2+3 \mathbb{Z}=\{\ldots,-4,-1,2,5,8, \ldots\}$
$\mathbb{Z}=3 \mathbb{Z} \mathrm{~L} 1+3 \mathbb{Z}$ ப $2+3 \mathbb{Z}$
So, these three left cosets constitute the partition of \mathbb{Z} into left cosets of $3 \mathbb{Z}$.

Example

$3 \mathbb{Z}+0=3 \mathbb{Z}=\{\ldots,-6,-3,0,3,6, \ldots\}=0+3 \mathbb{Z}$
$3 \mathbb{Z}+1=\{\ldots,-5,-2,1,4,7, \ldots\}=1+3 \mathbb{Z}$
$3 \mathbb{Z}+2=\{\ldots,-4,-1,2,5,8, \ldots\}=2+3 \mathbb{Z}$
$\mathbb{Z}=3 \mathbb{Z} \sqcup 3 \mathbb{Z}+1$ ப $3 \mathbb{Z}+2$
So, the partition of \mathbb{Z} into right cosets is the same.

Partitions of Groups

Theorem

Let H be a subgroup of a group G.
Let the relation $\sim_{\llcorner }$be defined on G by $a \sim_{\llcorner } b$ iff $a^{-1} b \in H$.
Let \sim_{R} be defined by $a \sim_{R} b$ iff $a b^{-1} \in H$.
Then \sim_{L} and \sim_{R} are both equivalence relations on G .

Proof
Reflexive
Let $a \in \mathrm{G}$.
Then $a^{-1} a=\mathrm{e} \in \mathrm{H}$
since H is a subgroup.
Thus $a \sim a$.

Partitions of Groups

Symmetric

Suppose $a \sim{ }_{\llcorner } b$.
Then $a^{-1} \mathrm{~b} \in \mathrm{H}$.
Since H is a subgroup,
$\left(a^{-1} \mathrm{~b}\right)^{-1}=\mathrm{b}^{-1} a \in \mathrm{H}$.
It implies that $b \sim_{\llcorner } a$.

Partitions of Groups

- a is called the coset representative of $a \mathrm{H}$.
- Similarly, $a \mathrm{H} a^{-1}=\left\{a \mathrm{~h} a^{-1} \mid\right.$ h in H \}

| Group Theory |
| :--- | :--- |
| |
| Topic No. 68 |
| |

Group Theory

Examples of Cosets

Examples of Cosets

Vectors under addition are a group:

$\cdot(a, b)+(c, d)=(a+c, b+d) \in \mathbb{R}^{2}$
-Identity is $(0,0) \in \mathbb{R}^{2}$
-Inverse of (a, b) is $(-a,-b)$ in \mathbb{R}^{2}
$\cdot((a, b)+(c, d))+(e, f)=(a+c, b+d)+(e, f)=((a+c)+e,(b+d)+f)$
$=(a+(c+e), b+(d+f))=(a, b)+(c+e, d+f)=(a, b)+((c, d)+(e, f))$
$\mathbf{H}=\{(\mathbf{2 t}, \mathbf{t}) \mid \mathbf{t} \in \mathbb{R}\}$ is a subgroup of \mathbb{R}^{2}.
Proof: $(2 a, a)-(2 \mathrm{~b}, \mathrm{~b})=(2(a-\mathrm{b}), a-\mathrm{b}) \in \mathrm{H}$

Visualizing $\mathrm{H}=\{(\mathbf{2 t}, \mathbf{t}) \mid \mathbf{t} \in \mathbb{R}\}$
-Let $x=2 t, y=t$
-Eliminate t :
$y=x / 2$

Examples of Cosets

Cosets of $\mathrm{H}=\{(2 \mathrm{t}, \mathrm{t}) \mid \mathrm{t} \in \mathbb{R}\}$
$(a, b)+H=\{(a+2 t, b+t)\}$
Set $\mathrm{x}=a+2 \mathrm{t}, \mathrm{y}=\mathrm{b}+\mathrm{t}$ and eliminate t :
$\mathrm{y}=\mathrm{b}+(\mathrm{x}-a) / 2$
The subgroup H is the line $y=x / 2$.
The cosets are lines parallel to $y=x / 2$!

Group Theory
Examples of Cosets

Left Cosets of <(23)> in S_{3} Let $\mathrm{H}=\langle(23)\rangle\{\varepsilon,(23)\}$
$\varepsilon \mathrm{H}=\{\varepsilon,(23)\}=\mathrm{H}$
(123) $\mathrm{H}=\{(123),(12)\}$
(132) $\mathrm{H}=\{(132),(13)\}$
$\mathrm{S}_{3}=\mathrm{H} \sqcup(123) \mathrm{H} \sqcup(132) \mathrm{H}$

Examples of Cosets

Left Cosets of <(123)> in A_{4}
Let $\mathrm{H}=\langle(123)\rangle\{\varepsilon,(123),(132)\}$
$\varepsilon \mathrm{H}=\{\varepsilon,(123),(132)\}$
$(12)(34) \mathrm{H}=\{(12)(34),(243),(143)\}$
(13) $(24) \mathrm{H}=\{(13)(24),(142),(234)\}$
$(14)(23) \mathrm{H}=\{(14)(23),(134),(124)\}$

| Group Theory |
| :--- | :--- |
| Examples of Cosets |
| |

Group Theory

Topic No. 70

Group Theory
Properties of Cosets

Properties of Cosets

Proposition

Let H be a subgroup of G ,
and a, b in G.

1. a belongs to $a \mathrm{H}$
2. $a \mathrm{H}=\mathrm{H}$ iff a belongs to

H

Properties of Cosets

1. a belongs to $a \mathrm{H}$

Proof: $a=a \mathrm{e}$ belongs to $a \mathrm{H}$.
2. $a \mathrm{H}=\mathrm{H}$ iff a in H

Proof: (\Rightarrow) Given $a \mathrm{H}=\mathrm{H}$.
By (1), a is in $a \mathrm{H}=\mathrm{H}$.

Properties of Cosets

(\Leftrightarrow) Given a belongs to H . Then
(i) aH is contained in H by closure.
(ii) Choose any h in H .

Note that a^{-1} is in H since a is.
Let $\mathrm{b}=a^{-1} \mathrm{~h}$. Note that b is in H . So
$\mathrm{h}=\left(a a^{-1}\right) \mathrm{h}=a\left(a^{-1} \mathrm{~h}\right)=a \mathrm{~b}$ is in $a \mathrm{H}$
It follows that H is contained in $a \mathrm{H}$
By (i) and (ii), $a \mathrm{H}=\mathrm{H}$

Group Theory
Properties of Cosets

Group Theory
Properties of Cosets

Properties of Cosets

Proposition

Let H be a subgroup of G , and $a, \mathrm{~b}$ in G .
3. $a \mathrm{H}=\mathrm{bH}$ iff a belongs to bH
4. $a \mathrm{H}$ and bH are either equal or disjoint
5. $a \mathrm{H}=\mathrm{bH}$ iff $a^{-1} \mathrm{~b}$ belongs to H

Properties of Cosets

3. $a \mathrm{H}=\mathrm{bH}$ iff a in bH

Proof: (\Rightarrow) Suppose $a \mathrm{H}=\mathrm{bH}$. Then
$a=a \mathrm{e}$ in $a \mathrm{H}=\mathrm{bH}$.
(\Leftrightarrow) Suppose a is in bH. Then
$a=b h$ for some h in H .
so $a \mathrm{H}=(\mathrm{bh}) \mathrm{H}=\mathrm{b}(\mathrm{hH})=\mathrm{bH}$ by (2).

Properties of Cosets

4. aH and bH are either disjoint or equal.

Proof: Suppose $a H$ and bH are not disjoint. Say x is in the intersection of $a \mathrm{H}$ and bH .
Then $a \mathrm{H}=\mathrm{xH}=\mathrm{bH}$ by (3).
Consequently, aH and bH are either disjoint or equal, as required.

| Group Theory |
| :--- | :--- |
| Properties of Cosets |
| |

| Group Theory |
| :--- | :--- |
| |
| Topic No. 72 |
| |

Properties of Cosets	
Proposition Let H be a subgroup of G, and a in G. 6. $\|a \mathrm{H}\|=\|\mathrm{bH}\|$ 7. $a \mathrm{H}=\mathrm{Ha}$ iff $\mathrm{H}=a \mathrm{Ha}{ }^{-1}$ 8. $a \mathrm{H} \leq \mathrm{G}$ iff a belongs to H	

Properties of Cosets

6. $|a H|=|b H|$

Proof: Let \varnothing : $a H \rightarrow b H$ be given by $\phi(a \mathrm{~h})=b \mathrm{f}$ for all h in H .
We claim \varnothing is one to one and onto.
If $\varnothing\left(a h_{1}\right)=\varnothing\left(a h_{2}\right)$, then $b h_{1}=b h_{2}$
so $h_{1}=h_{2}$. Therefore $a h_{1}=a h_{2}$.
Hence \varnothing is one-to-one.
\varnothing is clearly onto.
It follows that $|a \mathrm{H}|=|\mathrm{bH}|$ as required.

Properties of Cosets
7. $a \mathrm{H}=\mathrm{H} a$ iff $\mathrm{H}=a \mathrm{H} a^{-1}$

Proof: $a \mathrm{H}=\mathrm{Ha}$
\Leftrightarrow each $a \mathrm{~h}=\mathrm{h}^{\prime} a$ for some h^{\prime} in H
$\Leftrightarrow a h a^{-1}=h^{\prime}$ for some h^{\prime} in H
$\Leftrightarrow \mathrm{H}=a \mathrm{H} a^{-1}$.

Properties of Cosets

8. $a \mathrm{H} \leq \mathrm{G}$ iff a in H

Proof: (\Rightarrow) Suppose $a \mathrm{H} \leq \mathrm{G}$.
Then e in $a \mathrm{H}$
But e in eH , so eH and $a \mathrm{H}$ are not disjoint. By (4), $a \mathrm{H}=\mathrm{eH}$
$=\mathrm{H}$.
(\Leftarrow) Suppose a in H .
Then $a \mathrm{H}=\mathrm{H} \leq \mathrm{G}$.

| Group Theory |
| :---: | :---: |
| Properties of Cosets |
| |

Group Theory

Lagrange's Theorem

Lagrange's Theorem		
	Lagrange's Theorem Statement If G is a finite group and H is a subgroup of G, then \|H	divides $\|\mathrm{G}\|$.

Lagrange's Theorem

Proof

The right cosets of H in G form a partition of G , so G
can be written as a disjoint union
$\mathrm{G}=\mathrm{Ha}_{1} \cup \mathrm{Ha}_{2} \mathrm{U} \cdot . \cdot \mathrm{Ha}_{\mathrm{k}}$
for a finite set of elements $a_{1}, a_{2}, \ldots, a_{k} \in G$.
The number of elements in each coset is $|\mathrm{H}|$.
Hence, counting all the elements in the disjoint
union above, we see that $|\mathrm{G}|=\mathrm{k}|\mathrm{H}|$.
Therefore, $|\mathrm{H}|$ divides $|\mathrm{G}|$.

Lagrange's Theorem	
	Subgroups of \mathbb{Z}_{12}
	$\left\|\mathbb{Z}_{12}\right\|=12$
The divisors of 12 are $1,2,3$,	
	4,6 and 12.
The subgroups of \mathbb{Z}_{12} are	
	$H_{1}=\{[0]\}$
	$H_{2}=\{[0],[6]\}$
	$H_{3}=\{[0],[4],[8]\}$
	$H_{4}=\{[0],[3],[6],[9]\}$
	$H_{5}=\{[0],[2],[4],[6],[8],[10]\}$

Group Theory

Applications of

Lagrange's Theorem

| Applications of Lagrange's Theorem |
| :--- | :--- |
| Corollary
 Every group of prime
 order is cyclic. |

Applications of Lagrange's Theorem

Proof
Let G be of prime order p , and let a be an element of G different from the identity.
Then the cyclic subgroup <a> of G generated by a has at least two elements, a and e.
But the order $m \geq 2$ of <a> must divide the prime p. Thus we must have $\mathrm{m}=\mathrm{p}$ and $\langle\mathrm{a}\rangle=\mathrm{G}$, so G is cyclic.

Theorem

The order of an
element of a finite
group divides the order of the group

| Applications of Lagrange's Theorem |
| :--- | :--- |
| Proof
 Remembering that the
 order of an element is
 the same as the order
 of the cyclic subgroup
 generated by the
 element, we see that
 this theorem follows
 directly from
 Lagrange's Theorem. |

Group Theory
Indices of Subgroups

Indices of Subgroups	
	Definition Let H be a subgroup of a group G. The number of left (or right) cosets of H in G is the index (G:H) of H in G.

Indices of Subgroups

The index ($\mathrm{G}: \mathrm{H}$) just
defined may be finite or infinite.
If G is finite, then
obviously ($\mathrm{G}: \mathrm{H}$) is finite and $(\mathrm{G}: \mathrm{H})=\mathrm{IGI} / \mathrm{HI}$, since every coset of H contains IHI elements.

Indices of Subgroups	
Example	
$\mu=(1,2,4,5)(3,6)$	
$\mu^{2}=(2,5)(1,4)$	
$\mu^{3}=(1,5,4,2)(3,6)$	
$\mu^{4}=\varepsilon$	
$<\mu><S_{6}$	
$\left(S_{6}:<\mu>\right)=\left\|S_{6}\right\| /\|<\mu>\|$	
	$=6!/ 4=6.5 .3 .2=180$.

Indices of Subgroups
Example
Find the right cosets of
$H=\left\{e, g^{4}, \mathrm{~g}^{8}\right\}$ in
$\mathrm{C}_{12}=\left\{\mathrm{e}, \mathrm{g}, \mathrm{g}^{2}, \ldots, \mathrm{~g}^{11}\right\}$.

Indices of Subgroups
Solution $\mathrm{H}=\left\{\mathrm{e}, \mathrm{g}^{4}, \mathrm{~g}^{8}\right\}$ itself is one coset. Another is $\mathrm{Hg}=\left\{\mathrm{g}, \mathrm{g}^{5}, \mathrm{~g}^{9}\right\}$. These two cosets have not exhausted all the elements of C_{12}, so pick an element, say g^{2}, which is not in H or Hg.
A third coset is $\mathrm{Hg}^{2}=\left\{\mathrm{g}^{2}, \mathrm{~g}^{6}, \mathrm{~g}^{10}\right\}$ and a fourth is $\mathrm{Hg}^{3}=\left\{\mathrm{g}^{3}, \mathrm{~g}^{7}, \mathrm{~g}^{11}\right\}$. Since $\mathrm{C}_{12}=\mathrm{H} \cup \mathrm{Hg} \cup \mathrm{Hg}^{2} \cup \mathrm{Hg}^{3}$, these are all the cosets. Therefore, $\left(\mathrm{C}_{12}: \mathrm{H}\right)=12 / 3=4$.

Indices of Subgroups

Theorem
Suppose H and K are subgroups of a group G such that $\mathrm{K} \leq \mathrm{H} \leq \mathrm{G}$, and suppose ($\mathrm{H}: \mathrm{K}$) and ($\mathrm{G}: \mathrm{H}$) are both finite. Then ($\mathrm{G}: \mathrm{K}$) is finite, and $(\mathrm{G}: \mathrm{K})=(\mathrm{G}: \mathrm{H})(\mathrm{H}: \mathrm{K})$.
$\mathrm{Hg}^{3}=\left\{\mathrm{g}^{3}, \mathrm{~g}^{7}, \mathrm{~g}^{11}\right\}$.

| Group Theory |
| :--- | :--- |
| Converse of Lagrange's |
| Theorem |

[^0]| Converse of Lagrange's Theorem | |
| :---: | :---: |
| Is the converse true? | |
| That is, if G is a group of order n, and m divides n, is there always a subgroup of order m ? | |
| We will see next that this is true for abelian groups. | |
| | 595 |

| Converse of Lagrange's Theorem |
| :--- | :--- |
| However, A_{4} can be
 shown to have no
 subgroup of order 6,
 which gives a
 counterexample for
 nonabelian groups. |
| $\mathbf{5 9 6}$ |

Converse of Lagrange's Theorem
$\mathrm{A}_{4}=\{(1),(1,2)(3,4)$,
$(1,3)(2,4),(1,4)(2,3)$,
$(1,2,3),(1,3,2)$,
$(1,3,4),(1,4,3)$,
$(1,2,4),(1,4,2)$,
$(2,3,4),(2,4,3)\}$
Group Theory

An Interesting Example

Example
A translation of the plane \mathbb{R}^{2} in the direction of the vector (a, b) is a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $f(x, y)=(x+a, y+b)$.

An Interesting Example
The composition of this translation with a
translation g in the
direction of (c, d) is the
function
$\mathrm{f} g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, where
$f g(x, y)=f(g(x, y))$
$=f(x+c, y+d)$
$=(x+c+a, y+d+b)$.
This is a translation in the
direction of $(c+a, d+b)$.

| An Interesting Example |
| :--- | :--- |
| It can easily be verified
 that the set of all
 translations in \mathbb{R}^{2} forms
 an abelian group, under
 composition. |

An Interesting Example

A translation of the plane
\mathbb{R}^{2} in the direction of the
vector $(0,0)$ is an identity
function $1_{\mathbb{R}}{ }^{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$
defined by
$1_{\mathbb{R}^{2}}(x, y)=(x+0, y+0)=(x, y)$.

An Interesting Example

The inverse of the translation of the plane \mathbb{R}^{2} in the direction of the vector (a, b) is an inverse function $f^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by
$f^{-1}(x, y)=(x-a, y-b)$
such that
$f f^{-1}(x, y)=(x, y)=f^{-1} f(x, y)$.

An Interesting Example

The inverse of the translation in the direction (a, b) is the translation in the opposite direction (-a,-b).
$\left.\begin{array}{|l|l|}\hline \text { Group Theory } \\ \text { Homomorphism of } \\ \text { Groups }\end{array}\right]$

Homomorphism of Groups

Structure-Relating Maps
Let G and G ' be groups.
We are interested in
maps from G to G^{\prime} that
relate the group
structure of G to the
group structure of G^{\prime}.
Such a map often give us information about one of the groups from
known structural properties of the other.

Homomorphism of Groups
Structure-Relating Maps
An isomorphism $\phi: \mathrm{G} \rightarrow$
G', if one exists, is an
example of such a
structure-relating map. If
we know all about the
group G and know that ϕ
is an isomorphism, we
immediately know all
about the group structure
of G', for it is structurally
just a copy of G.

Homomorphism of Groups

Structure-Relating Maps

We now consider more general structure-relating maps, weakening the conditions from those of an isomorphism by no longer requiring that the maps be one to one and onto. We see, those conditions are the purely set-theoretic portion of our definition of an isomorphism, and have nothing to do with the binary operations of G and of G^{\prime}.

Definition

If (G, \cdot) and ($H, *$) are two groups, the function
$\mathrm{f}: \mathrm{G} \rightarrow \mathrm{H}$ is called a group homomorphism if
$f(a \cdot b)=f(a) * f(b)$
for all $a, b \in G$.

- We often use the notation
$\mathrm{f}:(\mathrm{G}, \cdot)^{(H, *)}$
for such a homorphism.
- Many authors use morphism instead of homomorphism

Homomorphism of Groups	
	Definition
	A group isomorphism is a
bijective group	
homomorphism.	
If there is an isomorphism	
between the groups (G, \cdot)	
and $(\mathrm{H}, *)$, we say that	
$(\mathrm{G}, \cdot \cdot)$ and $(\mathrm{H}, *)$ are	
isomorphic and write	
$(\mathrm{G}, \cdot \cdot) \cong(\mathrm{H}, *)$.	

Homomorphism of Groups

Example

Let $\phi: \mathrm{G} \rightarrow \mathrm{G}$ ' be a group homomorphism of G onto G^{\prime}. We claim that if G is abelian, then G^{\prime} must be abelian. Let $a^{\prime}, b^{\prime} \in \mathrm{G}^{\prime}$. We must show that $\mathrm{a}^{\prime} \mathrm{b}^{\prime}=\mathrm{b}^{\prime}$ a^{\prime}. Since ϕ is onto G^{\prime}, there exist $\mathrm{a}, \mathrm{b} \in \mathrm{G}$ such that $\phi(a)=a^{\prime}$ and $\phi(b)=b^{\prime}$, Since G is abelian,
we have $a b=b a$. Using homomorphism property, we have $a^{\prime} b^{\prime}=\phi(\mathrm{a}) \phi(\mathrm{b})=\phi(\mathrm{ab})=\phi(\mathrm{ba})=$
$\phi(b) \phi(a)=b^{\prime} a^{\prime}$, so G^{\prime} is indeed abelian.

Homomorphism of Groups	
	Example
	The function $f: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$,
	defined by $f(x)=[x]$ is
	the group
	homomorphism,
	for if $i, j \in \mathbb{Z}$, then
	$f(i+j)=[i+j]$
	$=[i]+n] j$
	$=f(i)+{ }_{n} f(j)$.

Examples of Group Homomorphisms

Example

Let be \mathbb{R} the group of all real numbers with operation addition, and let \mathbb{R}^{+}be the group of all positive real numbers with operation multiplication.
The function $f: \mathbb{R} \rightarrow \mathbb{R}^{+}$, defined by $f(x)=e^{x}$, is a
homomorphism, for if $x, y \in \mathbb{R}$, then
$f(x+y)=e^{x+y}=e^{x} e^{y}=f(x) f(y)$.
Examples of Group Homomorphisms

Now f is an isomorphism, for its inverse function $\mathrm{g}: \mathbb{R}^{+} \rightarrow \mathbb{R}$ is $\ln \mathrm{x}$.
Therefore, the additive group \mathbb{R} is isomorphic to the multiplicative group \mathbb{R}^{+}.
Note that the inverse function g is also an isomorphism:
$g(x y)=\ln (x y)=\ln x+\ln y=g(x)+g(y)$.

Examples of Group
Homomorphisms

Examples of Group Homomorphisms

Example

Let S_{n} be the symmetric group on n letters, and let: $\phi: S_{n} \rightarrow \mathbb{Z}_{2}$ be defined by
$\phi(\sigma)=0$ if σ is an even permutation,
$=1$ if σ is an odd permutation.
Show that ϕ is a homomorphism.

Examples of Group Homomorphisms
Solution
We must show that $\phi(\sigma, \mu)=\phi(\sigma)+\phi(\mu)$ for all
choices of $\sigma, \mu \in S_{n}$. Note that the operation on the
right-hand side of this equation is written additively
since it takes place in the group \mathbb{Z}_{2}. Verifying this
equation amounts to checking just four cases:
- σ odd and μ odd,
- σ odd and μ even,
- σ even and μ odd,
- σ even and μ even.

Examples of Group Homomorphisms

Checking the first case, if σ and μ can both be written as a product of an odd number of
transpositions, then $\sigma \mu$ can be written as the product of an even number of transpositions. Thus $\phi(\sigma, \mu)=0$ and $\phi(\sigma)+\phi(\mu)=1+1=0$ in \mathbb{Z}_{2}. The other cases can be checked similarly.

Group Theory
Properties of
Homomorphisms

Properties of Homomorphisms

Proposition

Let $\phi: G \rightarrow H$ be a group morphism, and let e_{G} and e_{H} be the identities of G and H, respectively. Then
(i) $\phi\left(e_{G}\right)=e_{H}$.
(ii) $\phi\left(a^{-1}\right)=\phi(a)^{-1}$ for all $a \in G$.

Theorems on Group Homomorphisms
Theorems on Group Homomorphisms

Proof

(i) Since ϕ is a morphism,
$\phi\left(\mathrm{e}_{\mathrm{G}}\right) \phi\left(\mathrm{e}_{\mathrm{G}}\right)$
$=\phi\left(e_{G} e_{G}\right)$
$=\phi\left(e_{G}\right)$
$=\phi\left(\mathrm{e}_{\mathrm{G}}\right) \mathrm{e}_{\mathrm{H}}$
Hence (i) follows by cancellation in H .

