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FIGURE 5-39

Schematic for Example 5-5. Inset
shows a magnified view of the hose
outlet region.

Applications of the Bernoulli Equation

So far, we have discussed the fundamental aspects of the Bernoulli equa-
tion. Now, we demonstrate its use in a wide range of applications through
examples.

EXAMPLE 5-5 Spraying Water into the Air

Water is flowing from a garden hose (Fig. 5-39). A child places his thumb to cover m
most of the hose outlet, causing a thin jet of high-speed water to emerge. The pressure B
in the hose just upstream of his thumb is 400 kPa. If the hose is held upward, what is
the maximum height that the jet could achieve?

SOLUTION Water from a hose attached to the water main is sprayed into the air.
The maximum height the water jet can rise is to be determuned.

Assumptions 1 The flow exiting into the ar i1s steady, incompressible, and
irrotational (so that the Bernoulli eguation is applicable). 2 The surface ten-
sion effects are negligible. 3 The friction between the water and air is negligible.
4 The irreversibilities that occur at the outlet of the hose due to abrupt contraction are
not taken into account.

Properties We take the density of water to be 1000 kg/m®.

Analysis This problem involves the conversion of flow, kinetic, and potential
energies to each other without involving any pumps, turbines, and wasteful compo-
nents with large frictional losses, and thus it is suitable for the use of the Bernoulli
equation. The water height will be maximum under the stated assumptions. The
velocity inside the hose is negligibly small compared to that of the jet (V7<= V?,
see magnified portion of Fig. 5-39) and we take the elevation just below the hose
outlet as the reference level (z; = 0). At the top of the water trajectory V, = 0, and
atmospheric pressure pertains. Then the Bernoulli equation along a streamline from
1 to 2 simplifies to
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= 40.8 m

Therefore, the water jet can rise as high as 40.8 m into the sky in this case.
Discussion The result obtained by the Bernoulli equation represents the upper
limit and should be interpreted accordingly. It tells us that the water cannot possibly
rise more than 40.8 m, and, in all likelihood, the rise will be much less than 40.8 m
due to irreversible losses that we neglected.



[
m EXAMPLE 5-6 Water Discharge from a Large Tank

: A large tank open to the atmosphere is filled with water to a height of 5 m from the

W putlet tap (Fig. 5-40). A tap near the bottom of the tank is now opened, and water
flows out from the smooth and rounded outlet. Determine the maximum water
velocity at the outlet.

SOLUTION A tap near the bottom of a tank is opened. The maximum exit
velocity of water from the tank is to be determined.

Assumptions 1 The tlow is incompressible and irrotational (except very
close to the walls). 2 The water drains slowly enough that the flow can be
approximated as steady (actually quasi-steady when the tank begins to drain).
3 Irreversible losses in the tap region are neglected.

Analysis This problem involves the conversion of flow, kinetic, and potential
energies to each other without involving any pumps, turbines, and wasteful com-
ponents with large frictional losses, and thus it is suitable for the use of the
Bernoulli equation. We take point | to be at the free surface of water so that
P, = P__ (open to the atmosphere), V| is negligibly small compared to V, (the
tank diameter is very large relative to the outlet diameter), z; = 5 m, and z, = 0
{we take the reference level at the center of the outlet). Also, P, = P, (water
discharges into the atmosphere). For flow along a streamline from 1 to 2, the
Bernoulli equation simplifies to
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Solving for V, and substituting,

Vo= v2gz = V2(9.81 m/s?)(5 m) = 9.9 mis

The relation V= +/2gz is called the Torricelli equation.

Therefore, the water leaves the tank with an initial maximum velocity of

9.9 m/s. This 15 the same velocity that would manifest if a sohd were dropped a
distance of 5 m in the absence of air friction drag. (What would the velocity be if the
tap were at the bottom of the tank instead of on the side?)
Discussion If the orifice were sharp-edged instead of rounded, then the
flow would be disturbed, and the average exit velocity would be less than
9.9 m/s. Care must be exercised when attempting to apply the Bernoulli equation
to situations where abrupt expansions or contractions occur since the friction and
tflow disturbance in such cases may not be negligible. From conservation of mass,
(V, IV = (DJD,) . So, for example, if DJ/D; = 0.1, then (V,/V;)* = 0.0001, and
our approximation that V2 < V3 is justified.
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FIGURE 5-40