Proof
(ii) ϕ (a) $\phi\left(a^{-1}\right)$
$=\phi\left(a a^{-1}\right)$
$=\phi\left(e_{G}\right)$
$=e_{H}$ by (i).
Hence $\phi\left(a^{-1}\right)$ is the
unique inverse of $\phi(a)$;
that is $\phi\left(a^{-1}\right)=\phi(a)^{-1}$.

Properties of Homomorphisms

We tum to some structural features of G and G^{\prime} that are preserved by a homomorphism $\phi: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$.
First we review settheoretic definitions.

Properties of Homomorphisms

Definition

Let ϕ be a mapping of a set X into a set Y, and let $A \subseteq X$ and $B \subseteq Y$. The image $\phi[A]$ of A in Y under ϕ is $\{\phi(a) \mid a \in A\}$. The set $\phi[\mathrm{X}]$ is the range of ϕ. The inverse image $\phi^{-1}[B]$ of B in X is $\{x \in X \mid \phi(x) \in B\}$.

Properties of Homomorphisms

Theorem

Let ϕ be a
homomorphism of a group G into a group G^{\prime}.

1. If H is a subgroup of
G, then $\phi[H]$ is a
subgroup of G^{\prime}.
2. If K^{\prime} is a subgroup of G^{\prime}, then $\phi^{-1}\left[\mathrm{~K}^{\prime}\right]$ is a subgroup of G .

Properties of Homomorphisms

Proof

(1) Let H be a subgroup of G , and let $\phi(\mathrm{a})$ and $\phi(\mathrm{b})$
be any two elements in $\phi[H]$. Then $\phi(\mathrm{a}) \phi(\mathrm{b})=$ $\phi(a b)$, so we see that $\phi(a) \phi(b) \in \phi[H]$; thus, $\phi[H]$ is closed under the operation of G^{\prime}. The fact that $\phi\left(\mathrm{e}_{\mathrm{G}}\right)=e_{G^{\prime}}$ and $\phi\left(\mathrm{a}^{-1}\right)=\phi(\mathrm{a})^{-1}$ completes the proof that $\phi[H]$ is a subgroup of G^{\prime}.

Properties of Homomorphisms

Proof
(2) Let K^{\prime} be a subgroup of G^{\prime}. Suppose a and b are in $\phi^{-1}\left[K^{\prime}\right]$. Then $\phi(a) \phi(b) \in K^{\prime}$ since K^{\prime} is a subgroup. The equation $\phi(a b)=\phi(a) \phi(b)$ shows that $a b \in \phi^{-1}\left[K^{\prime}\right]$. Thus $\phi^{-1}\left[K^{\prime}\right]$ is closed under the binary operation in G .

Properties of Homomorphisms

Also, K^{\prime} must contain the identity element $e_{G^{\prime}}=$ $\phi\left(e_{G}\right)$, so $e_{G} \in \phi^{-1}\left[K^{\prime}\right]$. If $a \in \phi^{-1}\left[K^{\prime}\right]$, then
$\phi(a) \in K^{\prime}$, so $\phi(a)^{-1} \in K^{\prime}$. But $\phi(a)^{-1}=\phi\left(a^{-1}\right)$, so we must have $a^{-1} \in \phi^{-1}\left[K^{\prime}\right]$.
Hence $\phi^{-1}\left[K^{\prime}\right]$ is a subgroup of G.

Properties of Homomorphisms

Theorem: Let h be a homomorphism from a group G
into a group G^{\prime}. Let K be the kernel of h . Then
$a \mathrm{~K}=\{\mathrm{x}$ in $\mathrm{G} \mid \mathrm{h}(\mathrm{x})=\mathrm{h}(\mathrm{a})\}=\mathrm{h}^{-1}[\{\mathrm{~h}(\mathrm{a})\}]$
and also
$K a=\{x$ in $G \mid h(x)=h(a)\}=h^{-1}[\{h(a)\}]$

Suppose: $\mathrm{h}: \mathrm{X} \rightarrow \mathrm{Y}$ is any map of sets. Then h
defines an equivalence relation \sim_{h} on X by:

$$
x \sim_{h} y \Leftrightarrow h(x)=h(y)
$$

The previous theorem says that when h is a homomorphism of groups then the cosets (left or right) of the kernel of h are the equivalence classes of this equivalence relation.
Properties of Homomorphisms
Theorem: Let h be a homomorphism from a group G
into a group G^{\prime}. Let K be the kernel of h. Then
a $K=\{x$ in $G \mid h(x)=h(a)\}=h^{-1}[\{h(a)\}]$
and also
$K a=\{x$ in $G \mid h(x)=h(a)\}=h^{-1}[\{h(a)\}]$
633

Properties of Homomorphisms

Proof

$h^{-1}[\{h(a)\}]=\{x$ in $G \mid h(x)=h(a)\}$ directly from the definition of inverse image.
Now we show that: $a K=\{x$ in $G \mid h(x)=h(a)\}$:
x in a $K \Leftrightarrow x=a k$, for some k in K
$\Leftrightarrow h(x)=h(a k)=h(a) h(k)=h(a)$, for some k in K
$\Leftrightarrow h(x)=h(a)$
Thus, $\quad a K=\{x$ in $G \mid h(x)=h(a)\}$.
Likewise, $K a=\{x$ in $G \mid h(x)=h(a)\}$.
Properties of
Homomorphisms

Properties of Homomorphisms
Proof
$h^{-1}[\{h(a)\}]=\{x$ in $G \mid h(x)=h(a)\}$ directly from the
definition of inverse image.
Now we show that: $a K=\{x$ in $G \mid h(x)=h(a)\}$:
x in $K \Leftrightarrow x=a k$, for some k in K
$\Leftrightarrow h(x)=h(a k)=h(a) h(k)=h(a)$, for some k in K
$\Leftrightarrow h(x)=h(a)$
Thus, $\quad a K=\{x$ in $G \mid h(x)=h(a)\}$. Likewise, $K a=\{x$ in $G \mid h(x)=h(a)\}$.

$\left.\begin{array}{|l|l|}\hline \text { Group Theory } \\ \text { Properties of } \\ \text { Homomorphisms }\end{array}\right]$

Properties of Homomorphisms

Definition

If $\phi: \mathrm{G} \rightarrow \mathrm{G}$ ' is a group morphism, the kernel of ϕ, denoted by $\operatorname{Ker} \phi$, is defined to be the set of elements of G that are mapped by f to the identity of G^{\prime}. That is, $\operatorname{Ker} \mathrm{f}=\left\{\mathrm{g} \in \mathrm{G} \mid \mathrm{f}(\mathrm{g})=\mathrm{e}^{\prime}\right\}$.

Properties of Homomorphisms

Corollary

Let $\phi: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ be a group morphism. Then, ϕ is injective if and only if $\operatorname{Ker} \phi=\{\mathrm{e}\}$.

Properties of Homomorphisms

Proof

If $\operatorname{Ker}(\phi)=\{\mathrm{e}\}$, then for every $\mathrm{a} \in \mathrm{G}$, the elements mapped into $\phi(\mathrm{a})$ are precisely the elements of the left coset $\mathrm{a}\{\mathrm{e}\}=\{\mathrm{a}\}$, which shows that ϕ is one to one.

Conversely, suppose ϕ is one to one. Now, we know that $\phi(e)=e^{\prime}$, the identity element of G^{\prime}. Since ϕ is one to one, we see that e is the only element mapped into e^{\prime} by ϕ, so $\operatorname{Ker}(\phi)=\{e\}$.

Properties of Homomorphisms

Definition

To Show ϕ : $\mathrm{G} \rightarrow \mathrm{G}$ ' is an
Isomorphism
Step 1 Show ϕ is a
homomorphism.
Step 2 Show $\operatorname{Ker}(\phi)=$
\{e\}.
Step 3 Show ϕ maps G onto G^{\prime}.

Properties of Homomorphisms	
	Definition
	To Show $\phi: G \rightarrow$ G' is an
Isomorphism	
Step 1 Show ϕ is a	
homomorphism.	
Step 2 Show $\operatorname{Ker}(\phi)=$	
\{e\}.	
Step 3 Show ϕ maps G	
onto G'.	

Group Theory
Normal Subgroups

Normal Subgroups

Example

Find the left and right cosets of $H=A_{3}$ and $K=$ $\{(1),(12)\}$ in S_{3}.

Normal Subgroups

However, the left and right cosets of K are not all the same.
Right Cosets
$K=\{(1),(12)\} ; K(13)=\{(13),(132)\} ; K(23)=\{(23)$,
(123) \}

Left Cosets
$\mathrm{K}=\{(1),(12)\} ;(23) \mathrm{K}=\{(23),(132)\} ;(13) \mathrm{K}=\{(13)$, (123)\}

Definition

A subgroup H of a
group G is called a
normal subgroup of G if
$\mathrm{g}^{-1} \mathrm{hg} \in \mathrm{H}$ for all $\mathrm{g} \in \mathrm{G}$ and $h \in H$.
Normal Subgroups
However, the left and right cosets of K are not all the
same.
Right Cosets
$K=\{(1),(12)\} ; K(13)=\{(13),(132)\} ; K(23)=\{(23)$,
$(123)\}$
Left Cosets
$K=\{(1),(12)\} ;(23) K=\{(23),(132)\} ;(13) K=\{(13)$,
$(123)\}$

Normal Subgroups

Solution

We calculated the right cosets of $\mathrm{H}=\mathrm{A}_{3}$.
Right Cosets
$H=\{(1),(123),(132)\} ; H(12)=\{(12),(13),(23)\}$
Left Cosets
$\mathrm{H}=\{(1),(123),(132\} ;(12) \mathrm{H}=\{(12),(23),(13)\}$
In this case, the left and right cosets of H are the same.

Group Theory
Normal Subgroups

Normal Subgroups
Definition
A subgroup H of a
group G is called a
normal subgroup of G if
$\mathrm{g}^{-1} \mathrm{hg} \in \mathrm{H}$ for all $\mathrm{g} \in \mathrm{G}$
and $\mathrm{h} \in \mathrm{H}$.

Normal Subgroups

Proposition
$\mathrm{Hg}=\mathrm{gH}$, for all $\mathrm{g} \in \mathrm{G}$, if and only if H is a normal subgroup of G .

Normal Subgroups

Conversely, if H is normal, let $\mathrm{hg} \in \mathrm{Hg}$ and
$\mathrm{g}^{-1} \mathrm{hg}=\mathrm{h}_{1} \in \mathrm{H}$.
Then $\mathrm{hg}=\mathrm{gh}_{1} \in \mathrm{gH}$ and $\mathrm{Hg} \subseteq \mathrm{gH}$.
Also, $\mathrm{ghg}^{-1}=\left(\mathrm{g}^{-1}\right)^{-1} \mathrm{hg}^{-1}=\mathrm{h}_{2} \in \mathrm{H}$, since H is normal, so $\mathrm{gh}=\mathrm{h}_{2} \mathrm{~g} \in \mathrm{Hg}$. Hence, $\mathrm{gH} \subseteq \mathrm{Hg}$, and so $\mathrm{Hg}=\mathrm{gH}$.

| Group Theory |
| :--- | :--- |
| |
| Theorem on Normal
 Subgroup |

Theorem on Normal Subgroup
If N is a normal
subgroup of a group G,
the left cosets of N in G
are the same as the
right cosets of N in G, so
there will be no
ambiguity in just talking
about the cosets of N in
G.

Theorem on Normal Subgroup	
Theorem If N is a normal subgroup of (G, \cdot), the set of cosets $\mathrm{G} / \mathrm{N}=\{\mathrm{Ng} \mid \mathrm{g} \in \mathrm{G}\}$ forms a group ($\mathrm{G} / \mathrm{N}, \cdot \cdot$), where the operation is defined by $\left(\mathrm{Ng}_{1}\right) \cdot\left(\mathrm{Ng}_{2}\right)=\mathrm{N}\left(\mathrm{g}_{1} \cdot \mathrm{~g}_{2}\right)$. This group is called the quotient group or factor group of G by N .	
	${ }_{653}$

Theorem on Normal Subgroup

Theorem

N is a normal subgroup (G,), the set G/N=\{Nglg G forms a group(N .), where be on is defined by This group is called the quotient group or factor group of G by N .

Theorem on Normal Subgroup

Since h_{1} is in the same coset as g_{1}, we have
$\mathrm{h}_{1} \equiv \mathrm{~g}_{1} \bmod \mathrm{~N}$. Similarly, $\mathrm{h}_{2} \equiv \mathrm{~g}_{2} \bmod \mathrm{~N}$.
We show that $\mathrm{Nh}_{1} \mathrm{~h}_{2}=\mathrm{Ng}_{1} \mathrm{~g}_{2}$.
We have $h_{1} g_{1}^{-1}=n_{1} \in N$ and $h_{2} g{ }_{2}^{-1}=n_{2} \in N$, so
$h_{1} h_{2}\left(g_{1} g_{2}\right)^{-1}=h_{1} h_{2} g_{2}^{-1} g_{1}^{-1}=n_{1} g_{1} n_{2} g_{2} g_{2}{ }^{-1} g_{1}^{-1}=$ $\mathrm{n}_{1} \mathrm{~g}_{1} \mathrm{n}_{2} \mathrm{~g}_{1}^{-1}$.
Now N is a normal subgroup, so $\mathrm{g}_{1} \mathrm{n}_{2} \mathrm{~g}_{1}{ }^{-1} \in \mathrm{~N}$ and $n_{1} g_{1} n_{2} g_{1}{ }^{-1} \in N$. Hence $h_{1} h_{2} \equiv g_{1} g_{2} \bmod N$ and $\mathrm{Nh}_{1} \mathrm{~h}_{2}=\mathrm{Ng}_{1} \mathrm{~g}_{2}$.
Therefore, the operation is well defined.

Theorem on Normal Subgroup

- The operation is associative because $\left(\mathrm{Ng}_{1} \cdot \mathrm{Ng}_{2}\right)$. $\mathrm{Ng}_{3}=\mathrm{N}\left(\mathrm{g}_{1} \mathrm{~g}_{2}\right) \cdot \mathrm{Ng}_{3}=\mathrm{N}\left(\mathrm{g}_{1} \mathrm{~g}_{2}\right) \mathrm{g}_{3}$ and also $\mathrm{Ng}_{1} \cdot\left(\mathrm{Ng}_{2}\right.$ $\left.\mathrm{Ng}_{3}\right)=\mathrm{Ng}_{1} \cdot \mathrm{~N}\left(\mathrm{~g}_{2} \mathrm{~g}_{3}\right)=\mathrm{Ng}_{1}\left(\mathrm{~g}_{2} \mathrm{~g}_{3}\right)=\mathrm{N}\left(\mathrm{g}_{1} \mathrm{~g}_{2}\right) \mathrm{g}_{3}$.
- Since $\mathrm{Ng} \cdot \mathrm{Ne}=\mathrm{Nge}=\mathrm{Ng}$ and $\mathrm{Ne} \cdot \mathrm{Ng}=\mathrm{Ng}$, the identity is $\mathrm{Ne}=\mathrm{N}$.
- The inverse of Ng is Ng^{-1} because $\mathrm{Ng} \cdot \mathrm{Ng}^{-1}=\mathrm{N}(\mathrm{g}$. $\left.\mathrm{g}^{-1}\right)=\mathrm{Ne}=\mathrm{N}$ and also $\mathrm{Ng}^{-1} \cdot \mathrm{Ng}=\mathrm{N}$.
- Hence ($\mathrm{G} / \mathrm{N}, \cdot \cdot$) is a group.

Group Theory
Example on Normal
Subgroup

Example on Normal Subgroup

Example

$\left(\mathbb{Z}_{\mathrm{n}},+\right)$ is the quotient group of $(\mathbb{Z},+)$ by the subgroup $n \mathbb{Z}=\{n z \mid z \in \mathbb{Z}\}$.

Example on Normal Subgroup
Solution
Since $(\mathbb{Z},+)$ is abelian, every subgroup is normal. The
set $n \mathbb{Z}$ can be verified to be a subgroup, and the
relationship $a \equiv b$ mod $n \mathbb{Z}$ is equivalent to $a-b \in n \mathbb{Z}$
and to $n \mid a-b$. Hence $\equiv b$ mod $n \mathbb{Z}$ is the same
relation as $\equiv b$ mod n. Therefore, \mathbb{Z} is the quotient
group $\mathbb{Z} / n \mathbb{Z}$, where the operation on congruence
classes is defined by [a] $+[b]=[a+b]$.

Example on Normal Subgroup
$\left(\mathbb{Z}_{n},+\right)$ is a cyclic group
with 1 as a generator.
When there is no
confusion, we write the elements of \mathbb{Z}_{n} as 0,1 ,
$2,3, \ldots, n-1$ instead of [0], [1], [2], [3], ..., [$\mathrm{n}-1$].

Morphism Theorem for Groups
This result is also known as the first isomorphism theorem. Proof. The function ψ is defined on a coset by using one particular element in the coset, so we have to check that ψ is well defined; that is, it does not matter which element we use.

Morphism Theorem for Groups

> The function ψ is a morphism because
> $\psi\left(\mathrm{Kg}_{1} \mathrm{Kg}_{2}\right)$
> $=\psi\left(\mathrm{Kg}_{1} \mathrm{~g}_{2}\right)$
> $=\mathrm{f}\left(\mathrm{g}_{1} \mathrm{~g}_{2}\right)$
> $=\mathrm{f}\left(\mathrm{g}_{1}\right) \mathrm{f}\left(\mathrm{g}_{2}\right)$
> $=\psi\left(\mathrm{Kg}_{1}\right) \psi\left(\mathrm{Kg}_{2}\right)$.

Morphism Theorem for Groups

Theorem

Let K be the kernel of the group morphism
$f: G \rightarrow H$. Then G / K is isomorphic to the image of f , and the isomorphism

$$
\psi: \mathrm{G} / \mathrm{K} \rightarrow \operatorname{Im} \mathrm{f}
$$

is defined by
$\psi(\mathrm{Kg})=\mathrm{f}(\mathrm{g})$.

Morphism Theorem for Groups

If $\psi(\mathrm{Kg})=\mathrm{e}_{\mathrm{H}}$, then
$\mathrm{f}(\mathrm{g})=\mathrm{e}_{\mathrm{H}}$ and $\mathrm{g} \in \mathrm{K}$.
Hence the only element
in the kernel of ψ is the identity coset K , and ψ is injective.

Group Theory

Application of Morphism Theorem

Application of Morphism Theorem	
	Example Show that the quotient group \mathbb{R} / \mathbb{Z} is isomorphic to the circle group $W=\left\{\mathrm{e}^{\mathrm{i} \theta} \in \mathbb{C} \mid \theta \in \mathbb{R}\right\}$.

Application of Morphism Theorem

Solution

The set $W=\left\{\mathrm{e}^{i \theta} \in \mathbb{C} \mid \theta \in \mathbb{R}\right\}$ consists of points on
the circle of complex numbers of unit modulus, and
forms a group under multiplication.
Define the function $f: \mathbb{R} \rightarrow W$ by $f(x)=e^{2 \pi i x}$.
This is a morphism from $(\mathbb{R},+)$ to ($\mathrm{W}, \cdot \cdot$) because
$f(x+y)=e^{2 \pi i(x+y)}$
$=e^{2 \pi i x} \cdot e^{2 \pi i y}$
$=f(x) \cdot f(y)$.
$\left.\begin{array}{|c|}\hline \text { Group Theory } \\ \text { Normality of Kernel of } \\ \text { a Homomorphism }\end{array}\right]$

Normality of Kernel of a Homomorphism	
Right Cosets	
Let (G, .) be a group with subgroup H. For a, $b \in G$, we say that a is congruent to b modulo \boldsymbol{H}, and write $\mathbf{a} \equiv \mathrm{b} \bmod$ H if and only if $a b^{-1} \in H$.	
	${ }_{673}$

Normality of Kernel of a Homomorphism

Proposition

The relation $\mathrm{a} \equiv \mathrm{b} \bmod \mathrm{H}$
is an equivalence
relation on G .
The equivalence class
containing a can be
written in the form $\mathrm{Ha}=$
$\{h a \mid h \in H$ \}, and it is
called a right coset of H
in G . The element a is called a representative of the coset Ha.

Normality of Kernel of a Homomorphism	
Theorem	
Let φ be a homomorphism function from group	
($\mathrm{G},{ }^{*}$) to group (G^{\prime}..). Then, ($\operatorname{Ker} \varphi,{ }^{*}$) is a normal subgroup of (G,*).	
	675

Normality of Kernel of a Homomorphism

Proof

i) $\operatorname{Ker} \varphi$ is a subgroup of G
$\forall \mathrm{a}, \mathrm{b} \in \operatorname{Ker} \varphi, \varphi(\mathrm{a})=\mathrm{e}_{\mathrm{G}}$,
$\varphi(b)=e_{G}$.
Then, φ (${ }^{*} * \mathrm{~b}$) $=\varphi$ (a)
$\varphi(b)=e_{G}$:
Therefore, $a^{*} b \in \operatorname{Ker} \varphi$.
Inverse element:
$\forall \mathrm{a} \in \operatorname{Ker} \varphi, \varphi(\mathrm{a})=\mathrm{e}_{\mathrm{G}}$.
Then,
$\varphi\left(a^{-1}\right)=\varphi(a)^{-1}$
$=e_{G^{\prime}}$ Therefore, a
${ }^{1} \in \operatorname{Ker} \varphi$.
ii) $\forall \mathrm{g} \in \mathrm{G}, \mathrm{a} \in \operatorname{Ker} \varphi, \varphi(\mathrm{a})=\mathrm{e}_{\mathrm{G}^{\prime}}$

Then
$\varphi\left(\mathrm{g}^{-1 *} \mathrm{a}^{*} \mathrm{~g}\right)$
$=\varphi\left(\mathrm{g}^{-1}\right) \varphi(\mathrm{a}) \varphi(\mathrm{g})$
$=\varphi(\mathrm{g})^{-1} \mathrm{e}_{\mathrm{G}^{\prime}} \varphi(\mathrm{g})$
$=\mathrm{e}_{\mathrm{G}^{\prime}}$
Therefore,
$\mathrm{g}^{-1 *} \mathrm{a}^{*} \mathrm{~g} \in \operatorname{Ker} \varphi$.
$\left.\begin{array}{|c|}\hline \text { Group Theory } \\ \text { Example of Normal } \\ \text { Group }\end{array}\right]$

Example of Normal Group

Definition

A subgroup H of a group is a normal subgroup if $\mathrm{gH}=\mathrm{Hg}$ for $\forall \mathrm{g} \in \mathrm{G}$.

Example of Normal Group

Example

- Any subgroups of Abelian group are normal subgroups
- $\mathrm{S}_{3}=\{(1),(1,2,3),(1,3,2),(2,3),(1,3),(1,2)\}$.
- $H_{1}=\{(1),(2,3)\} ; H_{2}=\{(1),(1,3)\} ; H_{3}=\{(1),(1,2)\} ;$
- $(1,3) \mathrm{H}_{1}=\{(1,3),(1,2)\} \quad \mathrm{H}_{1}(1,3)=\{(1,3),(1,2)\}$
- $(1,2,3) \mathrm{H}_{1}=\{(1,2,3),(1,2)\} \quad \mathrm{H}_{1}(1,2,3)=\{(1,2,3),(1,3)\}$

Example of Normal Group
(1) $\mathrm{Hg}=\mathrm{gH}$, it does not imply $\mathrm{hg}=\mathrm{gh}$.
(2) If $\mathrm{Hg}=\mathrm{gH}$, then there exists $\mathrm{h}^{\prime} \in \mathrm{H}$ such that $\mathrm{hg}=\mathrm{gh}$ for $\forall \mathrm{h} \in \mathrm{H}$.

Example of Normal Group

- Let H be a subgroup of a group G . When is (aH) $(\mathrm{bH})=\mathrm{abH}$?
- This is true for abelian groups, but not always when G is nonabelian.
- Consider S_{3} : Let $\mathrm{H}=\left\{\rho_{0}, \mu_{1}\right\}$. The left cosets are $\left\{\rho_{0}, \mu_{1}\right\},\left\{\rho_{1}, \mu_{3}\right\},\left\{\rho_{2}, \mu_{2}\right\}$.
If we multiply the first two together, then
$\left\{\rho_{0}, \mu_{1}\right\},\left\{\rho_{1}, \mu_{3}\right\}=\left\{\rho_{0} \rho_{1}, \rho_{0} \mu_{3}, \mu_{1} \rho_{1}, \mu_{1} \mu_{3}\right\}$
This has four distincter $=\left\{\rho_{1}, \mu_{3}, \mu_{2}, \rho_{2}\right\}$
Group Theory Factor Group

Factor Group	
Definition	
Let $(\mathrm{H}, *)$ be a normal	
subgroup of the group	
$\left(\mathrm{G},{ }^{,}\right) .(\mathrm{G} / \mathrm{H}, \otimes)$ is called	
quotient group, where the	
operation \otimes is defined on	
G / H by	
$\mathrm{Hg}_{1} \otimes \mathrm{Hg} \mathrm{g}_{2}=\mathrm{H}\left(\mathrm{g}_{1}{ }^{*} \mathrm{~g}_{2}\right)$.	
	If G is a finite group, then
G / H is also a finite group,	
and $\|\mathrm{G} / \mathrm{H}\|=\|\mathrm{G}\| /\|\mathrm{H}\|$.	

Factor Group

- The product of two sets is define as follow $S S^{\prime}=\left\{x x^{\prime} \mid x \in S\right.$ and $\left.x^{\prime} \in S\right\}$
- $\{\mathrm{aH} \mid \mathrm{a} \in \mathrm{G}, \mathrm{H}$ is normal $\}$ is a group, denote by G / H and called it factor groups of G .
- A mapping $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G} / \mathrm{H}$ is a homomorphism, and call it canonical homomorphism.
$\mathrm{Hg}_{1} \otimes \mathrm{Hg}_{2}=\mathrm{H}\left(\mathrm{g}_{1}{ }^{*} \mathrm{~g}_{2}\right)$.
up, then and $|G / H|=|G| /|H|$

Factor Group

Consider S_{3} : Let $\mathrm{H}=\left\{\rho_{0}, \rho_{1}, \rho_{2}\right\}$. The left cosets are $\left\{\rho_{0}, \rho_{1}, \rho_{2}\right\},\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$
If we multiply the first two together, then
$\left\{\rho_{0}, \rho_{1}, \rho_{2}\right\}\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}=\left\{\rho_{0} \mu_{1}, \rho_{0} \mu_{2}, \rho_{0} \mu_{3}, \rho_{1} \mu_{1}, \rho_{1} \mu_{2}, \rho_{1} \mu_{3}, \rho_{2} \mu_{1}\right.$,
$\left.\rho_{2} \mu_{2}, \rho_{2} \mu_{3}\right\}=\left\{\mu_{1}, \mu_{2}, \mu_{3}, \mu_{3}, \mu_{1}, \mu_{2}, \mu_{2}, \mu_{3}, \mu_{1}\right\}=\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$
This is one of the cosets. Likewise
$\left\{\rho_{0}, \rho_{1}, \rho_{2}\right\}\left\{\rho_{0}, \rho_{1}, \rho_{2}\right\}=\left\{\rho_{0}, \rho_{1}, \rho_{2}\right\}$
$\left.\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\} \rho_{0}, \rho_{1}, \rho_{2}\right\}=\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$
$\left.\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\} \mu_{1}, \mu_{2}, \mu_{3}\right\}=\left\{\rho_{0}, \rho_{1}, \rho_{2}\right\}$
Note that the cosets of $\left\{\rho_{0}, \rho_{1}, \rho_{2}\right\}$ with this binary operation
form a group isomorphic to \mathbb{Z}_{2}.

$\left.\begin{array}{|c|}\hline \text { Group Theory } \\ \text { Coset Multiplication } \\ \text { and Normality }\end{array}\right]$

Coset Multiplication and Normality	
	Theorem Let H be a subgroup of a group G. Then H is normal if and only if (a H) (b H $)=(\mathrm{a} \mathrm{b}) \mathrm{H}$, for all a, b in G

Coset Multiplication and Normality

Proof
Suppose
$(a H)(b H)=(a b) H$,
for all a, b in G .
We show that $\mathrm{aH}=\mathrm{H}$ a,
for all a in H .
We do this by showing:
$\mathrm{aH} \subseteq \mathrm{H}$ a and $\mathrm{Ha} \subseteq \mathrm{aH}$,
for all a in G .

Coset Multiplication and Normality

$\mathrm{aH} \subseteq \mathrm{H}$ a: First observe that $\mathrm{aHa}^{-1} \subseteq(\mathrm{aH})\left(\mathrm{a}^{-1} \mathrm{H}\right)$
$=\left(a a^{-1}\right) \mathrm{H}=\mathrm{H}$.
Let x be in $a H$. Then $x=a h$, for some h in H. Then
$x a^{-1}=a \mathrm{ha}^{-1}$, which is in $=a \mathrm{Ha}^{-1}$,
thus in H . Thus xa^{-1} is in H . Thus x is in H a
$H a \subseteq a H: H a \subseteq H a H=(e H)(a H)=(e a) H=a H$.
This establishes normality.

Coset Multiplication and Normality

For the converse, assume H is normal. $(a H)(b H) \subseteq(a b) H:$ For a, b in G, x in $(a H)(b H)$ implies that $x=a h_{1} b h_{2}$, for some h_{1} and h_{2} in H. But $h_{1} b$ is in $H b$, thus in $b H$. Thus $h_{1} b=b h_{3}$ for some h_{3} in H. Thus $x=a b h_{3} h_{2}$ is in $a b H$.
(ab) $H \subseteq(a H)(b H): x$ in $(a b) H \Rightarrow x=a e b h$, for some h in H .
Thus x is in $(a H)(b H)$.
$\left.\begin{array}{|cc|}\hline \text { Group Theory } \\ \text { Examples on Kernel of } \\ \text { a Homomorphism }\end{array}\right]$

Examples on Kernel of a Homomorphism

> Let $\mathrm{h}: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ be a
> homomorphism and let e^{\prime} be the identity element of G^{\prime}. Now $\left\{\mathrm{e}^{\prime}\right\}$ is a subgroup of G^{\prime}, so
> $\mathrm{h}^{-1}\left[\left\{\mathrm{e}^{\prime}\right\}\right]$ is a subgroup K of G . This subgroup is critical to the study of homomorphisms.

Examples on Kernel of a Homomorphism

Definition

Let $\mathrm{h}: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ be a
homomorphism of
groups. The subgroup
$h^{-1}\left[\left\{e^{\prime}\right\}\right]=\left\{x \in G \mid h(x)=e^{\prime}\right\}$
is the kernel of h,
denoted by $\operatorname{Ker}(\mathrm{h})$.

Examples on Kernel of a Homomorphism

Example
Let \mathbb{R}^{n} be the additive
group of column vectors
with n real-number
components. (This group is of course isomorphic to the direct product of \mathbb{R} under addition with itself for n factors.) Let A be an $m \times n$ matrix of real numbers. Let $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ numbers. Let $\phi: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$
be defined by $\phi(\mathrm{v})=A v$ for each column vector $v \in \mathbb{R}^{n}$.

Examples on Kernel of a Homomorphism
$\operatorname{Ker}(\mathrm{h})$ is called the null space of A. It consists of all $v \in \mathbb{R}^{n}$ such that $\mathrm{Av}=0$, the zero vector. Av , the zero vector.
$\phi(v+w)=A(v+w)$
$=A v+A w=\phi(v)+\phi(w)$
In linear algebra, such a map computed by multiplying a column multiplying a column
matrix A is known as a
linear transformation.
Example
Then ϕ is a
homomorphism, since v,
$w \in \mathbb{R}^{n}$, matrix algebra
shows that
$\phi(v+w)=A(v+w)$
$=A v+A w=\phi(v)+\phi(w)$
In linear algebra, such a
map computed by
multiplying a column
vector on the left by a
matrix A is known as a
linear transformation.
$\left.\begin{array}{|c|}\hline \text { Group Theory } \\ \text { Examples on Kernel of } \\ \text { a Homomorphism }\end{array}\right]$

Examples on Kernel of a Homomorphism

Example

Let $G L(n, \mathbb{R})$ be the
multiplicative group of all invertible $\mathrm{n} \times \mathrm{n}$
matrices. Recall that a matrix A is invertible if and only if its
determinant, $\operatorname{det}(\mathrm{A})$, is nonzero.

Examples on Kernel of a Homomorphism

Recall also that for matrices A,
$B \in G L(n, \mathbb{R})$ we have
$\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. This
means that det is a
homomorphism mapping GL(n,
\mathbb{R}) into the multiplicative group
\mathbb{R}^{*} of nonzero real numbers.
Ker(det)
$=\{A \in G L(n, \mathbb{R}) \mid \operatorname{det}(A)=1\}$.

Examples on Kernel of a Homomorphism

Homomorphisms of a group G into itself are often useful for studying the structure of G. Our next example gives a nontrivial
homomorphism of a group into itself.

Examples on Kernel of a Homomorphism

Example

Let $r \in \mathbb{Z}$ and let $\phi_{r}: \mathbb{Z} \rightarrow \mathbb{Z}$
be defined by $\phi_{r}(n)=r n$
for all $n \in \mathbb{Z}$. For all m,
$\mathrm{n} \in \mathbb{Z}$, we have
$\phi_{\mathrm{r}}(\mathrm{m}+\mathrm{n})=r(m+n)$
$=r m+r n=\phi_{r}(m)+\phi_{r}(n)$ so
ϕ_{r} is a homomorphism.
Examples on Kernel of a Homomorphism
Note that ϕ_{0} is the trivial
homomorphism, ϕ_{1} is
the identity map, and ϕ_{-1}
maps \mathbb{Z} onto \mathbb{Z}. For all
other r in \mathbb{Z}, the $\operatorname{map} \phi_{r}$
is not onto \mathbb{Z}.
$\operatorname{Ker}\left(\phi_{0}\right)=\mathbb{Z}$
$\operatorname{Ker}\left(\phi_{\mathrm{r}}\right)=\{0\}$ for $\mathrm{r} \neq 0$
$\left.\begin{array}{|c|}\hline \text { Group Theory } \\ \text { Examples on Kernel of } \\ \text { a Homomorphism }\end{array}\right]$

Examples on Kernel of a Homomorphism

Example (Reduction Modulo n)
Let y be the natural map of \mathbb{Z} into \mathbb{Z}_{n} given by $\mathrm{y}(\mathrm{m})$ $=r$, where r is the remainder given by the division algorithm when m is divided by n. Show that y is a homomorphism. Find $\operatorname{Ker}(\mathrm{y})$.

Examples on Kernel of a Homomorphism

Solution

We need to show that $y(s+t)=y(s)+y(t)$ for $s, t \in \mathbb{Z}$. Using the division algorithm, we let
$s=q_{1} n+r_{1}$
(1) and
$t=q_{2} n+r_{2} \quad$ (2) where $0 \leq r_{i}<n$ for $i=1,2$.
If $r_{1}+r_{2}=q_{3} n+r_{3}$ (3) for $0 \leq r_{3}<n$ then adding Eqs. (1) and
(2) we see that $s+t=\left(q_{1}+q_{2}+q_{3}\right) n+r_{3}$, so that
$y(s+t)=r_{3}$. From Eqs. (1) and (2) we see that
$y(s)=r_{1}$ and $y(t)=r_{2}$. Equation (3) shows that
the sum $r_{1}+r_{2}$ in \mathbb{Z}_{n} is equal to r_{3} also.

Examples on Kernel of a Homomorphism

Consequently $y(s+t)=y(s)+y(t)$,
so we do indeed have a homomorphism.
$\operatorname{Ker}(\mathrm{y})=n \mathbb{Z}$
$\left.\begin{array}{|c|}\hline \text { Group Theory } \\ \text { Kernel of a } \\ \text { Homomorphism }\end{array}\right]$

Kernel of a Homomorphism

Theorem
Let h be a
homomorphism from a
group G into a group G^{\prime}.
Let K be the kernel of h.
Then
a $K=\{x$ in $G \mid h(x)=h(a)\}$
$=h^{-1}[\{\mathrm{~h}(\mathrm{a})\}]$ and also
$K a=\{x$ in $G \mid h(x)=h(a)\}$
$=h^{-1}[\{\mathrm{~h}(\mathrm{a})\}]$

Kernel of a Homomorphism

Let $\mathrm{K}=\mathrm{Ker}(\mathrm{h})$ for a homomorphism $\mathrm{h}: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$. We think of h as "collapsing" K down onto é. Above Theorem shows that for $\mathrm{g} \in \mathrm{G}$, the cosets gK and Kg are the same, and are collapsed onto the single element $\mathrm{h}(\mathrm{g})$ by h . That is $\mathrm{h}^{-1}[\{\mathrm{~h}(\mathrm{~g})\}]=\mathrm{gK}=\mathrm{Kg}$. We have attempted to symbolize this collapsing in Fig. below, where the shaded rectangle represents G, the solid vertical line segments represent the cosets of
$\mathrm{K}=\operatorname{Ker}(\mathrm{h})$, and the horizontal line at the bottom represents G^{\prime}.

Kernel of a Homomorphism

Kernel of a Homomorphism

We view h as projecting the elements of G , which are in the shaded rectangle, straight down onto elements of G^{\prime}, which are on the horizontal line segment at the bottom. Notice the downward segment at the bottom. Notice the dabeled h at the left, starting at G and ending arrow labeled h at the left, starting at G and endin
at G^{\prime}. Elements of $\mathrm{K}=\operatorname{Ker}(\mathrm{h})$ thus lie on the solid at G^{\prime}. Elements of $\mathrm{K}=\operatorname{Ker}(\mathrm{h})$ thus lie on the solid
vertical line segment in the shaded box lying over e', as labeled at the top of the figure.

Group Theory

Kernel of a Homomorphism

Kernel of a Homomorphism		
Example		
We have $\left\|z_{1} z_{2}\right\|=\left\|z_{1}\right\|\left\|z_{2}\right\|$ for complex numbers z_{1} and z_{2}. This means that the absolute value function \|	is a homomorphism of the group \mathbb{C}^{*} of nonzero complex numbers under multiplication onto the group \mathbb{R}^{+}of positive real numbers under multiplication.	
	717	

Kernel of a Homomorphism

Since $\{1\}$ is a subgroup of \mathbb{R}^{+}, the complex numbers of magnitude 1 form a subgroup U of \mathbb{C}^{*}. Recall that the complex numbers can be viewed as filling the coordinate plane, and that the magnitude of a the coordinate plane, and that the magnitude of complex number is its distance from the origin.
Consequently, the cosets of U are circles with
homomorphism onto its point of intersection with
the positive real axis.

Kernel of a Homomorphism
Theorem
Let h be a
homomorphism from a
group G into a group G^{\prime}.
Let K be the kernel of h .
Then
a $K=\{x$ in $G \mid h(x)=h(a)\}$
$=h^{-1}[\{\mathrm{~h}(\mathrm{a})\}]$ and also
$K a=\{x$ in $G \mid h(x)=h(a)\}$
$=h^{-1}[\{\mathrm{~h}(\mathrm{a})\}]$

Kernel of a Homomorphism

Above theorem shows that the kernel of a group homomorphism $h: \mathrm{G} \rightarrow \mathrm{G}$ ' is a subgroup K of G whose left and right cosets coincide, so that $\mathrm{gK}=\mathrm{Kg}$ for all g $\in G$. When left and right cosets coincide, we can form a coset group G / K. Furthermore, we have seen that K then appears as the kernel of a homomorphism of G onto this coset group in a very natural way. Such subgroups K whose left and right cosets coincide are very useful in studying normal group.

Kernel of a Homomorphism

Example

Let D be the additive group of all differentiable functions mapping \mathbb{R} into \mathbb{R}, and let F be the additive group of all mapping \mathbb{R} into \mathbb{R}, and iet \mathbb{F} be the additive group of al
functions mapping \mathbb{R} into \mathbb{R} Then differentiation gives unctions mapping $\operatorname{map} \phi \rightarrow F$, where $\phi(f)=f^{\prime}$ for $f \in F$. We easily see us a map $\phi: D \rightarrow F$, where $\phi(\mathrm{f})=\mathrm{f}$
that ϕ is a homomorphism, for
$\phi(f+g)=(f+g)^{\prime}=f^{\prime}+g^{\prime}=\phi(f)+\phi(g)$; the derivative of a sum is $\phi(\mathrm{f}+\mathrm{g})=(\mathrm{f}+\mathrm{g})^{\prime}=\mathrm{f}^{\prime}+\mathrm{g}^{\prime}=\phi(\mathrm{f})+\phi($
the sum of the derivatives.

Kernel of a Homomorphism
Now $\operatorname{Ker}(\phi)$ consists of all functions f such that $f^{\prime}=0$. Thus Ker($\phi)$ consists of all constant functions, which form a subgroup C of F . Let us find all functions in G mapped into x^{2} by ϕ, that is, all functions whose derivative is x^{2}. Now we know that $x^{3} / 3$ is one such function. By previous theorem, all such functions form the coset $x^{3} / 3+C$.

Now $\operatorname{Ker}(\phi)$ consists of all functions f such that $\mathrm{f}^{\prime}=0$ Thus $\operatorname{Ker}(\phi)$ consists of all constant functions, which form a subgroup C of F. Let us find all functions in G mapped into x^{2} by ϕ, that is, all functions whose function. By previous theorem, all such functions form the coset $x^{3} / 3+C$.

Examples of Group Homomorphisms

Example (Evaluation Homomorphism)

Let F be the additive group of all functions mapping
\mathbb{R} into \mathbb{R}, let \mathbb{R} be the additive group of real numbers, and let c be any real number. Let $\phi: F \rightarrow \mathbb{R}$ be the evaluation homomorphism defined by $\phi_{c}(f)=f(c)$ for $f \in F$. Recall that, by definition, the sum of two functions f and g is the function $f+g$ whose value at x is $f(x)+g(x)$. Thus we have
$\phi_{c}(\mathrm{f}+\mathrm{g})=(\mathrm{f}+\mathrm{g})(\mathrm{c})=\mathrm{f}(\mathrm{c})+\mathrm{g}(\mathrm{c})=\phi_{\mathrm{c}}(\mathrm{f})+\phi_{\mathrm{c}}(\mathrm{g})$, so we have a homomorphism.

Examples of Group Homomorphisms

Composition of group homomorphisms is again a group homomorphism. That is, if
$\phi: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ and $y: \mathrm{G}^{\prime} \rightarrow \mathrm{G}$ " are both group homomorphisms then their composition
$(\mathrm{y} \circ \phi): \mathrm{G} \rightarrow \mathrm{G}^{\prime \prime}$, where $(\mathrm{y} \circ \phi)(\mathrm{g})=\mathrm{y}(\phi(\mathrm{g}))$ for $\mathrm{g} \in \mathrm{G}$, is also a homomorphism.

Examples of Group Homomorphisms
Example
Let $\mathrm{G}=\mathrm{G}_{1} \times \cdots \times \mathrm{G}_{\mathrm{i}} \times \cdots \times \mathrm{G}_{\mathrm{n}}$ be a direct product of
groups. The projection map $\pi_{i}: \mathrm{G} \rightarrow \mathrm{G}_{\mathrm{i}}$ where
$\pi_{i}\left(\mathrm{~g}_{1} \cdots, \mathrm{~g}_{\mathrm{i}} \cdots, \mathrm{g}_{n}\right)=\mathrm{g}_{\mathrm{i}}$ is a homomorphism for
each $\mathrm{i}=1, \cdots, \mathrm{n}$.
This follows immediately from the fact that the
binary operation of G coincides in the ith
component with the binary operation in G_{i}.

Examples of Group Homomorphisms

Example

Let F be the additive group of continuous functions with domain $[0,1]$ and let \mathbb{R} be the additive group of real numbers. The map $\sigma: \mathrm{F} \rightarrow \mathbb{R}$ defined by $\sigma(f)=\int_{0}{ }^{1} f(x) d x$ for $f \in F$ is a homomorphism, for $\sigma(\mathrm{f}+\mathrm{g})=\int_{0}{ }^{1}(\mathrm{f}+\mathrm{g})(\mathrm{x}) \mathrm{dx}=\int_{0}{ }^{1}[\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})] \mathrm{dx}=$
$\int_{0}{ }^{1} f(x) d x+\int_{0}{ }^{1} g(x) d x=\sigma(f)+\sigma(g)$ for all $f, g \in F$.

Examples of Group Homomorphisms

Each of the homomorphisms in the preceding two examples is a many-to-one map. That is, different points of the domain of the map may be carried into the same point. Consider, for illustration, the homomorphism $\pi_{1}: \mathbb{Z}_{2} \times \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{2}$ We have
$\pi_{1}(0,0)=\pi_{1}(0,1)=\pi_{1}(0,2)=\pi_{1}(0,3)=0$, so four elements in $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ are mapped into 0 in \mathbb{Z}_{2} by π_{1}.

Group Theory
Factor Groups from
Homomorphisms

Factor Groups from Homomorphisms

Let G be a group and let S be a set having the same cardinality as G . Then there is a one-to-one
correspondence \leftrightarrow between S and G. We can use \leftrightarrow to define a binary operation on S, making S into a group isomorphic to G . Naively, we simply use the correspondence to rename each element of G by
the name of its corresponding (under \leftrightarrow) element in
S. We can describe explicitly the computation of $x y$
for $x, y \in S$ as follows:
if $x \leftrightarrow g_{1}$ and $y \leftrightarrow g_{2}$ and $z \leftrightarrow g_{1} g_{2}$, then $x y=z \quad$ (1)
Factor Groups from Homomorphisms

The direction \rightarrow of the one-to-one correspondence
$s \leftrightarrow g$ between $s \in S$ and $g \in G$ gives us a one-to-one
function μ mapping S onto G. The direction \leftarrow of \leftrightarrow
gives us the inverse function μ^{-1}. Expressed in terms
of μ, the computation $(1 \nmid$ of $x y$ for $x, y \in S$ becomes
if $\mu(x)=g_{1}$ and $\mu(y)=g_{2}$ and $\mu(z)=g_{1} g_{2}$, then $x y=z \quad(2)$
The map $\mu: S \rightarrow G$ now becomes an isomorphism
mapping the group S onto the $\operatorname{group} G$. Notice that
from (2), we obtain $\mu(x y)=\mu(z)=g_{1} g_{2}=\mu(x) \mu(y)$, the
required homomorphism property.

Group Theory

Factor Groups from
Homomorphisms

Factor Groups from Homomorphisms	
Let G and G^{\prime} be groups, let $\mathrm{h}: \mathrm{G} \rightarrow \mathrm{G}$ ' be a	
homomorphism, and let $\mathrm{K}=\operatorname{Ker}(\mathrm{h})$. The previous	
theorem shows that for $\rightarrow \mathrm{a} \in \mathrm{G}$, we have	
$\mathrm{h}^{-1}[\{\mathrm{~h}(\mathrm{a})\}]=\mathrm{aK}=\mathrm{Ka}$. We have a one-to-one correspondence aK $\leftrightarrow h(a)$ between cosets of K in G and elements of the subgroup $\mathrm{h}[\mathrm{G}]$ of G^{\prime}.	
	735

Factor Groups from Homomorphisms

Remember that if $\mathrm{x} \in \mathrm{aK}$, so that $\mathrm{x}=\mathrm{ak}$ for some $\mathrm{k} \in K$, then $h(x)=h(a k)=h(a) h(k)=h(a) e^{\prime}$
$=h(a)$, so the computation of the element of $h[G]$ corresponding to the coset $a K=x K$ is the same whether we compute it as $h(a)$ or as $h(x)$. Let us denote the set of all cosets of K by G / K. (We read G / K as "G over K " or as " G modulo K " or as " G mod K ," but never as "G divided by K.")

Factor Groups from Homomorphisms

We started with a homomorphism $\mathrm{h}: \mathrm{G} \rightarrow \mathrm{G}$ ' having kernel K, and we finished with the set G / K of cosets in one-to-one correspondence with the elements of the group h[G]. In our work above that, we had a set S with elements in one-to-one correspondence with a those of a group G , and we made S into a group isomorphic to G with an isomorphism μ.