Schematic for Example 5-6.
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(ref. ‘Fluid Mechanics’ by & Cimbala)
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]

m EXAMPLE 5-8 Velocity Measurement by a Pitot Tube

|

m A piezometer and a Pitot tube are tapped into a horizontal water pipe, as shown

B in Fig. 5-42, to measure static and stagnation (static + dynamic) pressures. For
the indicated water column heights, determine the velocity at the center of the

B

SOLUTION The static and stagnation pressures in a horizontal pipe are meas-
ured. The velocity at the center of the pipe is to be determined.

Assumptions 1 The flow is steady and incompressible. 2 Points 1 and 2 are
close enough together that the irreversible energy loss between these two points is
negligible, and thus we can use the Bernoulli equation.

Analysis We take points 1 and 2 along the streamline at the centerline of
the pipe. with point | directly under the piezometer and point 2 at the tip
of the Pitot tube. This is a steady flow with straight and parallel streamlines, and
the gage pressures at points 1 and 2 can be expressed as

Py = pglh + hy)
P,=pg(h, + h, + hy)

Noting that z, = z,, and point 2 is a stagnation point and thus V, = 0, the applica-
tion of the Bernoulli equation between points 1 and 2 gives
0
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Substituting the P| and P, expressions gives

V_,z_Pz—PL:pg(h]+h2+h3)—pg(ht+h2):
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Solving for V| and substituting,

V, = v/2gh; = /2(9.81 m/s?)(0.12 m) = 1.53 m/s

Discussion Note that to determine the flow velocity, all we need is to measure
the height of the excess fluid column in the Pitot tube compared to that in the pie-
zometer tube.
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FIGURE 5-42
Schematic for Example 5-8.
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Schematic for Example 5-9. The
vertical scale is greatly exaggerated.

FIGURE 5-44

The eye of hurricane Linda (1997
in the Pacific Ocean near Baja
California) is clearly visible in
this satellite photo.

@ Brand X Pictures/PunchStodk RF

EXAMPLE 5-9 The Rise of the Ocean Due to a Hurricane

A hurricane is a tropical storm formed over the ocean by low atmospheric
pressures. As a hurricane approaches land, inordinate ocean swells (very
high tides) accompany the hurricane. A Class-5 hurricane features winds
in excess of 155 mph, although the wind velocity at the center “eye” is very low.

Figure 5-43 depicts a hurricane hovering over the ocean swell below. The
atmospheric pressure 200 mi from the eye is 30.0 in Hg (at point 1, generally
normal for the ocean) and the winds are calm. The atmospheric pressure at the
eye of the storm is 22.0 in Hg. Estimate the ocean swell at (a) the eye of the
hurricane at point 3 and (b) point 2, where the wind velocity is 155 mph. Take
the density of seawater and mercury to be 64 Ibm/ft' and 848 Ibm/ft’, respec-
tively, and the density of air at normal sea-level temperature and pressure to be
0.076 1bm/ft>.

SOLUTION A hurricane is moving over the ocean. The amount of ocean swell
at the eye and at active regions of the hurricane are to be determined.
Assumptions 1 The airflow within the hurricane is steady, incompressible, and
irrotational (so that the Bernoulli equation is applicable). (This is certainly a very
questionable assumption for a highly turbulent flow, but it is justified in the discus-
sion.) 2 The effect of water sucked into the air is negligible.

Properties The densities of air at normal conditions, seawater, and mercury are
given to be 0.076 Ibm/ft’, 64.0 IbnVft, and 848 Ibm/ft’, respectively.

Analysis (a) Reduced atmospheric pressure over the water causes the water to rise.
Thus, decreased pressure at point 2 relative to point 1 causes the ocean water to rise
at point 2. The same is true at point 3, where the storm air velocity is negligible. The
pressure difference given in terms of the mercury column height is expressed in terms
of the seawater column height by

nol-Ig
AP = (pghly, = (pgh)s, — hy, = P—kug

W

Then the pressure difference between points | and 3 in terms of the seawater col-
umn height becomes

11t
12 in

Prg 848 Ibnv/ft®
=—hy, = ( ) = 8.83ft

h, = — |[(30 — 22) in H,

37 pew 64.0 ]bm!ft3)[( ) g](
which is equivalent to the storm surge at the eye of the hurricane (Fig. 5-44) since
the wind velocity there is negligible and there are no dynamic effects.