Factor Groups from Homomorphisms

Replacing S by G / H and replacing G by $\mathrm{h}[\mathrm{G}$] in that construction, we can consider G / K to be a group isomorphic to $\mathrm{h}[\mathrm{G}]$ with that isomorphism μ. In terms of G/K and h[G], the computation (2) of the product $(\mathrm{xK})(\mathrm{yK})$ for $\mathrm{xK}, \mathrm{yK} \in \mathrm{G} / \mathrm{K}$ becomes if $\mu(\mathrm{xK})=\mathrm{h}(\mathrm{x})$ and $\mu(\mathrm{yK})=\mathrm{h}(\mathrm{y})$ and $\mu(\mathrm{zK})=\mathrm{h}(\mathrm{x}) \mathrm{h}(\mathrm{y})$, then $(x K)(y K)=z K$.
(3)

Factor Groups from Homomorphisms

But because h is a homomorphism, we can easily find $z \in G$ such that $\mu(z K)=h(x) h(y)$; namely, we take $z=x y$ in G, and find that $\mu(z K)=\mu(x y K)=h(x y)=h(x) h(y)$.
This shows that the product $(x K)(y K)$ of two cosets is the coset ($x y$)K that contains the product $x y$ of x and y in G. While this computation of ($x K$) (yK) may seem to depend on our choices x from $x K$ and y from $y K$, our work above shows it does not. We demonstrate it again here because it is such an important point. If $\mathrm{k}_{1}, \mathrm{k}_{2} \in \mathrm{~K}$ so that $x \mathrm{k}_{1}$ is an element of $x K$ and $y \mathrm{k}_{2}$ is an $k_{1}, k_{2} \in K$ so that $x k_{1}$ is an element of $x K$ and $y k_{2}$ is
element of $y K$, then there exists $h_{3} \in K$ such that element of $y K$, then there exists $h_{3} \in K$ such that
$k_{1} y=y k_{3}$ because $K y=y K$ by previous Theorem.

Factor Groups from Homomorphisms

Thus we have
$\left(x k_{1}\right)\left(y k_{2}\right)=x\left(k_{1} y\right) k_{2}=x\left(y k_{3}\right) k_{2}=(x y)\left(k_{3} k_{2}\right) \in(x y) K$, so we obtain the same coset. Computation of the product of two cosets is accomplished by choosing an element from each coset and taking, as product of the cosets, the coset that contains the product in G of the choices. Any time we define something (like a product) in terms of choices, it is important to show that it is well defined, which means that it is independent of the choices made.

Group Theory
Factor Groups from
Homomorphisms

Factor Groups from Homomorphisms

Theorem
Let $\mathrm{h}: \mathrm{G} \rightarrow \mathrm{G}$ ' be a group homomorphism with kernel K. Then the cosets of K form a
factor group, G/K. where $(\mathrm{aK})(\overrightarrow{\mathrm{b} K})=(\mathrm{ab}) \mathrm{K}$. Also, the map μ : $\mathrm{G} / \mathrm{H} \rightarrow \mathrm{h}[\mathrm{G}]$
defined by $\mu(a K)=h(a)$ is an isomorphism. Both coset multiplication and μ are well defined, independent of the choices a and b from the cosets.

Factor Groups from Homomorphisms

For example, taking $\mathrm{n}=5$, we see the cosets of $5 \mathbb{Z}$ are
$5 \mathbb{Z}=\{\ldots,-10,-5,0,5,10, \ldots\}$,
$1+5 \mathbb{Z}=\{\ldots,-9,-4,1,6,11, \ldots\}$,
$2+5 \mathbb{Z}=\{\ldots,-8,-3,2,7,12, \ldots\}$,
$3+5 \mathbb{Z}=\{\ldots,-7,-2,3,8,13, \ldots\}$
$4+5 \mathbb{Z}=\{\ldots,-6,-1,4,9,14, \ldots\}$.
Note that the isomorphism $\mu: \mathbb{Z} / 5 \mathbb{Z} \rightarrow \mathbb{Z}_{5}$ of previous
Theorem assigns to each coset of $5 \mathbb{Z}$ its smallest nonnegative element. That is, $\mu(5 \mathbb{Z})=0, \mu(1+5 Z)=1$, etc.

Factor Groups from Homomorphisms

It is very important that we learn how to compute in a
factor group. We can multiply (add) two cosets by choosing anytwo representative elements, multiplying (adding) them and finding the coset in which the resulting product (sum) lies.

Factor Groups from Homomorphisms

Example

Consider the factor group $\mathbb{Z} / 5 \mathbb{Z}$ with the cosets
shown in precious example. We can add
$(2+5 \mathbb{Z})+(4+5 \mathbb{Z})$ by choosing 2 and 4 , finding $2+4=6$,
and noticing that 6 is in the coset $1+5 \mathbb{Z}$. We could
equally well add these two cosets by choosing 27 in
$2+5 \mathbb{Z}$ and -16 in $4+5 \mathbb{Z}$; the sum $27+(-16)=11$ is also in the coset $1+5 \mathbb{Z}$.

Factor Groups from Homomorphisms

The factor groups $\mathbb{Z} / n \mathbb{Z}$ in the preceding example are classics. Recall that we refer to the cosets of $n \mathbb{Z}$ as residue classes modulo n. Two integers in the same coset are congruent modulo n. This
terminology is carried over to other factor groups. A
factor group G/H is often called the factor group of
G modulo H . Elements in the same coset of H are often said to be congruent modulo H . By abuse of notation, we may sometimes write $\mathbb{Z} / n \mathbb{Z}=\mathbb{Z}_{n}$ and think of \mathbb{Z}_{n} as the additive group of residue classes of \mathbb{Z} modulo n.

Group Theory
Factor Groups from
Normal Subgroups

Factor Groups from Normal Subgroups

So far, we have obtained factor groups only from homomorphisms. Let G be a group and let H be a
\rightarrow subgroup of G. Now H has both left cosets and right cosets, and in general, a left coset aH need not be the same set as the right coset Ha .

Factor Groups from Normal Subgroups

Suppose we try to define a binary operation on left cosets by defining $(\mathrm{aH})(\mathrm{bH})=(\mathrm{ab}) \mathrm{H}$ as in the statement of previous theorem. The above equation attempts to define left coset multiplication by choosing representatives a and b from the cosets.
The above equation is meaningless unless it gives a well-defined operation, independent of the
representative elements a and b chosen from the cosets. In the following theorem, we have proved that the above equation gives a well-defined binary operation if and only if H is a normal subgroup of G .

Factor Groups from Normal Subgroups

Theorem

Let H be a subgroup of a
group G.
\rightarrow Then H is normal if and
only if
$(a H)(b H)=(a b) H$,
for all a, b in G

Factor Groups from Normal Subgroups

Above theorem shows that if left and right cosets of H coincide, then the equation
$\rightarrow(a H)(b H)=(a b) H$, for all a, b in G
gives a well-defined binary operation on cosets.

Factor Groups from Normal Subgroups

Theorem

If N is a normal subgroup of ($G, \cdot \cdot)$, the set of cosets
$\rightarrow G / N=\{N g \mid g \in G\}$ forms a group ($\mathrm{G} / \mathrm{N}, \cdot \cdot$), where the operation is defined by $\left(\mathrm{Ng}_{1}\right) \cdot\left(\mathrm{Ng}_{2}\right)=\mathrm{N}\left(\mathrm{g}_{1} \cdot \mathrm{~g}_{2}\right)$.

Example

Since \mathbb{Z} is an abelian group, nZ is a normal subgroup. Above

Factor Groups from
\rightarrow theorem allows us to construct the factor group $\mathbb{Z} / \mathrm{n} \mathbb{Z}$ with no reference to a
homomorphism. As we already observed, $\mathbb{Z} / \mathrm{n} \mathbb{Z}$ is isomorphic to \mathbb{Z}_{n}.

Factor Groups from Normal Subgroups

Example

Consider the abelian group \mathbb{R} under addition, and let $\mathrm{c} \in \mathbb{R}^{+}$. The cyclic
subgroup <c> of \mathbb{R} contains as elements
$\ldots-3 c,-2 c,-c, 0, c, 2 c$,
$3 c, \cdots$.

Factor Groups from Normal Subgroups

Every coset of $\langle\mathrm{c}\rangle$ contains just one element of x such that $0 \leq x<c$. If we choose these elements as representatives of the cosets when computing in $\mathbb{R} /\langle c>$, we find that we are computing their sum modulo c in \mathbb{R}_{c}. For example, if $\mathrm{c}=5.37$, then the sum of the cosets $4.65+<5.37>$ and $3.42+<5.37>$
is the coset $8.07+<5.37>$, which contains 8.07-5.37
$=2.7$, which is $4.65+_{5.37} 3.42$.

Factor Groups from Normal Subgroups

Working with these coset elements x where $0 \leq \mathrm{x}<$ c, we thus see that the group \mathbb{R}_{c} is isomorphic to
$\mathbb{R} /<c>$ under an isomorphism μ where $\mu(x)=x+<c>$
for all $x \in \mathbb{R}_{c}$. Of course, $\mathbb{R} /\langle c\rangle$ is then also
isomorphic to the circle group U of complex
numbers of magnitude 1 under multiplication.

Group Theory

Kernel of an Injective Homomorphism

Kernel of an Injective Homomorphism

Theorem

A homomorphism
$h: G \rightarrow G^{\prime}$ is injective
if and only if
Ker $\mathrm{h}=\{\mathrm{e}\}$.

Kernel of an Injective Homomorphism

Proof

Suppose h is injective,
and let $\mathrm{x} \in$ Ker h .
Then $h(x)=e^{\prime}=h(e)$.
Hence $x=e$.

Kernel of an Injective Homomorphism	
	Conversely, suppose
	Ker $h=\{e\}$.
	$T h e n h(x)=h(y)$
	$\Rightarrow h\left(x y^{-1}\right)=h(x) h\left(y^{-1}\right)$
	$=h(x) h(y)^{-1}=e^{\prime}$
	$\Rightarrow x y^{-1} \in \operatorname{Ker~h}^{\prime}$
	$\Rightarrow x y^{-1}=e$
	$\Rightarrow x=y$.
	$H e n c e, h$ is injective.

Factor Groups from Normal Subgroups	
	Theorem Let K be a normal subgroup of G. Then y: G G G/K given by y(g)=gK is a homomorphism with kernel K.

Factor Groups from Normal Subgroups
normal
Then y : $\mathrm{G} \rightarrow \mathrm{G} / \mathrm{K}$ given by =gK is a
kernel K.
Proof
Let $g_{1}, g_{2} \in G$. Then
$y\left(g_{1} g_{2}\right)=\left(g_{1} g_{2}\right) K$
$=\left(g_{1} K\right)\left(g_{2} K\right)=y\left(g_{1}\right) y\left(g_{2}\right)$,
so y is a homomorphism.
Since $g_{1} K=K$ if and only if
$g_{1} \in K$, we see that the
kernel of y is indeed K.

| Example on Morphism Theorem of Groups |
| :--- | :--- |
| |
| |
| |
| Example |
| Classify the group |
| $\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right) /\left(\{0\} \times \mathbb{Z}_{2}\right)$ |
| according to the |
| fundamental theorem of |
| finitely generated abelian |
| groups. |

Example on Morphism Theorem of Groups

Solution
The projection map
$\pi_{1}: \mathbb{Z}_{4} \times \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{4}$ given by
$\pi_{1}(x, y)=x$ is a
homomorphism of $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$
onto \mathbb{Z}_{4} with kernel
$\{0\} \times \mathbb{Z}_{2}$. By fundamental
theorem of
homomorphism, we
know that the given
factor group is isomorphic to \mathbb{Z}_{4}.

Example on Morphism Theorem of Groups
The projection map
$\pi_{1}: \mathbb{Z}_{4} \times \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{4}$ given by
$\pi_{1}(x, y)=x$.
$K=\operatorname{Ker} \pi_{1}=\{0\} \times \mathbb{Z}_{2}$
$=\{(0,0),(0,1)\}$.
$(1,0)+K=\{(1,0),(1,1)\}$
$(2,0)+K=\{(2,0),(2,1)\}$
$(3,0)+K=\{(3,0),(3,1)\}$

Group Theory

he projection map
$\pi_{1}(\mathrm{x}, \mathrm{y})=\mathrm{x}$.
Normal Groups and Inner Automorphisms

Normal Groups and Inner Automorphisms

We derive some
alternative
characterizations of
normal subgroups, which often provide us with an easier way to check normality than finding both the left and the right coset decompositions.

Normal Groups and Inner Automorphisms

Theorem

The following are three equivalent conditions
for a subgroup H of a group G to be a normal subgroup of G.

1. ghg $^{-1} \in H$ for all $g \in G$ and $h \in H$.
2. $\mathrm{gHg}^{-1}=\mathrm{H}$ for all $\mathrm{g} \in \mathrm{G}$.
3. $\mathrm{gH}=\mathrm{Hg}$ for all $\mathrm{g} \in \mathrm{G}$.

Normal Groups and Inner Automorphisms

Condition (2) of above
Theorem is often taken as
the definition of a normal subgroup H of a group G.

Normal Groups and Inner Automorphisms

Conversely, if $\mathrm{gHg}^{-1}=\mathrm{H}$ for all $\mathrm{g} \in \mathrm{G}$, then $\mathrm{ghg}^{-1}=\mathrm{h}_{1}$ so
$\mathrm{gh}=\mathrm{h}_{1} \mathrm{~g} \in \mathrm{Hg}$, and $\mathrm{gH} \subseteq \mathrm{Hg}$. But also, $\mathrm{g}^{-1} \mathrm{Hg}=\mathrm{H}$ giving $\mathrm{g}^{-1} \mathrm{hg}=\mathrm{h}_{2}$, so that $\mathrm{hg}=\mathrm{gh}_{2}$ and $\mathrm{Hg} \subseteq \mathrm{gH}$.

Normal Groups and
Group Theory Inner Automorphisms

Normal Groups and Inner Automorphisms

Proof

Suppose that $\mathrm{gH}=\mathrm{Hg}$ for all $\mathrm{g} \in \mathrm{G}$. Then $\mathrm{gh}=\mathrm{h}_{1} \mathrm{~g}$, so ghg $^{-1} \in \mathrm{H}$ for all $\mathrm{g} \in \mathrm{G}$ and all $\mathrm{h} \in \mathrm{H}$.
Then $\mathrm{gHg}^{-1}=\left\{\mathrm{ghg}^{-1} \mid \mathrm{h} \in \mathrm{H}\right\} \subseteq \mathrm{H}$ for all $\mathrm{g} \in \mathrm{G}$.
We claim that actually $\mathrm{gHg}^{-1}=\mathrm{H}$. We must show
that $\mathrm{H} \subseteq \mathrm{gHg}^{-1}$ for all $\mathrm{g} \in \mathrm{G}$. Let $\mathrm{h} \in \mathrm{H}$. Replacing g by
g^{-1} in the relation $\mathrm{ghg}^{-1} \in \mathrm{H}$, we obtain
$g^{-1} h\left(g^{-1}\right)^{-1}=g^{-1} h g=h_{1}$ where $h_{1} \in H$.
Consequently, $\mathrm{gHg}^{-1}=\mathrm{H}$ for all $\mathrm{g} \in \mathrm{G}$.

Normal Groups and Inner Automorphisms	
	Conversely, if $\mathrm{gHg}^{-1}=\mathrm{H}$ for all $\mathrm{g} \in \mathrm{G}$, then $\mathrm{ghg}^{-1}=\mathrm{h}_{1}$ so $\mathrm{gh}=\mathrm{h}_{1} \mathrm{~g} \in \mathrm{Hg}$, and $\mathrm{gH} \subseteq \mathrm{Hg}$. But also, $\mathrm{g}^{-1} \mathrm{Hg}=\mathrm{H}$ giving $\mathrm{g}^{-1} \mathrm{hg}=\mathrm{h}_{2}$, so that $\mathrm{hg}=\mathrm{gh}_{2}$ and $\mathrm{Hg} \subseteq \mathrm{gH}$.

Normal Groups and Inner Automorphisms

Example

Every subgroup H of an
abelian group G is
normal.
We need only note that $\mathrm{gh}=\mathrm{hg}$ for all $\mathrm{h} \in \mathrm{H}$ and all $g \in G$, so, of course, $\mathrm{ghg}^{-1}=\mathrm{h} \in \mathrm{H}$ for all $\mathrm{g} \in$ G and all $\mathrm{h} \in \mathrm{H}$.

Normal Groups and Inner Automorphisms

Example

The map $\mathrm{i}_{\mathrm{g}}: \mathrm{G} \rightarrow \mathrm{G}$
defined by $\mathrm{i}_{\mathrm{g}}(\mathrm{x})=\mathrm{gxg}^{-1}$ is
a homomorphism of G
into itself.
$\mathrm{i}_{\mathrm{g}}(\mathrm{xy})=\mathrm{gxyg}^{-1}$
$=\left(\mathrm{gxg}^{-1}\right)\left(\mathrm{gyg}^{-1}\right)$
$=i_{g}(x) i_{g}(y)$

Normal Groups and Inner Automorphisms
We see that
$\mathrm{i}_{\mathrm{g}}(\mathrm{x})=\mathrm{i}_{\mathrm{g}}(\mathrm{y})$
$\Rightarrow \mathrm{gxg}^{-1}=\mathrm{gyg}^{-1}$
$\Rightarrow \mathrm{x}=\mathrm{y}$,
so i_{g} is injective.
Since for any x in G
$\mathrm{i}_{\mathrm{g}}\left(\mathrm{g}^{-1} \mathrm{xg}\right)=\mathrm{g}\left(\mathrm{g}^{-1} \mathrm{xg}\right) \mathrm{g}^{-1}=\mathrm{x}$,
we see that i_{g} is onto G ,
so it is an isomorphism
of G with itself.

Inner Automorphisms

Definition

An isomorphism $\phi: \mathrm{G} \rightarrow \mathrm{G}$ of a group G with itself is an automorphism of G . The automorphism $\mathrm{i}_{\mathrm{g}}: \mathrm{G} \rightarrow \mathrm{G}$, where $\mathrm{i}_{\mathrm{g}}(\mathrm{x})=\mathrm{gxg}^{-1}$ for all $x \in G$, is the inner automorphism of G by g , denoted by $\operatorname{Inn}(\mathrm{G})$. Performing i_{g} on x is called conjugation of x by g.

Inner Automorphisms

Theorem

The following are three equivalent conditions for a subgroup H of a group G to be a normal subgroup of G.

1. $\mathrm{ghg}^{-1} \in \mathrm{H}$ for all $\mathrm{g} \in \mathrm{G}$ and $\mathrm{h} \in \mathrm{H}$.
2. $\mathrm{gHg}^{-1}=\mathrm{H}$ for all $\mathrm{g} \in \mathrm{G}$. 3. $\mathrm{gH}=\mathrm{Hg}$ for all $\mathrm{g} \in \mathrm{G}$.

The equivalence of conditions (2) and (3) shows that $\mathrm{gH}=\mathrm{Hg}$ for all $\mathrm{g} \in \mathrm{G}$ if and only if $\mathrm{i}_{\mathrm{g}}[\mathrm{H}]=\mathrm{H}$ for all $g \in G$, that is, if and only if H is invariant under all inner automorphisms of G.

Inner Automorphisms

It is important to realize that $\mathrm{i}_{\mathrm{g}}[\mathrm{H}]=\mathrm{H}$ is an
equation in sets; we need not have $\mathrm{i}_{\mathrm{g}}(\mathrm{h})=\mathrm{h}$ for all
$h \in H$.
That is i_{g} may perform a nontrivial permutation of the sét H .
We see that the normal subgroups of a group G
are precisely those that are invariant under all inner automorphisms.
A subgroup K of G is a conjugate subgroup of H if $K=\mathrm{i}_{\mathrm{g}}[\mathrm{H}]$ for some $\mathrm{g} \in \mathrm{G}$.

Inner Automorphisms
Lemma The set of all inner automorphisms of G is a subgroup of Aut(G).

Inner Automorphisms

Proof

(1) Let $i_{a}, i_{b} \in \operatorname{Inn}(G)$.

Then $i_{a}\left(i_{b}(x)\right)=a\left(i_{b}(x)\right) a^{-1}=a b x b^{-1} a^{-1}$
$=a b x(a b)^{-1}=i_{a b} \in \operatorname{Inn}(G)$.
Hence the conjugation by b composed by conjugation by a is conjugation by ab .
(2) The inverse of i_{a} is conjugation by $a^{\prime}=a^{-1}$.
$\left.i_{a}\left(i_{a^{\prime}}\right)(x)\right)=i_{a}\left(a^{\prime} x\left(a^{\prime}\right)^{-1}\right)=a a^{\prime} x a^{\prime-1} a^{-1}=a a^{\prime} x\left(a a^{\prime}\right)^{-1}=x$.
Thus $\operatorname{Inn}(\mathrm{G})$ is a subgroup.
$\left.\begin{array}{|c|}\hline \text { Group Theory } \\ \text { Example on } \\ \text { Automorphism }\end{array}\right]$

Example

Prove that $\operatorname{Aut}\left(\mathbb{Z}_{\mathrm{n}}\right) \cong \mathrm{U}_{\mathrm{n}}$.

Inner Automorphisms

Solution

An automorphism $\varphi: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ is determined by $\varphi(1)$ as for any integer k,
$\varphi(k)=\varphi(1+\ldots+1)=\varphi(1)+\ldots+\varphi(1)=k \varphi(1)$.
Since isomorphisms preserve order, $\varphi(1)$ must be a generator of \mathbb{Z}_{n}.
We have proved that the generators of \mathbb{Z}_{n} are those integers $k \in \mathbb{Z}_{n}$ for which $\operatorname{gcd}(k, n)=1$. But these k are precisely the elements of $U_{n}=\left\{1, \omega, \ldots, \omega^{n-1} \mid \omega=e^{2 \pi i / n}\right\}$.

Inner Automorphisms

In this way, each element a of U_{n} gives a distinct automorphism φ_{a} which is multiplication by a , and these are all the automorphisms of \mathbb{Z}_{n}.
Furthermore, μ : $\operatorname{Aut}\left(\mathbb{Z}_{\mathrm{n}}\right) \rightarrow \mathrm{U}_{\mathrm{n}}$ given by $\mu\left(\varphi_{\mathrm{a}}\right)=\mathrm{a}$ is a group isomorphism.

- $\mu\left(\varphi_{\mathrm{ab}}\right)=\mathrm{ab}=\mu\left(\varphi_{\mathrm{a}}\right) \mu\left(\varphi_{\mathrm{b}}\right)$
- $\mu\left(\varphi_{\mathrm{a}}\right)=\mu\left(\varphi_{\mathrm{b}}\right) \Rightarrow \mathrm{a}=\mathrm{b}$
- $\mu\left(\varphi_{\mathrm{a}}\right)=\mathrm{a}$

Group Theory
Theorem on Factor
Group

Theorem on Factor Group

Theorem
A factor group of a
cyclic group is cyclic.

Theorem on Factor Group
Proof
Let G be cyclic with generator a, and let N be a
normal subgroup of G . We claim the coset aN
generates G / N. We must compute all powers
of aN. But this amounts to computing, in G , all
powers of the representative a and all these
powers give all elements in G . Hence the powers
of aN certainly give all cosets of N and G / N is
cyclic.

Group Theory
Example on Factor
Group

Example on Factor Group	
	Example
	Let us compute the
factor group	
	$\left(\mathbb{Z}_{4} \times \mathbb{Z}_{6}\right) /((0,2))$.
Now $(0,2)$ generates	
the subgroup	
	$\mathrm{H}=\{(0,0),(0,2),(0,4)\}$
of $\mathbb{Z}_{4} \times \mathbb{Z}_{6}$ of order 3.	

Example on Factor Group

Here the first factor \mathbb{Z}_{4} of $\mathbb{Z}_{4} \times \mathbb{Z}_{6}$ is left alone. The \mathbb{Z}_{6} factor, on the other hand, is essentially collapsed by a subgroup of order 3, giving a factor group in the second factor of order 2 that must be isomorphic to \mathbb{Z}_{2}. Thus
$\left(\mathbb{Z}_{4} \times \mathbb{Z}_{6}\right) /((0,2))$ is isomorphic to $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$.

Group Theory
Factor Group
Computations

Factor Group Computations

Let N be a normal
subgroup of G. In the
factor group G / N, the
subgroup N acts as
identity element. We may
regard N as being
collapsed to a single
element, either to 0 in
additive notation or to e
in multiplicative notation.

Factor Group Computations

Factor Group Computations

Recall that $y: G \rightarrow G / N$ defined by $y(a)=a N$ for $a \in \operatorname{G}$ is a homomorphism of G onto G / N. We can view the "line" G / N at the bottom of the figure as obtained by collapsing to a point each coset of N in another copy of G . Each point of G/N thus corresponds to a whole vertical line segment in the shaded portion, representing a coset of N in G . It is crucial to remember that multiplication of cosets in G / N can be computed by multiplying in G, using any representative elements of the cosets.

Group Theory

Factor Group

Factor Group Computations
Additively, two elements of G will collapse into the same element of G / N if they differ by an element of N. Multiplicatively, a and b collapse together if ab collapsing can vary from
nonexistent to
catastrophic. We illustrate
the two extreme cases by
examples.

Factor Group Computations

Example

The trivial subgroup
$N=\{0\}$ of \mathbb{Z} is, of
course, a normal
subgroup.
Compute $\mathbb{Z} /\{0\}$. nonexistent to ophic. We extreme cases by

	Folution
Sactor Group Computations $N=\{0\}$ has only	
one element, every	
coset of N has only one	
element. That is, the	
cosets are of the form	
$\{\mathrm{m}\}$ for $m \in \mathbb{Z}$. There is	
no collapsing at all, and	
consequently, $\mathbb{Z} /\{0\} \cong$	
\mathbb{Z}. Each $m \in \mathbb{Z}$ is simply	
renamed $\{m\}$ in $\mathbb{Z} /\{0\}$.	

Factor Group Computations

Example

Let n be a positive integer. The set
$\mathrm{n} \mathbb{R}=\{\mathrm{nr} \mid \mathrm{r} \in \mathbb{R}\}$ is a subgroup of \mathbb{R} under addition, and it is normal since \mathbb{R} is abelian.
Compute $\mathbb{R} / n \mathbb{R}$.

Factor Group Computations

Solution
Actually $n \mathbb{R}=\mathbb{R}$,
because each $x \in \mathbb{R}$ is of the form $n(x / n)$ and $x / n \in \mathbb{R}$. Thus $\mathbb{R} / n \mathbb{R}$ has only one element, the subgroup $n \mathbb{R}$. The factor group is a trivial group consisting only of the identity element.

Group Theory

Factor Group Computations

Factor Group Computations	
	As illustrated in above Examples for any group G, we have $\mathrm{G} /\{\mathrm{e}\} \cong \mathrm{G}$ and $\mathrm{G} / \mathrm{G} \cong\{\mathrm{e}\}$, where $\{\mathrm{e}\}$ is the trivial group consisting only of the identity element e. These two extremes of factor groups are of little importance.

Factor Group Computations

We would like knowledge of a factor group G/N to give some information about the structure of G .
If $\mathrm{N}=\{\mathrm{e}\}$, the factor group has the same structure as G and we might as well have tried to study G directly.

If $\mathrm{N}=\mathrm{G}$, the factor
group has no significant structure to supply information about G .

If G is a finite group and $N \neq\{\mathrm{e}\}$ is a normal subgroup of G , then G / N is a smaller group than G, and
consequently may have a more simple structure than G .

Factor Group Computations

In next module, we give example showing that even when G / N has order 2 , we may be able to deduce some useful results.
If G is a finite group and G / N has just two elements, then we must have $|\mathrm{G}|=2|\mathrm{~N}|$.

Group Theory
Factor Group
Computations

Factor Group Computations

Note that every subgroup H containing just half the elements of a finite group G must be a normal subgroup, since for each element a in G but not in H , both the left coset aH and the right coset Ha must consist of all elements in G that are not in H .

| Factor Group Computations |
| :--- | :--- |
| Thus the left and right
 cosets of H coincide
 and H is a normal
 subgroup of G. |

Factor Group Computations

Example

Because $\left|S_{n}\right|=2\left|A_{n}\right|$,
we see that A_{n} is a
normal subgroup of S_{n},
and $\mathrm{S}_{\mathrm{n}} / \mathrm{A}_{\mathrm{n}}$ has order 2.
Let σ be an odd
permutation in S_{n},
so that
$\mathrm{S}_{\mathrm{n}} / \mathrm{A}_{\mathrm{n}}=\left\{\mathrm{A}_{\mathrm{n}}, \sigma \mathrm{A}_{\mathrm{n}}\right\}$.

Factor Group Computations

Above example illustrates that while knowing the product of two cosets in G / N does not tell us what the product of two elements of G is, it may tell us that the product in G of two types of elements is itself of a certain type.
$\left.\begin{array}{|l|l|}\hline \text { Group Theory } \\ \text { Factor Group } \\ \text { Computations }\end{array}\right]$

Factor Group Computations

The theorem of Lagrange
states if H is a subgroup states if H is a subgroup
of a finite group G, then the order of H divides the order of G.
We show that it is false that if d divides the order of G , then there must exist a subgroup H of G having order d.

| Factor Group Computations |
| :--- | :--- |
| Example |
| We show that A_{4}, which |
| has order 12, contains no |
| subgroup of order 6. |
| Suppose that H were a |
| subgroup of A_{4} having |
| order 6. |
| As observed before in |
| previous example, it |
| would follow that H |
| would be a normal |
| subgroup of A_{4}. |

Factor Group Computations

Then $\mathrm{A}_{4} / \mathrm{H}$ would have only two elements, H and $\sigma \mathrm{H}$ for some $\sigma \in \mathrm{A}_{4}$ not in H . Since in a group of order 2, the square of each element is the identity, we would have $\mathrm{HH}=\mathrm{H}$ and $(\sigma \mathrm{H})(\sigma \mathrm{H})=\mathrm{H}$. Now computation in a factor group can be achieved by computing with representatives in the original group. Thus, computing in A_{4}, we find that for each $\alpha \in \mathrm{H}$ we must have $\alpha^{2} \in \mathrm{H}$ and for each $\beta \in \sigma \mathrm{H}$ we must have $\beta^{2} \in \mathrm{H}$. That is, the square of every element in A_{4} must be in Tha
H.

Factor Group Computations

But in A_{4}, we have
$(1,2,3)=(1,3,2)^{2} \quad$ and $(1,3,2)=(1,2,3)^{2}$
so $(1,2,3)$ and $(1,3,2)$ are in H.
A similar computation shows that $(1,2,4)$,
$(1,4,2),(1,3,4),(1,4,3),(2,3,4)$, and $(2,4,3)$ are all in H .
This shows that there must be at least 8 elements in H , contradicting the fact that H was supposed to have order 6.

Factor Group Computations

We now turn to several examples that compute factor groups. If the group we start with is finitely generated and abelian, then its factor group will be also. Computing such a factor group means classifying it according to the fundamental theorem of finitely generated abelian groups.

Group Theory

Factor Group
Computations

Factor Group Computations	
We now turn to several examples that compute factor groups. If the group we start with is finitely generated and abelian, then its factor group will be also. Computing such a factor group means classifying it according to the fundamental theorem of finitely generated abelian groups.	

Factor Group Computations

Example

Let us compute the factor group $\left(\mathbb{Z}_{4} \times \mathbb{Z}_{6}\right)$ /
$\langle(0,1)\rangle$. Here $\langle(0,1)\rangle$ is the cyclic subgroup H of $\mathbb{Z}_{4} \times \mathbb{Z}_{6}$ generated by $(0,1)$. Thus
$H=\{(0,0),(0,1),(0.2),(0,3),(0,4),(0,5)\}$.
Since $\mathbb{Z}_{4} \times \mathbb{Z}_{6}$ has 24 elements and H has 6 elements, all cosets of H must have 6 elements, and $\left(\mathbb{Z}_{4} \times \mathbb{Z}_{6}\right) / H$ must have order 4 . Since $\mathbb{Z}_{4} \times \mathbb{Z}_{6}$ is abelian, so is $\left(\mathbb{Z}_{4} \times \mathbb{Z}_{6}\right) / H$. Remember, we compute in a factor group by means of representatives from the original group.

In additive notation, the cosets are
$H=(0,0)+H,(1,0)+H,(2,0)+H,(3,0)+H$.
Since we can compute by choosing the representatives $(0,0),(1,0),(2,0)$, and $(3,0)$, it is clear that $\left(\mathbb{Z}_{4} \times \mathbb{Z}_{6}\right) / H$ is isomorphic to \mathbb{Z}_{4}. Note that this is what we would expect, since in a factor group modulo H , everything in H becomes the identity element; that is, we are essentially setting
everything in H equal to zero. Thus the whole second factor \mathbb{Z}_{6} of $\mathbb{Z}_{4} \times \mathbb{Z}_{6}$ is collapsed, leaving just the first factor \mathbb{Z}_{4}.

Factor Group Computations

Theorem

Let $\mathrm{G}=\mathrm{H} \times \mathrm{K}$ be the direct product of groups H and K. Then $\overline{\mathrm{H}}=\{(\mathrm{h}, \mathrm{e}) \mid \mathrm{h} \in \mathrm{H}\}$ is a normal subgroup of G . Also $\mathrm{G} / \overline{\mathrm{H}}$ is isomorphic to K in a natural way. Similarly, $G / \bar{K} \simeq H$ in a natural way.

Factor Group Computations
Group Theory

Proof
Consider the map $\pi_{2}: ~ \mathrm{HxK} \rightarrow \mathrm{K}$ given by
$\pi_{2}(h, k)=k$. The map π_{2} is homomorphism since
$\pi_{2}\left(h_{1} h_{2}, k_{1} k_{2}\right)=k_{1} k_{2}=\pi_{2}\left(h_{1}, k_{1}\right) \pi_{2}\left(h_{2}, k_{2}\right)$.
Because $\operatorname{Ker}\left(\pi_{2}\right)=\overline{\mathrm{H}}$, we see that $\overline{\mathrm{H}}$ is a normal
subgroup of $\mathrm{H} \times \mathrm{K}$. Because π_{2} is onto K ,
Fundamental Theorem of Homomorphism tells us that $(H \times K) / \bar{H} \simeq K$.

Factor Group Computations

Example

Let us compute the factor group $\left(\mathbb{Z}_{4} \times \mathbb{Z}_{6}\right)$ /
$\langle(2,3)\rangle$. Be careful! There is a great temptation to say that we are setting the 2 of \mathbb{Z}_{4} and the 3 of \mathbb{Z}_{6} both equal to zero, so that \mathbb{Z}_{4} is collapsed to a factor group isomorphic to \mathbb{Z}_{2} and \mathbb{Z}_{6} to one isomorphic to \mathbb{Z}_{3}, giving a total factor group isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$. This is wrong!
Note that $\mathrm{H}=\langle(2,3)\rangle=\{(0,0),(2,3)\}$ is of order 2 , so $\left(\mathbb{Z}_{4} \times \mathbb{Z}_{6}\right) /\langle(2,3)\rangle$ has order 12 , not 6 .

Factor Group Computations

Setting $(2,3)$ equal to zero does not make $(2,0)$ and $(0,3)$ equal to zero individually, so the factors do not collapse separately.
The possible abelian groups of order 12 are $\mathbb{Z}_{4} \times \mathbb{Z}_{3}$ and $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3}$, and we must decide to which one our factor group is isomorphic. These two groups are most easily distinguished in that $\mathbb{Z}_{4} \times \mathbb{Z}_{3}$ has an element of order 4, and
$\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3}$ does not.

Factor Group Computations

We claim that the coset $(1,0)+\mathrm{H}$ is of order 4 in the factor group $\left(\mathbb{Z}_{4} \times \mathbb{Z}_{6}\right) / H$.
To find the smallest power of a coset giving the identity in a factor group modulo H , we must, by choosing representatives, find the smallest power of a representative that is in the subgroup H. Now, $4(1,0)=(1,0)+(1,0)+(1,0)+(1,0)=(0,0)$ is the first time that $(1,0)$ added to itself gives an element of H . Thus $\left(\mathbb{Z}_{4} \times \mathbb{Z}_{6}\right) /\langle(2,3)\rangle$ has an element of order 4 and is isomorphic to $\mathbb{Z}_{4} \times \mathbb{Z}_{3}$ or \mathbb{Z}_{12}.

Group Theory

Factor Group
Computations

Factor Group Computations

Example

Let us compute (that is, classify as in Fundamental Theorem of Abelian Groups the group ($\mathbb{Z} \times \mathbb{Z}$)/ $\langle(1,1)\rangle$. We may visualize $\mathbb{Z} \times \mathbb{Z}$ as the points in the plane with both coordinates integers, as indicated by the dots in Fig. below. The subgroup $\langle(1,1)\rangle$ consists of those points that lie on the 45° line through the origin, indicated in the figure. The coset $(1,0)+\langle(1,1)\rangle$ consists of those dots on the 45° line through the point $(1,0)$, also shown in the figure.

Factor Group Computations

Continuing, we see that each coset consists of those dots lying on one of the 45° lines in the figure. We may choose the representatives
$\cdots,(-3,0),(-2,0),(-1,0),(0,0),(1,0),(2,0),(3,0), \cdots$ of these cosets to compute in the factor group. Since these representatives correspond precisely to the points of \mathbb{Z} on the x-axis, we see that the factor group $(\mathbb{Z} \times \mathbb{Z}) /\langle(1,1)\rangle$ is isomorphic to \mathbb{Z}.

Simple Groups

One feature of a factor group is that it gives crude information about the structure of the whole group.
Of course, sometimes
there may be no
nontrivial proper normal subgroups.

Simple Groups	
	Example The cyclic group G=Z $/ \mathrm{pZ}$ of congruence classes modulo p is simple, where p is a prime number.

Example

On the other hand, the
group $G=\mathbb{Z} / 12 \mathbb{Z}$ is not
simple.
The set $\mathrm{H}=\{0,4,8\}$ of
congruence classes of 0 ,
4 , and 8 modulo 12 is a
subgroup of order 3 , and
it is a normal subgroup
since any subgroup of
an abelian group is
normal.

Group Theory
Simple Groups

Simple Groups
Theorem
Let $\phi: \mathrm{G} \rightarrow \mathrm{G}$ ' be a group
homomorphism. If N is a
normal subgroup of G,
then $\phi[\mathrm{N}]$ is a normal
subgroup of $\phi[\mathrm{G}]$. Also, if
N' is a normal subgroup
of $\phi[\mathrm{G}]$, then $\phi^{-1}\left[\mathrm{~N}^{\prime}\right]$ is a
normal subgroup of G.

Simple Groups

Proof

Also, if N^{\prime} is a normal subgroup of $\phi[\mathrm{G}]$, then $\phi(\mathrm{g}) \mathrm{n}^{\prime} \phi(\mathrm{g})^{-1} \in \mathrm{~N}^{\prime}$ for every $\phi(\mathrm{g}) \in \phi[\mathrm{G}]$
and $\mathrm{n}^{\prime} \in \mathrm{N}^{\prime}$.
By definition, there exist $\mathrm{n} \in \mathrm{N}$ such that $\phi(\mathrm{n})=\mathrm{n}^{\prime}$.
Therefore, $\phi(\mathrm{g}) \mathrm{n}^{\prime} \phi(\mathrm{g})^{-1}=\phi\left(\mathrm{gng}^{-1}\right)$.
Hence $\phi^{-1}\left[\mathrm{~N}^{\prime}\right]$ is a normal subgroup of G .

Group Theory
Simple Groups

Simple Groups	
Example For example, $\phi: \mathbb{Z}_{2} \rightarrow S_{3}$, where $\phi(0)=\rho_{0}$ and $\phi(1)=\mu_{1}$ is a homomorphism, and \mathbb{Z}_{2} is a normal subgroup of itself, but $\left\{\rho_{0}, \mu_{1}\right\}$ is not a normal subgroup of S_{3}. $\left.\begin{array}{l} (1 \end{array}\right)\left(\begin{array}{ll} 2 & 3 \end{array}\right)=\left(\begin{array}{lll} 2 & 1 & 3 \end{array}\right)$	
	861

$\left.\begin{array}{|c|}\hline \text { Group Theory } \\ \text { Maximal Normal } \\ \text { Subgroups }\end{array}\right]$

Maximal Normal Subgroups	
	We characterize when
G/N is a simple group.	
	Definition
A maximal normal	
subgroup of a group G is	
a normal subgroup M	
not equal to Guch that	
there is no proper	
normal subgroup N of G	
properly containing M.	

Maximal Normal Subgroups

Theorem

M is a maximal normal
subgroup of G if and only if G / M is simple.

Proof

Let M be a maximal normal subgroup of G . Consider the canonical homomorphism
$y: G \rightarrow G / M$. Now y^{-1} of any nontrivial proper normal subgroup of G / M is a proper normal subgroup of G properly containing M. But M is maximal, so this can not happen. Thus G / M is simple.

Maximal Normal Subgroups

Conversely, if N is a normal subgroup of G properly containing M , then $\mathrm{y}[\mathrm{N}]$ is normal in G / M. If also $N \neq G$, then $y[N] \neq G / M$ and $y[N] \neq$ \{M \}.
Thus, if G / M is simple so that no such $\mathrm{y}[\mathrm{N}]$ can exist, no such N can exist, and M is maximal.

| Group Theory |
| :---: | :---: |
| The Center Subgroup |
| |

The Center Subgroup

Definition
The center $Z(G)$ is
defined by
$Z(G)=\{z \in G \mid z g=g z$ for all $\mathrm{g} \in \mathrm{G}\}$.

| The Center Subgroup | |
| :--- | :--- | :--- |
| | |
| Exercise
 Show that Z (G) is a
 normal and an abelian
 subgroup of G. | |
| | $\mathbf{8 6 9}$ |

The Center Subgroup

Solution
For each $\mathrm{g} \in \mathrm{G}$ and
$z \in Z(G)$ we have
$\mathrm{gzg}^{-1}=\mathrm{zgg}^{-1}=z e=z$, we see
at once that $Z(G)$ is a
normal subgroup of G . It
implies that $\mathrm{gz}=\mathrm{zg}$ for $\mathrm{g} \in$
G and $z \in Z(G)$.

Example on Center Subgroup		
Example		
	$\rho_{0}(123)=(123) \rho_{0}$	
$\rho_{0}(132)=(132) \rho_{0}$		
$\rho_{0}(23)=(23) \rho_{0}$		
	$\rho_{0}(13)=(13) \rho_{0}$	
$\rho_{0}(12)=(12) \rho_{0}$		
		873

Example on Center Subgroup

$(132)(123)=\rho_{0}=(123)(132)$
$(123)(23)=(12),(23)(123)=(13)$
$(132)(13)=(12),(13)(132)=(23)$
$(13)(12)=(123),(12)(13)=(132)$
$Z\left(S_{3}\right)=\left\{\rho_{0}\right\}$, so the center of S_{3} is trivial.
Example on Center
Subgroup

Group Theory

,

Example on Center Subgroup

The center of $\mathrm{S}_{3} \times \mathbb{Z}_{5}$ must be $\left\{\rho_{0}\right\} \times \mathbb{Z}_{5}$, which is isomorphic to \mathbb{Z}_{5}

Group Theory
The Commutator
Subgroup

The Commutator Subgroup

> Every nonabelian group G has two important normal subgroups,
> the center Z(G) of G and the commutator subgroup C of G.

The Commutator Subgroup	
	Turning to the commutator subgroup, recall that in forming a factor group of G modulo a normal subgroup N, we are essentially putting every element in G that is in N equal to e, for N forms our new identity in the factor group. This indicates another use for factor groups.

The Commutator Subgroup
commutator subs com mutator subgroup, factor group of G modulo a normal subgroup N, we are essentanly puth, in N equal to e , for N forms our new identity in

This indicates another use for factor groups.

The Commutator Subgroup

To require that $a b=b a$ is to say that $a b a^{-1} b^{-1}=e$ in our new group.
An element $\mathrm{aba}^{-1} \mathrm{~b}^{-1}$ in a group is a commutator of the group.
Thus we wish to attempt to form an abelianized version of G by replacing every commutator of G by e.
We should then attempt to form the factor group of G modulo the smallest normal subgroup we can find that contains all commutators of G.

The Commutator Subgroup

Theorem
Let G be a group.
The set of all
commutators $a b a^{-1} b^{-1}$
for $\mathrm{a}, \mathrm{b} \in \mathrm{G}$ generates a
subgroup C of G .

The Commutator Subgroup

Proof
Let $\mathrm{a}, \mathrm{b} \in \mathrm{G}$. Then,
$\left(\mathrm{aba}^{-1} \mathrm{~b}^{-1}\right)\left(\mathrm{aba}^{-1} \mathrm{~b}^{-1}\right)^{-1}$
$=a b a^{-1} b^{-1} b a b^{-1} a^{-1}$
$=e \in C$
since $e=e e^{-1} e^{-1}$ is a commutator.

The Commutator Subgroup

Definition

The set of all
commutators $\mathrm{aba}^{-1} \mathrm{~b}^{-1}$
for $a, b \in G$ generates a
subgroup C of G is
called the commutator
subgroup.

Group Theory
Generating Sets

| Generating Sets |
| :--- | :--- |
| Let G be a group, and let |
| a G G. We have |
| described the cyclic |
| subgroup ca> of G, |
| which is the smallest |
| subgroup of G that |
| contains the element a. |
| Suppose we want to find |
| as smalla subgroup as |
| possible that contains |
| both a and b for another |
| element b in G. |

Generating Sets

We see that any
subgroup containing a and b must contain a^{n} and b^{m} for all $m, n \in \mathbb{Z}$, and consequently must contain all finite products of such powers of a and b.

Generating Sets

For example, such an expression might be $a^{2} b^{4} a^{-3} b^{2} a^{5}$.
Note that we cannot "simplify" this expression by writing first all powers of a followed by the powers of b, since G may not be abelian. However, products of such expressions are again expressions of the same type.
Furthermore, $\mathrm{e}=\mathrm{a}^{0}$ and the inverse of such an expression is again of the same type.

Generating Sets

For example, the inverse of $a^{2} b^{4} a^{-3} b^{2} a^{5}$ is
$a^{-5} b^{-2} a^{3} b^{-4} a^{-2}$.
This shows that all such products of integral powers of a and b form a subgroup of G, which surely must be the smallest subgroup containing both a and b . We call a and b generators of this subgroup.
If this subgroup should be all of G, then we say that
\{a, b\} generates G.
We could have made similar arguments for three,
four, or any number of elements of G, as long as we take only finite products of their integral powers.

Generating Sets

Example

The Klein 4-group $V=\{\mathrm{e}$,
$a, b, c\}$ is generated by
$\{\mathrm{a}, \mathrm{b}\}$ since $\mathrm{ab}=\mathrm{c}$.
It is also generated by
$\{a, c\},\{b, c\}$, and $\{a, b, c\}$.
If a group G is generated
by a subset S , then every subset of G containing S generates G .

| Group Theory |
| :--- | :--- |
| Generating Sets |
| |

Generating Sets

Example

The group \mathbb{Z}_{6} is generated by $\{1\}$ and $\{5\}$.
It is also generated by $\{2,3\}$ since $2+3=5$, so that any subgroup containing 2 and 3 must contain 5 and must therefore be \mathbb{Z}_{6}.

Generating Sets	
	It is also generated by
$\{3,4\},\{2,3,4\},\{1,3\}$, and	
$\{3,5\}$.	
But it is not generated	
by $\{2,4\}$ since	
	$<2>=\{0,2,4\}$
contains 2 and 4.	

Generating Sets

We have given an
intuitive explanation of
the subgroup of a group
G generated by a subset
of G.
What follows is a
detailed exposition of
the same idea
approached in another
way, namely via
way, namely via
intersection
subgroups.