(b) To determine the additional rise of ocean water at point 2 due to the high winds
at that point, we write the Bernoulli equation between points A and B, which are on
top of points 2 and 3, respectively. Noting that V; = 0 (the eye region of the hur-
ricane is relatively calm) and z; = zz (both points are on the same horizontal line),
the Bernoulli equation simplifies to

0
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Substituting,

Py—P, _ V2 _(ass mph)? (1.466? ft/s
P8 2 2(32.2fus?)

2
= 803 ft
1 mph )



where p is the density of air in the hurricane. Noting that the density of an ideal gas
at constant temperature is proportional to absolute pressure and the density of air at
the normal atmospheric pressure of 14.7 psia = 30 in Hg is 0.076 1bm/ft*, the density
of air in the hurricane is

I _ (22inHg _ 3
Pair = 5 Pamair = (m)(ﬂ.{ﬁ'ﬁ Ibnvft}) = 0.056 Tbm/ft*

atm air

Using the relation developed above in part (a), the seawater column height equiva-
lent to 803 ft of air column height is determined to be

Pur, (0.056 Ibmv/ft?

—— )(303 ft) = 0.70 ft

hdynamic =

W

Therefore, the pressure at point 2 is 0.70 ft seawater column lower than the pressure
at point 3 due to the high wind velocities, causing the ocean to rise an additional
0.70 ft. Then the total storm surge at point 2 becomes

hy = hy + hygpane = 8.83 +0.70 = 9.53 ft

Discussion This problem involves highly turbulent flow and the intense break-
down of the streamlines, and thus the applicability of the Bernoulli equation in
part (b) is questionable. Furthermore, the flow in the eye of the storm is not
irrotational, and the Bernoulli equation constant changes across streamlines (see
Chap. 10). The Bernoulli analysis can be thought of as the limiting, ideal case,
and shows that the rise of seawater due to high-velocity winds cannot be more
than 0.70 ft.

The wind power of hurricanes is not the only cause of damage to coastal areas.
Ocean flooding and erosion from excessive tides is just as serious, as are high
waves generated by the storm turbulence and energy.

(ref. ‘Fluid Mechanics’ by & Cimbala)
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|

m EXAMPLE 5-10 Bernoulli Equation for Compressible Flow
|

m Derive the Bernoulli equation when the compressibility effects are not negligi-

B ble for an ideal gas undergoing (a) an isothermal process and (b) an isentropic
process.

SOLUTION The Bernoulli equation for compressible flow is to be obtained for
an ideal gas for isothermal and isentropic processes.

Assumptions 1 The flow is steady and frictional effects are negligible. 2 The
fluid is an ideal gas, so the relation P = pRT is applicable. 3 The specific heats
are constant so that P/pk = constant during an isentropic process.

Analysis (a) When the compressibility effects are significant and the flow

cannot be assumed to be incompressible, the Bernoulli equation is given by
Eq. 5-40 as

dP V? )
? + EX + gz = constant  (along a streamline) (1)



FIGURE 5-45

Compressible flow of a gas through
turbine blades is often modeled as
isentropic, and the compressible form
of the Bernoulli equation is a
reasonable approximation.

© Corbis RF

The compressibility effects can be properly accounted for by performing the
integration [dP/p in Eq. 1. But this requires a relation between P and p for the
process. For the isothermal expansion or compression of an ideal gas, the inte-
gral in Eq. | is performed easily by noting that 7 = constant and substituting
p = PIRT.

dP dP
[ B IP/RT—RTInP

Substituting into Eq. 1 gives the desired relation,

VZ
Isothermal process: RTInP + a + gz = constant )

(b) A more practical case of compressible flow is the isentropic flow of ideal
gases through equipment that involves high-speed fluid flow such as nozzles,
diffusers, and the passages between turbine blades (Fig. 5-45). Isentropic (i.e..
reversible and adiabatic) flow is closely approximated by these devices, and it is
characterized by the relation P/p* = C = constant, where k is the specific heat
ratio of the gas. Solving for p from P/p* = C gives p = C~VPVk Performing the
integration,