Definition

Let $\left\{\mathrm{S}_{\mathrm{i}} \mid \mathrm{i} \in \mathrm{I}\right\}$ be a collection of sets.
Here I may be any set of indices.
The intersection $\bigcap_{i \in I} S_{i}$ of the sets S_{i} is the set of all elements that are in all the sets S_{i}; that is,
$\bigcap_{i \in I} S_{i}=\left\{x \mid x \in S_{i}\right.$ for all $\left.i \in I\right\}$.
If I is finite, $\mathrm{I}=\{1,2, \ldots, \mathrm{n}\}$, we may denote $\bigcap_{\mathrm{i} \in \mathrm{I}} \mathrm{S}_{\mathrm{i}}$ by $S_{1} \cap \ldots \cap S_{n}$.

Group Theory

Generating Sets
$\left.\begin{array}{|ll|}\hline \text { Generating Sets } \\ & \\ & \\ \text { Theorem } \\ \text { The intersection of some } \\ \text { subgroups } H_{i} \text { of a group } \\ \text { G for } \mathrm{i} \in \mathrm{I} \text { is again a } \\ \text { subgroup of } \mathrm{G} .\end{array}\right]$

[^1]
Generating Sets

Let G be a group and let $a_{i} \in G$ for $i \in I$.
There is at least one subgroup of G containing all the elements a_{i} for $i \in I$, namely G is itself.
The above theorem assures us that if we take the intersection of all subgroups of G containing all a_{i} for $i \in I$, we will obtain a subgroup H of G.
This subgroup H is the smallest subgroup of G containing all the a_{i} for $i \in I$.

Group Theory

Generating Sets

| Generating Sets |
| :--- | :--- |
| |
| Definition |
| Let G be a group and |
| let $a_{i} \in G$ for $i \in I$. |
| The smallest subgroup |
| of G containing $\left\{a_{i} \mid i \in\right.$ |
| $I\}$ is the subgroup |
| generated by $\left\{a_{i} \mid i \in I\right\}$. |
| If this subgroup is all of |
| G, then $\left\{a_{i} \mid i \in I\right\}$ |
| generates G and the a_{i} |
| are generators of G. |

Generating Sets

Definition

If there is a finite set

$$
\left\{a_{i} \mid i \in I\right\}
$$

that generates G , then
G is finitely generated.

Generating Sets

Theorem

If G is a group and $a_{i} \in G$ for $i \in I$, then the subgroup H of G generated by $\left\{\mathrm{a}_{\mathrm{i}} \mid \mathrm{i} \in \mathrm{I}\right\}$ has as elements precisely those elements of G that are finite products of integral powers of the a_{i}, where powers of a fixed a_{i} may occur several times in the product.

Generating Sets

Proof

Let K denote the set of all finite products of integral powers of the a_{i}. Then $K \subseteq H$.
We need only observe that K is a subgroup and then, since H is the smallest subgroup containing a_{i} for $i \in I$, we will be done.
Observe that a product of elements in K is again in K. Since $\left(a_{j}\right)^{0}=e$, we have e $\in K$.

For every element k in K, if we form from the product giving k a new product with the order of the a, reversed and the opposite sign on all exponents, we have k^{-1} which is thus in K .

Group Theory
The Commutator
Subgroup

The Commutator Subgroup

Theorem

Let G be a group.
Then, the commutator
subgroup C of G is a normal subgroup of G.

The Commutator Subgroup

Proof

We must show that C is normal in G .
The last theorem then
shows that C consists precisely of all finite products of commutators.
For $x \in C$, we must show that $\mathrm{g}^{-1} \mathrm{xg} \in \mathrm{C}$ for all $\mathrm{g} \in \mathrm{G}$, or that if x is a product of commutators, so is
$\mathrm{g}^{-1} \mathrm{xg}$ for all $\mathrm{g} \in \mathrm{G}$.

The Commutator Subgroup

By inserting $\mathrm{e}=\mathrm{gg}^{-1}$ between each product of commutators occurring in x , we see that it is sufficient to show for each commutator $\mathrm{cdc}^{-1} \mathrm{~d}^{-1}$ that $\mathrm{g}^{-1}\left(\mathrm{cdc}^{-1} \mathrm{~d}^{-1}\right) \mathrm{g}$ is in C .
But $\mathrm{g}^{-1}\left(\mathrm{cdc}^{-1} \mathrm{~d}^{-1}\right) \mathrm{g}=\left(\mathrm{g}^{-1} \mathrm{cdc}^{-1}\right)(\mathrm{e})\left(\mathrm{d}^{-1} \mathrm{~g}\right)$
$=\left(\mathrm{g}^{-1} \mathrm{cdc}^{-1}\right)\left(\mathrm{gd}^{-1} \mathrm{dg}^{-1}\right)\left(\mathrm{d}^{-1} \mathrm{~g}\right)$
$=\left[\left(\mathrm{g}^{-1} \mathrm{c}\right) \mathrm{d}\left(\mathrm{g}^{-1} \mathrm{c}\right)^{-1} \mathrm{~d}^{-1}\right]\left[\mathrm{dg}^{-1} \mathrm{~d}^{-1} \mathrm{~g}\right]$, which is in C .
Thus C is normal in G .

Group Theory
The Commutator
Subgroup

The Commutator Subgroup

Theorem

If N is a normal
subgroup of G, then G / N is abelian if and only if $\mathrm{C} \leq \mathrm{N}$

The Commutator Subgroup		
	Proof If N is a normal subgroup of G and G / N is abelian, then $\left(a^{-1} N\right)\left(b^{-1} N\right)=\left(b^{-1} N\right)\left(a^{-1} N\right) ;$ that is, $a b a^{-1} b^{-1} N=N$, so $a b a^{-1} b^{-1} \in N$, and C $\leq N$.	

The Commutator Subgroup

Finally, if $C \leq N$, then
(aN)(bN) $=\mathrm{abN}$
$=a b\left(b^{-1} a^{-1} b a\right) N$
$=\left(a b b^{-1} a^{-1}\right) b a N$
= baN
$=(b N)(a N)$.
$\left.\begin{array}{|c|}\hline \text { Group Theory } \\ \text { The Commutator } \\ \text { Subgroup }\end{array}\right]$

The Commutator Subgroup

Example

For the group S_{3}, we find that one commutator is
$\rho_{1} \mu_{1} \rho_{1}^{-1} \mu_{1}^{-1}=\rho_{1} \mu_{1} \rho_{2} \mu_{1}=\mu_{3} \mu_{2}=\rho_{2}$.
(12)(13)=(132)

We similarly find that
$\rho_{2} \mu_{1} \rho_{2}{ }^{-1} \mu_{1}{ }^{-1}=\rho_{2} \mu_{1} \rho_{1} \mu_{1}=\mu_{2} \mu_{3}=\rho_{1}$
(13)(12)=(123)

The Commutator Subgroup	
	Thus the commutator subgroup C of S_{3} contains A_{3} Since A_{3} is a normal subgroup of S_{3} and $\mathrm{S}_{3} / \mathrm{A}_{3}$ is abelian, above theorem shows that $\mathrm{C}=\mathrm{A}_{3}$.

Group Theory

Automorphisms

is a normal subgroup of S_{3} and
$\mathrm{S}_{3} / \mathrm{A}_{3}$ is abelian, above
$\mathrm{C}=\mathrm{A}_{3}$.

| Automorphisms |
| :--- | :--- |
| Recall that an
 automorphism of a group
 G is an isomorphism of G
 onto G.
 The set of all
 automorphisms of G is
 denoted by Aut(G). |

Automorphisms

We have seen that every
$\mathrm{g} \in \mathrm{G}$ determines an automorphism i_{g} of G (called an inner automorphism)given by $\mathrm{i}_{\mathrm{g}}(\mathrm{x})=\mathrm{gxg}^{-1}$. The set of all inner automorphisms of G is denoted by $\operatorname{Inn}(\mathrm{G})$.

Theorem

The set Aut(G) of all
automorphisms of a group G is a group under composition of
mappings, and $\operatorname{lnn}(G) \triangleleft \operatorname{Aut}(G)$.
Moreover,
$\mathrm{G} / \mathrm{Z}(\mathrm{G}) \simeq \operatorname{Inn}(\mathrm{G})$.

Group Theory
Automorphisms

Automorphisms	
Consider the mapping $\phi: G \rightarrow$ Aut (G) given by $\phi(\mathrm{a})=i_{\mathrm{a}}=\mathrm{axa}^{-1}$ for all $\mathrm{x} \in \mathrm{G}$. For any $\mathrm{a}, \mathrm{b} \in \mathrm{G}, \mathrm{i}_{\mathrm{ab}}(\mathrm{x})=$ $a b x(a b)^{-1}=a\left(b x b^{-1}\right) a^{-1}=i_{a} i_{b}(x)$ for all $\mathrm{x} \in \mathrm{G}$. Hence, ϕ is a homomorphism, and, therefore, $\operatorname{Inn}(\mathrm{G})=\operatorname{Im} \phi$ is a subgroup of Aut(G).	
	927

Automorphisms

Consider the mapping $\phi: \mathrm{G} \rightarrow$ Aut (G) given by

For any $\mathrm{a}, \mathrm{b} \in \mathrm{G}, \mathrm{i}_{\mathrm{ab}}(\mathrm{x})=$
$a b x(a b)^{-1}=a\left(b x b^{-1}\right) a^{-1}=i_{a} i_{b}(x)$
for $x \in$
homomorphism, and,

Further, i_{a} is the identity automorphism if and only
if $\operatorname{axa}^{-1}=x$ for all $x \in G$. Hence, $\operatorname{Ker} \phi=Z(G)$, and by the fundamental theorem of homomorphisms $\mathrm{G} / \mathrm{Z}(\mathrm{G}) \simeq \operatorname{lnn}(\mathrm{G})$.
Finally, for any $\sigma \in \operatorname{Aut}(G)$,
$\left(\sigma \mathrm{i}_{\mathrm{a}} \sigma^{-1}\right)(\mathrm{x})=\sigma\left(\mathrm{a} \sigma^{-1}(\mathrm{x}) \mathrm{a}^{-1}\right)$
$=\sigma(\mathrm{a}) \mathrm{x} \sigma(\mathrm{a})^{-1}$
$=\mathrm{i}_{\sigma(\mathrm{a})}(\mathrm{x})$; hence $\sigma \mathrm{i}_{\mathrm{a}} \sigma^{-1}=\mathrm{i}_{\sigma(\mathrm{a})} \in \operatorname{lnn}(\mathrm{G})$.
Therefore, $\operatorname{Inn}(G) \triangleleft \operatorname{Aut}(\mathrm{G})$.

Examples on Automorphisms

Example

The symmetric group S_{3} has a trivial center $\{\mathrm{e}\}$. Hence, $\operatorname{lnn}\left(\mathrm{S}_{3}\right) \simeq \mathrm{S}_{3}$. We have seen that
$S_{3}=\left\{e, a, a^{2}, b, a b, a^{2} b\right\}$ with the defining relations $a^{3}=e=b^{2}, b a=a^{2} b$. The elements a and a^{2} are of order 3 , and $b, a b$, and $\mathrm{a}^{2} \mathrm{~b}$ are all of order 2

Examples on Automorphisms

Hence, for any $\sigma \in$
$\operatorname{Aut}\left(S_{3}\right), \sigma(a)=a$ or a^{2},
$\sigma(b)=b, a b$, or $a^{2} b$.
Moreover, when $\sigma(a)$ and
$\sigma(\mathrm{b})$ are fixed, $\sigma(\mathrm{x})$ is
known for every $x \in S_{3}$.
Hence, σ is completely determined.

Examples on Automorphisms

Thus, there cannot be more than six automorphisms of S_{3}. Hence
Aut $\left(\mathrm{S}_{3}\right)=\operatorname{lnn}\left(\mathrm{S}_{3}\right) \simeq \mathrm{S}_{3}$. Therefore, S_{3} is a complete group.

Group Theory

Examples on Automorphisms

Examples on Automorphisms	
	Example Let G be a finite abelian group of order n, and let m be a positive integer relative prime to n. Then the mapping $\sigma: x \rightarrow x^{m}$ is an automorphism of G.

Examples on Automorphisms

Solution

(m, n) $=1 \Rightarrow$ there exist integers u and v such that $\mathrm{mu}+\mathrm{nv}=1 \Rightarrow$ for all $x \in G$, $x^{m u+n v}=x^{m u} x^{n v}=x^{u m}$ since $o(G)=n$. Now for all $x \in G$, $\mathrm{x}=\left(\mathrm{x}^{\mathrm{u}}\right)^{\mathrm{m}}$ implies that σ is onto. Further, $x^{m}=e \Rightarrow x^{m u}=e \Rightarrow x=e$, showing that σ is 1-1.

Examples on Automorphisms

That σ is a
homomorphism follows
from the fact that G is abelian. Hence, σ is an automorphism of G .

Group Theory

Examples on Automorphisms

Examples on Automorphisms

Example

A finite group G having more than two elements and with the condition that $x^{2} \neq \mathrm{e}$ for some $x \in G$ must have a nontrivial automorphism

Examples on Automorphisms

When G is abelian, then $\sigma: \mathrm{x} \mapsto \mathrm{x}^{-1}$ is an automorphism, and, clearly, σ is not an identity automorphism. When G is not abelian, there exists a nontrivial inner automorphism.

Examples on Automorphisms

Example

Let $\mathrm{G}=\langle\mathrm{a}| \mathrm{a}^{\mathrm{n}}=\mathrm{e}>$ be a finite cyclic group of order n. Then the mapping $\sigma: \mathrm{a} \rightarrow \mathrm{a}^{\mathrm{m}}$ is an automorphism of G iff $(m, n)=1$.

Examples on Automorphisms

Solution

If $(m, n)=1$, then it has been shown in Example of last module that σ is an automorphism. So let us assume now that σ is an automorphism. Then
the order of $\sigma(\mathrm{a})=\mathrm{a}^{\mathrm{m}}$ is the same as that of a, which is n .

Group Action on a Set		
	We define a binary	
operation * on a set S to		
be a function mapping		
SxS into S. The function *		
gives us a rule for		
"multiplying" an element		
	s_{1} in S and an element s_{2}	
in S to yield an element s_{1}		
	${ }^{*} s_{2}$ in S.	

Group Action on a Set

More generally, for any
sets A, B, and C, we can view a map *: $A \times B \rightarrow C$ as defining a
"multiplication," where any element a of A times any element b of B has as value some element c of C. Of course, we write a* $b=c$, or simply $a b=c$.

Group Action on a Set

In these modules, we will be concerned with the case where X is a set, G is a group, and we have a map *: GxX \rightarrow X. We shall write ${ }^{*}(g, x)$ as $g{ }^{*} x$ or gx.

Group Action on a Set

Definition

Let X be a set and G a group. An action of G on X is a map *: $\mathrm{GxX} \rightarrow \mathrm{X}$ such that

1. $e x=x$ for all $x \in X$,
2. $\left(g_{1} g_{2}\right)(x)=g_{1}\left(g_{2} x\right)$ for all $x \in X$ and all $g_{1}, g_{2} \in G$. Under these conditions,
X is a G-set.

| Group Action on a Set |
| :--- | :--- |
| |
| Example |
| Let X be any set, and let |
| H be a subgroup of the |
| group S_{x} of all |
| permutations of X |
| Then X is an H-set, |
| where the action of $\sigma \in$ |
| H on X is its action as an |
| element of S_{x}, so that |
| $\sigma x=\sigma(x)$ for all $x \in X$. |

Group Theory
Group Action on a Set

Group Action on a Set

Condition 2 is a
consequence of the definition of permutation multiplication as function composition, and Condition 1 is immediate from the definition of the identity permutation as the identity function. Note that, in particular,
$\{1,2,3, \cdots, n\}$ is an S_{n} set.
Our next theorem will show that for every G-set X and each $g \in G$, the map $\sigma_{\mathrm{g}}: X \rightarrow X$ defined by $\sigma_{\mathrm{g}}=\mathrm{gx}$ is a permutation of x , and that there is a homomorphism $\phi: \mathrm{G} \rightarrow \mathrm{S}_{\mathrm{x}}$ such that the action of G^{X} on X is essentially the on X is essentially the
above Example action of above Example action of
the image subgroup $\mathrm{H}=$ $\phi[G]$ of S_{x} on X.

So actions of subgroups of S_{x} on X describe all possible group actions on X. When studying the set
X, actions using
subgroups of S_{x} suffice.
However, sometimes a However, sometimes a
set X is used to study G
set X is used to study G
via a group action of G on
via a group action of G
X. Thus we need the
X . Thus we need the
more general concept more general concept
given by above Definition.

Theorem
Let X be a G-set. For each $\mathrm{g} \in \mathrm{G}$, the function σ_{g} : $\mathrm{X} \rightarrow \mathrm{X}$ defined by $\sigma_{\mathrm{g}}(\mathrm{x})=$ $g x$ for $x \in X$ is a
permutation of X. Also, the $\operatorname{map} \phi: G \rightarrow \mathrm{~S}_{\mathrm{x}}$ defined by $\phi(\mathrm{g})=\sigma_{\mathrm{g}}$ is a homomorphism with the property that $\phi(\mathrm{g})(\mathrm{x})=$ gx.

Group Action on a Set

Proof

To show that σ_{g} is a permutation of X, we must show that it is a one-to-one map of X onto itself. Suppose that $\sigma_{\mathrm{g}}\left(\mathrm{x}_{1}\right)=\sigma_{\mathrm{g}}\left(\mathrm{x}_{2}\right)$ for $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{X}$. Then $\mathrm{gx}_{1}=$ gx_{2} Consequently, $\mathrm{g}^{-1}\left(\mathrm{gx}_{1}\right)=\mathrm{g}^{-1}\left(\mathrm{gx}_{2}\right)$. Using Condition 2 in Definition, we see that $\left(\mathrm{g}^{-1} \mathrm{~g}\right) \mathrm{x}_{1}=\left(\mathrm{g}^{-1}\right.$ g) x_{2}, so $\mathrm{ex}_{1}=\mathrm{ex}_{2}$. Condition 1 of the definition then yields $x_{1}=x_{2}$, so σ_{g} is one to one. The two conditions of the definition show that for $x \in X$, we have $\sigma_{\mathrm{g}}\left(\mathrm{g}^{-1} \mathrm{x}\right)=\mathrm{g}\left(\mathrm{g}^{-1}\right) \mathrm{x}=\left(\mathrm{gg}^{-1}\right) \mathrm{x}=\mathrm{ex}=\mathrm{x}$, so σ_{g} maps X onto X . Thus σ_{g} is indeed a permutation.

Group Theory

Group Action on a Set

Group Action on a Set

To show that $\phi: \mathrm{G} \rightarrow \mathrm{S}_{\mathrm{x}}$ defined by $\phi(\mathrm{g})=\sigma_{\mathrm{g}}$ is a homomorphism, we must show that $\phi\left(\mathrm{g}_{1} \mathrm{~g}_{2}\right)=\phi\left(\mathrm{g}_{1}\right)$ $\phi\left(g_{2}\right)$ for all $g_{1}, g_{2} \in G$. We show the equality of these two permutations in S_{x} by showing they both carry an $x \in X$ into the same element. Using the two conditions in above Definition and the rule for function composition, we obtain
$\phi\left(\mathrm{g}_{1} \mathrm{~g}_{2}\right)(\mathrm{x})=\sigma_{\mathrm{g}_{1} \mathrm{~g}_{2}}(\mathrm{x})=\left(\mathrm{g}_{1} \mathrm{~g}_{2}\right) \mathrm{x}=\mathrm{g}_{1}\left(\mathrm{~g}_{2} \mathrm{x}\right)=\mathrm{g}_{1} \sigma_{\mathrm{g}_{2}}(\mathrm{x})$
$=\sigma_{\mathrm{g}_{1}}\left(\sigma_{\mathrm{g}_{2}}(\mathrm{x})\right)=\left(\sigma_{\mathrm{g}_{1}} \mathrm{o} \sigma_{\mathrm{g}_{2}}\right)(\mathrm{x})=\left(\sigma_{\mathrm{g}_{1}} \sigma_{\mathrm{g}_{2}}\right)(\mathrm{x})=$
$\left(\phi\left(\mathrm{g}_{1}\right) \phi\left(\mathrm{g}_{2}\right)\right)(\mathrm{x})$.

Group Action on a Set

Thus ϕ is a
homomorphism.
The stated property of ϕ follows at once since by our definitions, we have $\phi(\mathrm{g})(\mathrm{x})=\sigma_{\mathrm{g}}(\mathrm{x})=\mathrm{gx}$.

Group Theory

Group Action on a Set

Group Action on a Set
Example
Let G be the additive
group \mathbb{R}, and X be the
set of complex numbers z
such that $\|z\|=1$. Then X
is a G-set under the
action $\gamma^{*} c=e^{i \gamma} c$, where
$\gamma \in \mathbb{R}$ and $c \in X$. Here the
action of γ is the rotation
through an angle $\theta=\gamma$
radians, anticlockwise.

Group Action on a Set

Example

Let $\mathrm{G}=\mathrm{D}_{4}$ and X be the vertices $1,2,3,4$ of a square. X is a G -set under the action
$g^{*} i=g(i), g \in D_{4}$,
$i \in\{1,2,3,4\}$.

Group Action on a Set	
	Example Let G be a group. Define $a * x=a x, a \in G, x \in G$. Then, clearly, the set G is a G-set. This action of the group G on itself is called translation.

| Group Theory |
| :--- | :--- |
| Group Action on a Set |
| |

Group Action on a Set	
	Example
	Let G be a group.
	Define
$a^{*} x=a x a^{-1}, a \in G, x \in G$.	
	We show that G is a G-set.
Let $a, b \in G$. Then	
$(a b)^{*} x=(a b) \times(a b)^{-1}$	
	$=a\left(b x b^{-1}\right) a^{-1}=a\left(b^{*} x\right) a^{-1}$
	$=a^{*}\left(b^{*} x\right)$.
	Also, $e^{*} x=x$.

| Group Action on a Set | |
| :--- | :--- | :--- |
| | |
| | |
| This proves G is a G-set.
 This action of the group G
 on itself is called
 conjugation. | |
| | $\mathbf{9 6 8}$ |

$\left.\begin{array}{|lll|}\hline \text { Group Action on a Set } & \\ & \\ \text { Example } \\ \text { Let } \mathrm{G} \text { be a group and } \mathrm{H}<\mathrm{G} . \\ \text { Then the set } \mathrm{G} / \mathrm{H} \text { of left } \\ \text { cosets can be made into a } \\ \text { G-set defining } \\ \mathrm{a} * \mathrm{xH}=\mathrm{axH}, \mathrm{a} \in \mathrm{G}, \mathrm{xH} \in \mathrm{G} / \mathrm{H} .\end{array}\right]$.
Group Action on a Set
Example
Let G be a group and
H\&G.
Then the set G/H of left
cosets is G -set if we
define $\mathrm{a}^{*} \mathrm{xH}=\mathrm{axa}^{-1} \mathrm{H}, \mathrm{a} \in \mathrm{G}$,
$\mathrm{xH} \in \mathrm{G} / \mathrm{H}$.

Group Action on a Set

Group Theory

To see this, let $a, b \in G$ and $x H \in G / H$. Then
(ab) ${ }^{*} x H=a b x b^{-1} a^{-1} H$
$=a^{*} b x b^{-1} \mathrm{H}=a^{*}\left(b^{*} x H\right)$.
Also, e ${ }^{*} x H=x H$
Hence, G/H is a G-set.

Group Action on a Set

Proof

(i) We define $\phi: G \rightarrow S_{x}$ by $(\phi(a))(x)=a x, a \in G, x \in X$.

Clearly $\phi(\mathrm{a}) \in \mathrm{S}_{\mathrm{x}}, \mathrm{a} \in \mathrm{G}$. Let $\mathrm{a}, \mathrm{b} \in \mathrm{G}$. Then
$(\phi(a b))(x)=(a b) x=a(b x)=a((\phi(b))(x))=$
$(\phi(a))((\phi(b))(x))=(\phi(a) \phi(b)) x$ for all $x \in X$. Hence, $\phi(\mathrm{ab})=\phi(\mathrm{a}) \phi(\mathrm{b})$.
(ii) Define $a^{*} x=(\phi(a))(x)$; that is, $a x=(\phi(a))(x)$. Then
$(a b) x=(\phi(a b))(x)=(\phi(a) \phi(b))(x)=\phi(a)(\phi(b)(x))=$
$\phi(a)(b x)=a(b x)$. Also, $e x=(\phi(e))(x)=x$.
Hence, X is a G -set.

Group Theory	

Stabilizer	
	Definition Let G be a group acting on a set X, and let $x \in X$. Then the set $G_{x}=\{g \in G \mid g x=x\}$, which can be shown to be a subgroup, is called the stabilizer (or isotropy) group of x in G.

Stabilizer

Stabilizer

Example

Let G be a group. Define $a^{*} x=a x a^{-1}, a \in G, x \in G$.
This action of the group G on itself is called
conjugation.
Then, for $x \in G, G_{x}=\left\{a \in G \mid a x a^{-1}=x\right\}=N(x)$, the
normalizer of x in G .
Thus, in this case the stabilizer of any element x in G is the normalizer of x in G .

Example

Let G be a group and $\mathrm{H}<\mathrm{G}$. We define action of G on the set G / H of left cosets by
$a^{*} x H=a x H, a \in G, x H \in G / H$.
Here the stabilizer of a left coset xH is the subgroup
$\{g \in G \mid g x H=x H\}=\left\{g \in G \mid x^{-1} g x \in H\right\}$
$=\left\{g \in G \mid g \in x H x^{-1}\right\}=x H x^{-1}$

Group Theory	
	Stabilizer

Stabilizer	
Proof	
Let $\mathrm{x} \in \mathrm{X}$ and let $\mathrm{g}_{1}, \mathrm{~g}_{2} \in \mathrm{G}_{\mathrm{x}}$. Then $\mathrm{g}_{1} \mathrm{x}=\mathrm{x}$ and $\mathrm{g}_{2} \mathrm{x}=\mathrm{x}$. Consequently, $\left(\mathrm{g}_{1} \mathrm{~g}_{2}\right) \mathrm{x}=\mathrm{g}_{1}\left(\mathrm{~g}_{2} \mathrm{x}\right)=\mathrm{g}_{1} \mathrm{x}=\mathrm{x}$, so $\mathrm{g}_{1} \mathrm{~g}_{2} \in \mathrm{G}_{\mathrm{x}}$, and G_{x} is closed under the induced operation of G.	
Of course ex=x, so e $\in \mathrm{G}_{\mathrm{x}}$.	
If $\mathrm{g} \in \mathrm{G}_{\mathrm{x}}$, then $\mathrm{gx}=\mathrm{x}$, so $\mathrm{x}=\mathrm{ex}=\left(\mathrm{g}^{-1} \mathrm{~g}\right) \mathrm{x}=\mathrm{g}^{-1}(\mathrm{gx})=\mathrm{g}^{-1} \mathrm{x}$, and consequently $g^{-1} \in \mathrm{G}_{x}$.	
Thus G_{x} is a subgroup of G .	
981	

Theorem

Let X be a G-set. For X_{1}, $X_{2} \in X$, let $X_{1} \sim X_{2}$ if and only if there exists $\mathrm{g} \in \mathrm{G}$ such that $\mathrm{gx}_{1}=\mathrm{x}_{2}$. Then ~ is an equivalence relation on X .

Proof
For each $x \in X$, we have $e x=x$, so $x \sim x$ and \sim is reflexive.
Suppose $x_{1} \sim x_{2}$, so $g x_{1}=x_{2}$ for some $g \in G$. Then
$\mathrm{g}^{-1} \mathrm{x}_{2}=\mathrm{g}^{-1}\left(\mathrm{gx}_{1}\right)=\left(\mathrm{g}^{-1} \mathrm{~g}\right) \mathrm{x}_{1}=\mathrm{ex}_{1}=\mathrm{x}_{1}$, so $\mathrm{x}_{2} \sim \mathrm{x}_{1}$, and \sim is symmetric.
Finally, if $x_{1} \sim x_{2}$ and $x_{2} \sim x_{3}$, then $g_{1} x_{1}=x_{2}$ and $g_{2} x_{2}=x_{3}$ for some $g_{1}, g_{2} \in G$. Then $\left(g_{2} g_{1}\right) x_{1}=g_{2}\left(g_{1} x_{1}\right)=g_{2} x_{2}=x_{3}$ so $x_{1} \sim x_{3}$ and \sim is transitive.

Orbits
Definition Let G be a group acting on a set X, and let $x \in X$. Then the set Gx $=\{a x \mid a \in G\}$ is called the orbit of x in G.

Orbits
Example Let G be a group. Define $a^{*} x=a x, a \in G, x \in G$. The orbit of $x \in G$ is $G x=\{a x \mid a \in G\}=G$.
986

Orbits	
	Example Let G be a group. Define $a^{*} x=a x a^{-1}, a \in G, x \in G$. The orbit of $x \in G$ is $G x=\left\{a a^{-1} \mid a \in G\right\}$, called the conjugate class of x and denoted by $C(x)$.

Group Theory
Conjugacy and G-Sets

Conjugacy and G-Sets
Conjugacy and G-Sets

Theorem

Let X be a G -set and let $\mathrm{x} \in \mathrm{X}$. Then $|\mathrm{Gx}|=\left(\mathrm{G}: \mathrm{G}_{\mathrm{x}}\right)$.
We define a one-to-one map ψ from Gx onto the collection of left cosets of G_{x} in G .

If $|G|$ is finite, then $|G X|$ is a divisor of $|G|$.
Let $\mathrm{x}_{1} \in \mathrm{Gx}$. Then there exists $\mathrm{g}_{1} \in \mathrm{G}$ such that $\mathrm{g}_{1} \mathrm{x}=\mathrm{x}_{1}$. We define $\psi\left(x_{1}\right)$ to be the left coset $g_{1} \mathrm{G}_{\mathrm{x}}$ of G_{x}.
If X is a finite set, $|X|=\sum_{x \in C}\left(G: G_{x}\right)$,
We must show that this map ψ is well defined,
independent of the choice of $g_{1} \in G$ such that $g_{1} x=x_{1}$. Suppose also that $g_{1}{ }^{\prime} x=x_{1}$. Then, $g_{1} x=g_{1}{ }^{\prime} x$, so $\mathrm{g}_{1}{ }^{-1}\left(\mathrm{~g}_{1} \mathrm{x}\right)=\mathrm{g}_{1}{ }^{-1}\left(\mathrm{~g}_{1}{ }^{\prime} \mathrm{x}\right)$, from which we deduce $\mathrm{x}=\left(\mathrm{g}_{1}{ }^{-1} \mathrm{~g}_{1}{ }^{\prime}\right) \mathrm{x}$. Therefore $\mathrm{g}_{1}{ }^{-1} \mathrm{~g}_{1}{ }^{\prime} \in \mathrm{G}_{\mathrm{x}}$, so $\mathrm{g}_{1}{ }^{\prime} \in \mathrm{g}_{1} \mathrm{G}_{\mathrm{x}}$, and $\mathrm{g}_{1} \mathrm{G}_{\mathrm{x}}=\mathrm{g}_{1} \mathrm{G}_{\mathrm{x}}$. Thus the map ψ is well defined.

Conjugacy and G-Sets

Theorem

Let X be a G-set and let $x \in X$. Then $|G x|=\left(G: G_{x}\right)$.
If $|G|$ is finite, then $|G x|$ is a divisor of $|G|$.
If X is a finite set, $|X|=\sum_{x \in C}\left(G: G_{X}\right)$,
where C is a subset of X containing exactly one element from each orbit.

To show the map ψ is one to one, suppose $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{Gx}$, and $\psi\left(\mathrm{x}_{1}\right)=\psi\left(\mathrm{x}_{2}\right)$. Then there exist $\mathrm{g}_{1}, \mathrm{~g}_{2} \in \mathrm{G}$ such that $\mathrm{x}_{1}=\mathrm{g}_{1} \mathrm{x}, \mathrm{x}_{2}=\mathrm{g}_{2} \mathrm{x}$, and $\mathrm{g}_{2} \in \mathrm{~g}_{1} \mathrm{G}_{\mathrm{x}}$. Then $\mathrm{g}_{2}=\mathrm{g}_{1} \mathrm{~g}$ for some $g \in G_{x}$, so $x_{2}=g_{2} x=g_{1}(g x)=g_{1} x=x_{1}$. Thus ψ is one to one. Finally, we show that each left coset of G_{x} in G is of the form $\psi\left(\mathrm{x}_{1}\right)$ for some $\mathrm{x}_{1} \in \mathrm{Gx}$. Let $\mathrm{g}_{1} \mathrm{G}_{\mathrm{x}}$ be a left coset. Then if $\mathrm{g}_{1} \mathrm{x}=\mathrm{x}_{1}$, we have $\mathrm{g}_{1} \mathrm{G}_{\mathrm{x}}=\psi\left(\mathrm{x}_{1}\right)$.
Thus ψ maps $G x$ one to one onto the collection of left cosets so $|\mathrm{Gx}|=\left(\mathrm{G}: \mathrm{G}_{\mathrm{x}}\right)$.

If $|G|$ is finite, then the equation
$|G|=\left|G_{x}\right|\left(G: G_{x}\right)$ shows that $|G x|=(G: G x)$ is a divisor of |G|.
Since X is the disjoint union of orbits Gx, it follows that if X is finite, then $|\mathrm{X}|=\sum_{\mathrm{x} \in \mathrm{C}}\left(\mathrm{G}: \mathrm{G}_{\mathrm{x}}\right)$.
$\left.\begin{array}{|l|l|}\hline \text { Group Theory } \\ \text { Isomorphism } \\ \text { Theorems }\end{array}\right]$

Isomorphism Theorems

There are several
theorems concerning
isomorphic factor groups
that are known as the isomorphism theorems of group theory.

Isomorphism Theorems

Theorem
Let $\phi: \mathrm{G} \rightarrow \mathrm{G}$ be a homomorphism with kernel K , and let
$y_{k}: G \rightarrow G / K$ be the canonical homomorphism. There is a unique isomorphism $\mu: G / K \rightarrow \phi[G]$ such that $\phi(x)=\mu\left(y_{k}(x)\right)$ for each $\mathbf{x} \in \mathbf{G}$.

Isomorphism Theorems

The first isomorphism theorem is diagrammed in Figure below.

Isomorphism Theorems

Lemma

Let N be a normal
subgroup of a group G and let $y: G \rightarrow G / N$ be the canonical homomorphism.
Then the $\operatorname{map} \phi$ from the set of normal subgroups of G containing N to the set of normal subgroups of G / N given by $\phi(\mathrm{L})=\mathrm{y}[\mathrm{L}]$ is one to one and onto.

Isomorphism Theorems

Proof

If L is a normal subgroup of G containing N , then $\phi(\mathrm{L})=\mathrm{y}[\mathrm{L}]$ is a normal subgroup of G / N.
Because $N \leq L$, for each $x \in L$ the entire coset $x N$ in G is contained in L . Thus, $\mathrm{Y}^{-1}[\phi(\mathrm{~L})]=\mathrm{L}$.
Consequently, if L and M are normal subgroups of
G, both containing N, and if $\phi(L)=\phi(M)=H$,
then $\mathrm{L}=\mathrm{y}^{-1}[\mathrm{H}]=\mathrm{M}$. Therefore ϕ is one to one.

Isomorphism Theorems

If H is a normal subgroup of G / N, then $y^{-1}[H]$ is a normal subgroup of G. Because $\mathrm{N} \in \mathrm{H}$ and
$\mathrm{y}^{-1}[\{\mathrm{~N}\}]=\mathrm{N}$, we see that $N \subseteq y^{-1}[H]$. Then
$\phi\left(y^{-1}[H]\right)=y\left[y^{-1}[H]\right]=H$.
This shows that ϕ is onto the set of normal subgroups of G / N.

Isomorphism Theorems

Isomorphism Theorems

f and of a group G, then we le We fine join HV of H and N as the rsection of all subgroups of G that contain HN; thus HVN is the smallest subgroup

Of course $\mathrm{H} V \mathrm{~N}$ is also the smallest subgroup of G containing both H and N, since any such
subgroup must contain HN. In general, HN need not be a subgroup of G.

Isomorphism Theorems	
Lemma	
If N is a normal subgroup of G, and if H is any subgroup of G , then	
$\mathrm{H} V \mathrm{~N}=\mathrm{HN}=\mathrm{NH}$.	
Furthermore, if H is also normal in G , then HN is normal in G .	
	1005

Isomorphism Theorems

Proof

We show that HN is a subgroup of G, from which
$H V N=H N$ follows at once. Let $h_{1}, h_{2} \in H$ and $n_{1}, n_{2} \in N$. Since N is a normal subgroup, we have $n_{1} h_{2}=h_{2} n_{3}$ for some $n_{3} \in N$. Then $\left(h_{1} n_{1}\right)\left(h_{2} n_{2}\right)=h_{1}\left(n_{1} h_{2}\right) n_{2}=h_{1}\left(h_{2} n_{3}\right) n_{2}=$ $\left(h_{1} h_{2}\right)\left(n_{3} n_{2}\right) \in H N$, so HN is closed under the induced operation in G. Clearly e $=$ ee is in HN . For $\mathrm{h} \in \mathrm{H}$ and $n \in N$, we have $(h n)^{-1}=n^{-1} h^{-1}=h^{-1} n_{4}$ for some $n_{4} \in N$, since N is a normal subgroup. Thus (hn) $)^{-1} \in H N$, so $H N \leq G$.

A similar argument shows that NH is a subgroup, so $\mathrm{NH}=\mathrm{H} V \mathrm{~N}=\mathrm{HN}$
Now suppose that H is
also normal in G, and let $h \in H, n \in N$, and $g \in G$. Then
$\mathrm{ghng}^{-1}=\left(\mathrm{ghg}^{-1}\right)\left(\mathrm{gng}^{1}\right) \in \mathrm{HN}$, so HN is indeed normal in G.

Second Isomorphism Theorem

Theorem
Let H be a subgroup of G and let N be a normal subgroup of G . Then $(\mathrm{HN}) / \mathrm{N} \simeq \mathrm{H} /(\mathrm{H} \cap \mathrm{N})$.

Second Isomorphism Theorem

Proof

Let $\mathrm{y}: \mathrm{G} \rightarrow \mathrm{G} / \mathrm{N}$ be the canonical homomorphism and let $\mathrm{H} \leq \mathrm{G}$. Then $\mathrm{y}[\mathrm{H}]$ is a subgroup of G / N. Now the action of y on just the elements of H (called y restricted to H) provides us with a homomorphism mapping H onto $\mathrm{y}[\mathrm{H}]$, and the kernel of this restriction is clearly the set of elements of N that are also in H ,
that is, the intersection $\mathrm{H} \cap \mathrm{N}$. By first isomorphism theorem, there is an isomorphism
$\mu_{1}: \mathrm{H} /(\mathrm{H} \cap \mathrm{N}) \rightarrow \mathrm{y}[\mathrm{H}]$.

Second Isomorphism Theorem

On the other hand, y restricted to HN also provides a homomorphism mapping HN onto $\mathrm{y}[\mathrm{H}]$, because $\mathrm{y}(\mathrm{n})$ is the identity N of G / N for all $\mathrm{n} \in \mathrm{N}$. The kernel of y restricted to HN is N . The first isomorphism theorem then provides us with an isomorphism
$\mu_{2}:(\mathrm{HN}) / \mathrm{N} \rightarrow \mathrm{y}[\mathrm{H}]$.
Because $(\mathrm{HN}) / \mathrm{N}$ and $\mathrm{H} /(\mathrm{H} \cap \mathrm{N})$ are both isomorphic to $\mathrm{y}[\mathrm{H}]$, they are isomorphic to each other. Indeed, $\phi:(\mathrm{HN}) / \mathrm{N} \rightarrow \mathrm{H} /(\mathrm{H} \cap \mathrm{N})$ where $\phi=\mu_{1}{ }^{-1} \mu_{2}$ will be an isomorphism. More explicitly, $\Phi((\mathrm{hn}) \mathrm{N})=\mu_{1}^{-1}\left(\mu_{2}((\mathrm{hn}) \mathrm{N})\right)=\mu_{1}^{-1}(\mathrm{hN})=\mathrm{h}(\mathrm{H} \cap \mathrm{N})$.

| Isomorphism Theorems | |
| :--- | :--- | :--- |
| | |
| | Example |
| | Let G be a group such that |
| for some fixed integer | |
| $n>1,(a b)^{n}=a^{n} b^{n}$ for all a, | |
| $b \in G . L e t G_{n}=\left\{a \in G \mid a^{n}=e\right\}$ | |
| and $G^{n}=\left(a^{n} \mid a \in G\right\}$. | |
| Then $G_{n} \triangleleft G, G^{n} \triangleleft G$, and | |
| $G / G_{n} \simeq G^{n}$. | |

Isomorphism Theorems

Solution

Let $\mathrm{a}, \mathrm{b} \in \mathrm{G}_{\mathrm{n}}$ and $\mathrm{x} \in \mathrm{G}$. Then $\left(a b^{-1}\right)^{\mathrm{n}}=\mathrm{a}^{\mathrm{n}}\left(\mathrm{b}^{\mathrm{n}}\right)^{-1}=\mathrm{e}$, so $a b^{-1} \in$
G_{n}. Also, $\left(\mathrm{xax}^{-1}\right)^{n}=\left(\mathrm{xax}^{-1}\right) \ldots\left(\mathrm{xax}^{-1}\right)=\mathrm{xa}^{n} \mathrm{x}^{-1}=\mathrm{e}$ implies
$x^{x} x^{-1} \in G_{n}$. Hence, $G_{n} \triangleleft G$.
Let $a, b, x \in G$. Then $a^{n}\left(b^{n}\right)^{-1}=\left(a b^{-1}\right)^{n} \in G^{n}$.
Also, $\left.x a^{n} x^{-1}=\left(x^{-1}\right) \ldots\left(x^{-1} x^{-1}\right)=\left(x_{x a}\right)^{-1}\right)^{n} \in G^{n}$. Therefore, $\mathrm{G}^{\mathrm{n}} \triangleleft \mathrm{G}$.

Group Theory
Isomorphism Theorems

Isomorphism Theorems

Example
Let G be a group such that for some fixed integer $n>1,(a b)^{n}=a^{n} b^{n}$ for all a, $b \in G$. Let $G_{n}=\left\{a \in G \mid a^{n}=e\right\}$ and $\mathrm{G}^{\mathrm{n}}=\left\{\mathrm{a}^{\mathrm{n}} \mid \mathrm{a} \in \mathrm{G}\right\}$.
Then $\mathrm{G}_{\mathrm{n}} \triangleleft \mathrm{G}, \mathrm{G}^{\mathrm{n}} \triangleleft \mathrm{G}$, and $\mathrm{G} / \mathrm{G}_{\mathrm{n}} \simeq \mathrm{G}^{\mathrm{n}}$.

Isomorphism Theorems
Define a mapping $f: G \rightarrow G^{n}$ by $f(a)=a^{n}$. Then, for all $a, b \in G$, $f(a b)=(a b)^{n}=a^{n} b^{n}=f(a) f(b)$. Thus, f is a homomorphism. Now Ker $f=\left\{a \mid a^{n}=e\right\}=G_{n}$. Therefore, by the first isomorphism theorem $G / G_{n} \simeq G^{n}$.

$\left.\begin{array}{|c|}\hline \text { Group Theory } \\ \text { Third Isomorphism } \\ \text { Theorem }\end{array}\right]$

Third Isomorphism Theorem

If H and K are two normal subgroups of G and $\mathrm{K} \leq \mathrm{H}$, then H / K is a normal subgroup of G / K.
The third isomorphism theorem concerns these groups.

Third Isomorphism Theorem

Theorem
Let H and K be normal subgroups of a group G with $\mathrm{K} \leq \mathrm{H}$.
Then $\mathrm{G} / \mathrm{H} \simeq(\mathrm{G} / \mathrm{K}) /(\mathrm{H} / \mathrm{K})$.

Third Isomorphism Theorem

Proof
Let $\phi: G \rightarrow(\mathrm{G} / \mathrm{K}) /(\mathrm{H} / \mathrm{K})$ be given by $\phi(\mathrm{a})=(\mathrm{aK})(\mathrm{H} / \mathrm{K})$
for $a \in G$.
Clearly ϕ is onto $(G / K) /(H / K)$, and for $a, b \in G$, $\phi(a b)=[(a b) K](H / K)$
$=[(a K)(b K)](H / K)$
$=[(\mathrm{aK})(\mathrm{H} / \mathrm{K})][(\mathrm{bK})(\mathrm{H} / \mathrm{K})]=\phi(\mathrm{a}) \phi(\mathrm{b})$,
so ϕ is a homomorphism.

Third Isomorphism Theorem

The kernel consists of those $x \in G$ such that $\phi(x)=H / K$.
These x are just the elements of H .
Then first isomorphism
theorem shows that $\mathrm{G} / \mathrm{H} \simeq(\mathrm{G} / \mathrm{K}) /(\mathrm{H} / \mathrm{K})$.

Third Isomorphism Theorem

A nice way of viewing third isomorphism theorem is to regard the canonical map $y_{H}: G \rightarrow G / H$ as being factored via a normal subgroup K of $\mathrm{G}, \mathrm{K} \leq \mathrm{H} \leq \mathrm{G}$, to give
$\mathrm{y}_{\mathrm{H}}=\mathrm{y}_{\mathrm{H} / \mathrm{K}} \mathrm{y}_{\mathrm{K}}$, up to a natural isomorphism, as illustrated in Figure.

Third Isomorphism Theorem

Third Isomorphism Theorem

Another way of visualizing this theorem is to use the subgroup diagram in Figure, where each group is a
normal subgroup of G and is contained in the one above
it.

Third Isomorphism Theorem

The larger the normal subgroup, the smaller the factor group.
Thus we can think of G collapsed by H , that is, G / H, as being smaller than G collapsed by K .
Third isomorphism theorem states that we can collapse G all the way down to G / H in two steps.
First, collapse to G / K, and then, using H / K, collapse this to $(\mathrm{G} / \mathrm{K}) /(\mathrm{H} / \mathrm{K})$. The overall result is the same (up to isomorphism) as collapsing G by H .

| Group Theory |
| :---: | :---: |
| Third Isomorphism |
| Theorem |

Third Isomorphism Theorem

Theorem
Let H and K be normal subgroups of a group G with $K \leq H$.
Then $\mathrm{G} / \mathrm{H} \simeq(\mathrm{G} / \mathrm{K}) /(\mathrm{H} / \mathrm{K})$.

Third Isomorphism Theorem

Thus $(\mathbb{Z} / 6 \mathbb{Z}) /(2 \mathbb{Z} / 6 \mathbb{Z})$ has
two elements and is isomorphic to \mathbb{Z}_{2} also. Alternatively, we see that $\mathbb{Z} / 6 \mathbb{Z} \simeq \mathbb{Z}_{6}$, and $2 \mathbb{Z} / 6 \mathbb{Z}$ corresponds under this isomorphism to the cyclic subgroup <2> of \mathbb{Z}_{6}.
Thus $(\mathbb{Z} / 6 \mathbb{Z}) /(2 \mathbb{Z} / 6 \mathbb{Z})$

$$
\simeq \mathbb{Z}_{6} /<2>\simeq \mathbb{Z}_{2} \simeq \mathbb{Z} / 2 \mathbb{Z}
$$

| Sylow Theorems | |
| :--- | :--- | :--- |
| | The fundamental theorem
 for finitely generated
 abelian groups gives us
 complete information
 about all finite abelian
 groups. The study of finite
 nonabelian groups is
 much more complicated.
 The Sylow theorems give
 us some important
 information about them. |

Sylow Theorems

We know the order of a subgroup of a finite group G must divide |G|. If G is abelian, then there exist subgroups of every order dividing |G|.
We showed that A_{4}, which has order 12, has no subgroup of order 6 .
Thus a nonabelian group G may have no subgroup of some order d dividing $|G|$; the "converse of the theorem of Lagrange" does not hold.

Sylow Theorems

The Sylow theorems give a weak converse. Namely, they show that if d is a power of a prime and d divides $|G|$, then G does contain a subgroup of order d.
Note that 6 is not a power of a prime. The Sylow theorems also give some information concerning the number of such subgroups and their relationship to each other.
We will see that these theorems are very useful in studying finite nonabelian groups.

Proofs of the Sylow theorems give us another application of action of a group on a set. This time the set itself is formed from the group; in some from the group; in some
instances the set is the instances the set is the group itself, sometimes it
is a collection of cosets of a subgroup, and sometimes it is a collection of subgroups.

Sylow Theorems	
Let X be a finite G-set.	
Recall that for $x \in X$, the	
orbit of x in X under G is	
$G x=\{g x \mid g \in G\}$. Suppose	
that there are r orbits in X	
under G and let $\left\{x_{1}, x_{2}, \cdots\right.$,	
$\left.x_{\mathrm{r}}\right\}$ contain one element	
from each orbit in X. Now	
every element of X is in	
precisely one orbit, so	
	$\|X\|=\sum_{i=1}^{r}\|G x i\| \cdot$

Sylow Theorems	
There may be one-element orbits in X . Let $X_{G}=\{x \in X \mid g x=x$ for all $g \in G\}$.	
Thus X_{G} is precisely the union of the one-element orbits in X .	
Let us suppose there are s one-element orbits, where $0 \leq s \leq r$. Then $\left\|X_{G}\right\|=s$, and reordering the x_{i} if necessary, we may rewrite above equation as	
$\|\mathrm{X}\|=\left\|\mathrm{X}_{\mathrm{G}}\right\|+\sum_{\mathrm{i}=5+1}^{\mathrm{r}}\left\|\mathrm{Gx}_{\mathrm{i}}\right\|$.	
Most of the results of these modules will flow from above equation.	
1040	

Sylow Theorems		
	Theorem Let G be a group of order p^{n} and let X be a finite G -set. Then $\|X\| \equiv\left\|X_{6}\right\|(\bmod p)$.	

Sylow Theorems

Proof

Recall $|\mathrm{X}|=\left|\mathrm{X}_{\mathrm{G}}\right|+\sum_{\mathrm{i}=\mathrm{s}+1}^{\mathrm{r}}\left|\mathrm{Gx}_{\mathrm{i}}\right|$.
In the notation of above Equation, we know that $\left|G x_{i}\right|$ divides $|G|$.
Consequently p divides $\left|G x_{i}\right|$ for $s+1 \leq i \leq r$. Above equation then shows that $|X|-\left|X_{G}\right|$ is divisible by p, so $|X| \equiv\left|X_{G}\right|$ (modp).

Definition

Let p be a prime. A group
G is a p -group if every
element in G has order a
power of the prime p.
A subgroup of a group G is
a \mathbf{p}-subgroup of G if the
subgroup is itself a p group.

Cauchy's Theorem

Our goal in these modules is
to show that a finite group G to show that a finite group G has a subgroup of every prime-power order dividing |G|.
As a first step, we prove Cauchy's theorem, which says that if p divides |G then G has a subgroup of order p .

Cauchy's Theorem

Proof

We form the set X of all p -
tuples $\left(g_{1}, g_{2}, \cdots, g_{p}\right)$ of
elements of G having the
property that the product of
the coordinates in G is e .
That is,
$X=\left\{\left(g_{1}, g_{2}, \cdots, g_{p}\right) \mid g_{i} \in G\right.$ and
$\left.g_{1} g_{2} \cdots g_{p}=e\right\}$.

Cauchy's Theorem

We claim p divides $|X|$. In forming a p-tuple in X, we may let $\mathrm{g}_{1}, \mathrm{~g}_{2}, \cdots, \mathrm{~g}_{\mathrm{p}-1}$ be any elements of G , and g_{p} is then uniquely determined as
$\left(g_{1} g_{2} \cdots g_{p-1}\right)^{-1}$.
Thus $|X|=|G|^{p-1}$ and since p divides $|G|$, we see that p divides $|X|$. Let σ be the cycle $(1,2,3, \ldots, p)$ in S_{p}.

Cauchy's Theorem

Now $|\langle\sigma\rangle|=p$, so we may apply above Theorem, and we
Now $|\langle\sigma\rangle|=p$, so we may apply above Theorem, and we
know that $|X| \equiv\left|X_{\langle\sigma\rangle}\right|(\bmod p)$. Since p divides $|X|$, it must

Now ($g_{1}, g_{2}, \ldots, g_{p}$) is left fixed by σ, and hence by $\langle\sigma\rangle$, if and only if $g_{1}=g_{2}=\ldots=g_{p}$. We know at least one element in $X_{\langle\sigma\rangle}$, namely $(\mathrm{e}, \mathrm{e}, \ldots, \mathrm{e})$. Since p divides $\left|\mathrm{X}_{\langle\sigma\rangle}\right|$, there must be at least p elements in $X_{<\sigma>}$. Hence there exists some element $a \in G, a \neq e$, such that $(a, a, \ldots, a) \in X_{<\sigma>}$ and hence $a^{p}=e$, so a has order p. Of course, <a> is a subgroup of G of order p .

Sylow Theorems

Corollary

Let G be a finite group.
Then G is a p -group if
and only if |G| is a
power of p.

Sylow Theorems	
Let G be a group, and let \mathcal{S} be the collection of all subgroups of G .	
We make \mathcal{S} into a G-set by letting G act on \mathcal{S} by conjugation.	
That is, if $\mathrm{H} \in \mathcal{S}$ so $\mathrm{H} \leq \mathrm{G}$ and $\mathrm{g} \in \mathrm{G}$, then g acting on H yields the conjugate subgroup gHg^{-1}.	
	1053

Sylow Theorems

Now $\mathrm{G}_{\mathrm{H}}=\left\{\mathrm{g} \in \mathrm{G} \mid \mathrm{gHg}^{-1}=\mathrm{H}\right\}$ is easily seen to be a subgroup of G , and H is a normal subgroup of G_{H}. Since G_{H} consists of all. Since G_{H} consists of all
elements of G that leave
elements of G tha
H invariant under
conjugation, G_{H} is the
largest subgroup of G
having H as a normal subgroup.

Sylow Theorems

Definition

The subgroup
$\mathrm{G}_{\mathrm{H}}=\left\{\mathrm{g} \in \mathrm{G} \mid \mathrm{gHg}^{-1}=\mathrm{H}\right\}$
is the normalizer of H in
G and is denoted by $\mathrm{N}[\mathrm{H}]$.

Sylow Theorems

Lemma

Let H be a p -subgroup of a finite group G. Then
$(\mathrm{N}[\mathrm{H}]: \mathrm{H}) \equiv(\mathrm{G}: \mathrm{H})(\bmod \mathrm{p})$.

Sylow Theorems

Proof

Let \mathcal{L} be the set of left cosets of H in G , and let H act on \mathcal{L} by left translation, so that $h(x H)=(h x) H$. Then \mathcal{L} becomes an H -set. Note that $|\mathcal{L}|=(\mathrm{G}: \mathrm{H})$.
Let us determine \mathcal{L}_{H}, that is, those left cosets that are fixed under action by all elements of H .
Now $\mathrm{xH}=\mathrm{h}(\mathrm{xH})$ if and only if $\mathrm{H}=\mathrm{x}^{-1} \mathrm{hxH}$, or if and only if $x^{-1} h x \in H$.

Sylow Theorems

Thus $\mathrm{xH}=\mathrm{h}(\mathrm{xH})$ for all $\mathrm{h} \in \mathrm{H}$ if and only if $\mathrm{x}^{-1} \mathrm{hx}$ $=x^{-1} h\left(x^{-1}\right)^{-1} \in H$ for all $h \in H$, or if and only if $x^{-1} \in N[H]$, or if and only if $x \in N[H]$. Thus the left cosets in \mathcal{L}_{H} are those contained in $\mathrm{N}[\mathrm{H}]$. The number of such cosets is $(N[H]: H)$, so $\left|\mathcal{L}_{H}\right|=(N[H]: H)$.
Since H is a p -group, it has order a power of p . Then $|\mathcal{L}| \equiv\left|\mathcal{L}_{\mathrm{H}}\right|(\bmod p)$, that is,
$(\mathrm{G}: \mathrm{H}) \equiv(\mathrm{N}[\mathrm{H}]: \mathrm{H})(\bmod \mathrm{p})$.

| Group Theory |
| :--- | :--- |
| First Sylow Theorem |
| |

First Sylow Theorem

Theorem

Let G be a finite group and let $|G|=p^{n} m$ where $n \geq 1$ and where p does not divide m. Then

1. G contains a subgroup
of order p^{i} for each i where $1 \leq i \leq n$,
2. Every subgroup H of G of order p^{i} is a normal subgroup of a subgroup of order $\mathrm{p}^{\mathrm{i}+1}$ for $1 \leq \mathrm{i}<\mathrm{n}$.

First Sylow Theorem	
	Proof We know G contains a subgroup of order p by Cauchy's theorem. We use an induction argument and show that the existence of a subgroup of order pi for i<n implies the existence of a subgroup of order p^{i+1}.

First Sylow Theorem

Let H be a subgroup of order p^{i}. Since i < n , we see p divides ($\mathrm{G}: \mathrm{H}$). We then know p divides ($\mathrm{N}[\mathrm{H}]: \mathrm{H}$).
Since H is a normal subgroup of $N[H]$, we can form $N[H] / H$, and we see that p divides $|N[H] / H|$.
By Cauchy's theorem, the factor group $\mathrm{N}[\mathrm{H}] / \mathrm{H}$ has a subgroup K which is of order p .
If $\mathrm{y}: \mathrm{N}[\mathrm{H}] \rightarrow \mathrm{N}[\mathrm{H}] / \mathrm{H}$ is the canonical homomorphism, then $\mathrm{y}^{-1}[\mathrm{~K}]=\{x \in \mathrm{~N}[\mathrm{H}] \mid \mathrm{y}(\mathrm{x}) \in \mathrm{K}\}$ is a subgroup of $\mathrm{N}[\mathrm{H}]$ and hence of G . This subgroup contains H and is of order $\mathrm{p}^{\mathrm{i}+1}$.

First Sylow Theorem
2. We repeat the construction in part 1 and note that $\mathrm{H}<\mathrm{y}^{-1}[\mathrm{~K}] \leq \mathrm{N}[\mathrm{H}]$ where $\left|\mathrm{y}^{-1}[\mathrm{~K}]\right|=\mathrm{p}^{\mathrm{i} 1}$
Since H is normal in $N[H]$, it is of course normal in the possibly smaller group $\mathrm{y}^{-1}[\mathrm{~K}]$

First Sylow Theorem

Definition

A Sylow p-subgroup P of a group G is a maximal p-subgroup of G , that is,
a p-subgroup contained in no larger p -subgroup.

Group Theory
Second Sylow Theorem

Second Sylow Theorem
Let G be a finite group,
where $\|\mathrm{G}\|=\mathrm{p}^{n} m$ as in first
Sylow theorem.
The theorem shows that
the Sylow p -subgroups of
G are precisely those
subgroups of order p^{n}.
If P is a Sylow p .
subgroup, every
conjugate gPg ${ }^{-1}$ of P is
also a Sylow p -subgroup.

Second Sylow Theorem

The second Sylow
theorem states that
every Sylow p-subgroup
can be obtained from P in this fashion; that is, any two Sylow p-
subgroups are conjugate.

Second Sylow Theorem

Theorem

Let P_{1} and P_{2} be Sylow p subgroups of a finite group G.
Then P_{1} and P_{2} are
conjugate subgroups of G .

Second Sylow Theorem

Proof

Here we will let one of the subgroups act on left cosets of the other. Let \mathcal{L} be the collection of left cosets of P_{1}, and let P_{2} act on \mathcal{L} by $z\left(x P_{1}\right)=(z x) P_{1}$ for $z \in P_{2}$. Then \mathcal{L} is a P_{2}-set We have $\left|\mathcal{L}_{\mathrm{P}_{2}}\right| \equiv|\mathcal{L}|(\bmod p)$, and $|\mathcal{L}|=\left(G: P_{1}\right)$ is not divisible by p , so $\left|\mathcal{L}_{\mathrm{P}_{2}}\right| \neq 0$. Let $\mathrm{xP}_{1} \in \mathcal{L}_{\mathrm{P}_{2}}$
Then $z \times P_{1}=x P_{1}$ for all $z \in P_{2}$, so $x^{-1} z x P_{1}=P_{1}$ for all $z \in P_{2}$. Thus x ${ }_{1} z x \in P_{1}$ for all $z \in P_{2}$, so $x^{-1} P_{2} x \leq P_{1}$
Since $\left|P_{1}\right|=\left|P_{2}\right|$, we must have $P_{1}=x^{-1} P_{2} x$, so P_{1} and P_{2} are indeed conjugate subgroups.

Third Sylow Theorem

Proof

Let P be one Sylow p-subgroup of G . Let \mathcal{S} be the set of all Sylow p-subgroups and let P act on \mathcal{S} by conjugation, so that $\mathrm{x} \in \mathrm{P}$ carries $\mathrm{T} \in \mathcal{S}$ into xTx^{-1}.
We have $|\mathcal{S}| \equiv\left|\mathcal{S}_{\mathrm{P}}\right|(\bmod \mathrm{p})$. Let us find \mathcal{S}_{P}
If $\mathrm{T} \in \mathcal{S}_{\mathrm{P}}$, then $\mathrm{xTx} \mathrm{x}^{-1}=\mathrm{T}$ for all $\mathrm{x} \in \mathrm{P}$. Thus $\mathrm{P} \leq \mathrm{N}[\mathrm{T}]$.
Of course $T \leq N[T]$ also
Since P and T are both Sylow p-subgroups of G, they are also Sylow p-subgroups of $\mathrm{N}[\mathrm{T}]$.

But then they are conjugate in $\mathrm{N}[\mathrm{T}]$ by second Sylow theorem.

Then $\mathcal{S}_{\mathrm{P}}=\{\mathrm{P}\}$. Since $|\mathcal{S}| \equiv\left|\mathcal{S}_{\mathrm{P}}\right|=1(\bmod \mathrm{p})$, we see the number of Sylow p -subgroups is congruent to 1 modulo p .

Now let G act on \mathcal{S} by conjugation. Since all Sylow p-subgroups are conjugate, there is only one orbit in S under G.
If $\mathrm{P} \in \mathcal{S}$ then $|\mathcal{S}|=$ orbit of $\mathrm{P} \mid=\left(\mathrm{G}: \mathrm{G}_{\mathrm{p}}\right) . \mathrm{G}_{\mathrm{p}}$ is, in fact, the normalizer of P. But ($G: G_{p}$) is a divisor of $|G|$, so the number of Sylow p -subgroups divides |G|.

Sylow Theorems		
	Example	
	The Sylow 2-subgroups of	
	S_{3} have order 2.	
The subgroups of order 2		
in S_{3} are		
	$\left\{\rho_{0}, \mu_{1}\right\},\left\{\rho_{0}, \mu_{2}\right\},\left\{\rho_{0}, \mu_{3}\right\}$.	
Note that there are three		
subgroups and that		
	$3 \equiv 1(\bmod 2)$.	
		$\mathbf{1 0 7 5}$

Sylow Theorems
Example
Let us use the Sylow theorems to show that no group of
order 15 is simple. Let G have order 15 .
We claim that G has a normal subgroup of order 5.
By first Sylow theorem G has at least one subgroup of
order 5, and by third Sylow theorem the number of
such subgroups is congruent to 1 modulo 5 and divides
15. Since 1, 6, and 11 are the only positive numbers less
than 15 that are congruent to 1 modulo 5, and since
among these only the number 1 divides 15, we see that
G has exactly one subgroup P of order 5.

$\left.\begin{array}{|c|c|}\hline \text { Group Theory } \\ \text { Application of Sylow } \\ \text { Theory }\end{array}\right]$

Application of Sylow Theory

Let X be a finite G -set where G is a finite group Let $X_{G}=\{x \in X \mid g x=x$ for all $\mathrm{g} \in \mathrm{G}\}$. Then
$|\mathrm{X}|=\left|\mathrm{X}_{\mathrm{G}}\right|+\sum_{\mathrm{i}=s+1}^{\mathrm{r}} \mid$ Gxi \mid, where x_{i} is an element in the ith orbit in X .

Application of Sylow Theory	
Consider now the special case of above equation, where $\mathrm{X}=\mathrm{G}$ and the action of G on G is by conjugation, so $\mathrm{g} \in \mathrm{G}$ carries $\mathrm{x} \in \mathrm{X}=\mathrm{G}$ into gxg^{-1}. Then $\mathrm{X}_{\mathrm{G}}=\left\{\mathrm{x} \in \mathrm{G} \mid \mathrm{gxg}^{-1}=\mathrm{x}\right.$ for all $\left.\mathrm{g} \in \mathrm{G}\right\}$	
$=\{x \in G \mid x g=g x$ for all $g \in G\}=Z(G)$, the center of G.	
If we let $\mathrm{c}=\|\mathrm{Z}(\mathrm{G})\|$ and $\mathrm{n}_{\mathrm{i}}=\left\|G \mathrm{x}_{\mathrm{i}}\right\|$ in above equation, then we obtain $\|G\|=c+n_{c+1}+\ldots+n_{r}$, where n_{i} is the number of elements in the ith orbit of G under conjugation by itself.	
Note that n_{i} divides $\|G\|$ for $\mathrm{c}+1 \leq \mathrm{i} \leq \mathrm{r}$ since we know $\left\|G x_{i}\right\|=\left(G: G_{x_{i}}\right)$, which is a divisor of $\|G\|$.	
1081	

Application of Sylow Theory	
Example	
$\mathrm{i}_{\rho_{1}}\left(\rho_{0}\right)=\rho_{1} \rho_{0} \rho_{1}{ }^{-1}=\rho_{0} \quad \mathrm{i}_{\mu_{1}}\left(\rho_{1}\right)=\mu_{1} \rho_{1} \mu_{1}{ }^{-1}=\rho_{2}$	
$\mathrm{i}_{\mu_{1}}\left(\rho_{2}\right)=\mu_{1} \rho_{2} \mu_{1}{ }^{-1}=\mu_{1} \rho_{2} \mu_{1}=\rho_{1}$	
$\mathrm{i}_{\rho_{1}}\left(\mu_{1}\right)=\rho_{1} \mu_{1} \rho_{1}{ }^{-1}=(1,2,3)(2,3)(1,3,2)=(1,3)=\mu_{2}$	
$\mathrm{i}_{\rho_{1}}\left(\mu_{2}\right)=\rho_{1} \mu_{2} \rho_{1}{ }^{-1}=\mu_{3} \quad \mathrm{i}_{\rho_{1}}\left(\mu_{3}\right)=\rho_{1} \mu_{3} \rho_{1}{ }^{-1}=\mu_{1}$	
Therefore, the conjugate classes of S_{3} are	
$\left\{\rho_{0}\right\}, \quad\left\{\rho_{1}, \rho_{2}\right\}, \quad\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$.	
The class equation of S_{3} is $6=1+2+3$.	
	$\mathbf{1 0 8 3}$

Application of Sylow Theory

Theorem

The center of a finite nontrivial p-group G is nontrivial.

| Application of Sylow Theory |
| :--- | :--- |
| Proof |
| We have $\|G\|=c+n_{c+1}+\ldots+n_{r}$, where n_{i} is the number |
| of elements in the ith orbit of G under conjugation |
| by itself. |
| For G, each n_{i} divides $\|G\|$ for $c+1 \leq i \leq r$, so p divides |
| each n_{i}, and p divides $\|G\|$. Therefore p divides c. |
| Now $e \in Z(G)$, so $c \geq 1$. Therefore $c \geq p$, and there exists |
| some $a \in Z(G)$ where $a \neq e$. |

Group Theory
Application of Sylow
Theory

Application of Sylow Theory	
Lemma	
Let G be a group containing normal subgroups H and K such that $\mathrm{H} \cap \mathrm{K}=\{\mathrm{e}\}$ and	
HV K $=\mathrm{G}$. Then G is isomorphic to HXK .	
	1087

Application of Sylow Theory

Proof

We start by showing that $h k=k h$ for $k \in K$ and $h \in H$. Consider the commutator
$h k h^{-1} k^{-1}=\left(h k h^{-1}\right) k^{-1}=h\left(k h^{-1} k^{-1}\right)$.
Since H and K are normal subgroups of G, the two groupings with parentheses show that $h k h^{-1} \mathrm{k}^{-1}$ is in both K and H .
Since $K \cap H=\{e\}$, we see that $h k h^{-1} k^{-1}=e$, so $h k=k h$.

Application of Sylow Theory

Let $\phi: \mathrm{H} \times \mathrm{K} \rightarrow \mathrm{G}$ be defined by $\phi(\mathrm{h}, \mathrm{k})=\mathrm{hk}$.
Then $\phi\left((h, k)\left(h^{\prime}, k^{\prime}\right)\right)=\phi\left(h h^{\prime}, k k^{\prime}\right)=h h^{\prime} k k^{\prime}=h k h^{\prime} k^{\prime}$
$=\phi(h, k) \phi\left(h^{\prime}, k^{\prime}\right)$, so ϕ is a homomorphism.
Application of Sylow
If $\phi(h, k)=e$, then $h k=e$, so $h=k^{-1}$, and both h and k
are in $\mathrm{H} \cap \mathrm{K}$. Thus $\mathrm{h}=\mathrm{k}=\mathrm{e}$, so $\operatorname{Ker}(\phi)=\{(\mathrm{e}, \mathrm{e})\}$ and ϕ is one to one.
We know that HK=H V K, and H V K = G by
hypothesis.
Thus ϕ is onto G , and $\mathrm{H} \times \mathrm{K} \simeq \mathrm{G}$.
$\left.\begin{array}{|c|}\hline \text { Group Theory } \\ \text { Application of Sylow } \\ \text { Theory }\end{array}\right]$

| Application of Sylow Theory | |
| :--- | :--- | :--- |
| | |
| | |
| | Theorem
 For a prime number p,
 every group G of order p^{2}
 is abelian. |

Application of Sylow Theory

Proof

If G is not cyclic, then every element except e must be of order p.
Let a be such an element. Then the cyclic subgroup <a> of order p does not exhaust G .
Also let $b \in G$ with $b \notin<a>$. Then $<a>n=\{e\}$, since an element c in $<a>\cap$ with $c \neq e$ would generate both <a> and , giving <a>=, contrary to construction.

Application of Sylow Theory

From first Sylow theorem, <a> is normal in some subgroup of order p^{2} of G , that is, normal in all of G . Likewise is normal in G.
Now <a> V is a subgroup of G properly containing <a> and of order dividing p^{2}.
Hence <a> V must be all of G.
Thus the hypotheses of last lemma are satisfied, and G is isomorphic to $<a>x$ and therefore abelian.

[^0]: Lagrange's Theorem shows that if there is a subgroup H of a finite group G, then the order of H divides the order of G.

[^1]: Proof
 Let us show closure. Let $a \in \bigcap_{i \in I} H_{i}$ and
 $b \in \bigcap_{i \in I} H_{i}$, so that $a \in H_{i}$ for all $i \in I$ and
 $b \in H_{i}$ for all $i \in I$. Then $a b \in H_{i}$ for all $i \in I$, since
 H_{i} is a group. Thus $a b \in \bigcap_{i \in I} H_{i}$.
 Since H_{i} is a subgroup for all $i \in I$, we have $e \in H_{i}$ for all $i \in I$, and hence $e \in \bigcap_{i \in I} H_{i}$.
 Finally, for $a \in \bigcap_{i \in I} H_{i}$, we have $a \in H_{i}$ for all $i \in I$, so $a^{-1} \in H_{i}$ for all $i \in I$, which implies that
 $a^{-1} \in \bigcap_{i \in I} H_{i}$.