AR et LL S P LG P T _( k )E
IP_[CP B=C i ol \boijs @

Substituting, the Bernoulli equation for steady, isentropic, compressible flow of an ideal
gas becomes

Isentropic g (k )P Vi = constant 4a
'sentropic flow: =1 ;+T+gz—m (4a)
or
Kk \P V2 _( kP V2
(k—l p‘+ 2 + 8z = ¥ p3+ 2 + 82 (4b)

A common practical situation involves the acceleration of a gas from rest
(stagnation conditions at state 1) with negligible change in elevation. In that case
we have z, = z, and V, = (. Noting that p = P/RT for ideal gases, P/p* = constant
for isentropic flow, and the Mach number is defined as Ma = V/c where ¢ = \/kRT
is the local speed of sound for ideal gases, Eq. 4b simplifies to

Pl 5 k-1 zk/(k-l)

where state | is the stagnation state and state 2 is any state along the flow.
Discussion It can be shown that the results obtained using the compressible
and incompressible equations deviate no more than 2 percent when the Mach
number is less than 0.3. Therefore, the flow of an ideal gas can be considered to
be incompressible when Ma < 0.3. For atmospheric air at normal conditions, this
corresponds to a flow speed of about 100 m/s or 360 km/h.

(ref. ‘Fluid Mechanics’ by & Cimbala)
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Drag and L.ift:

An object moving through a fluid will experience a complicated set of forces acting on it. In order to understand the behavior of the object as it moves through the fluid,
we will focus on two resultant forces-drag and lift. The drag force acts parallel to the motion of the object while the lift force acts in a direction perpendicular to the
motion.

Instead of considering an object moving through a fluid at rest, we can consider the same object at rest in a fluid stream of the same velocity. The object will experience
the same set of forces as illustrated in the picture below. In this case the drag and lift forces will act parallel and perpendicular to the velocity of the fluid.

Fluid at rest o
F, (Lift)
v F, (Drag)
v (Free stream velocity) F, (Lift)
—
— >
—_—
— >

e F, (Drag)
—
—_—

The upper figure shows an airfoil moving to the left with velocity v in a fluid at rest. The lower figure
shows the same airfail at rest in a fluid stream moving to the right with velocity v. Both airfoils will

experience the same set of forces.

Drag Force equation

The drag force on an abject is

pv?
Fp==Cp ( B ) A

In the above expression, (' is a dimensionless number known as the drag coefficient. p is the density of the fluid. v is the free stream velocity of the fluid relative to
the body. A is a characteristic area of the body and will be defined carefully for each object in the subsequent sections. It is usually taken as the largest cross-sectional
area of the body perpendicular to the flow, also known as the projected area.

The combined term ,()1!2/2 is called the dynamic pressure. Note that the drag force is proportional to the dynamic pressure and therefore the velocity squared. If the
velocity increases by a factor of two the drag force will increase by a factor of four.

The drag coefficient, ('), depends on the shape and orientation of the body. It also depends on the Reynolds number and the roughness of the object’s surface. It can
also be influenced by other bodies in the vicinity of the object. Ultimately the drag coefficient will be taken from experimental data.

(ref. https://kdusling.qgithub.io/teaching/Applied-Fluids/Notes/DragAndLift )
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28.5: Worked Examples- Bernoulli's Equation

Example 28.5.1: Venturi Meter

Figure 28.8 shows a Venturi Meter, a device used to measure the speed of a fluid in a pipe. A fluid of density p; is flowing
through a pipe. A U-shaped tube partially filled with mercury of density pp, lies underneath the points 1 and 2.

Figure 28.8: Venturi Meter

The cross-sectional areas of the pipe at points 1 and 2 are A; and A, respectively. Determine an expression for the flow speed
at the point 1 in terms of the cross-sectional areas A; and As, and the difference in height h of the liquid levels of the two arms
of the U-shaped tube.

Solution

Figure 28.8: Coordinate system for Venturi tube

We shall assume that the pressure and speed are constant in the cross-sectional areas A and Az. We also assume the fluid is
incompressible so the density py is constant throughout the tube. The two points | and 2 lie on the streamline passing through
the midpoint of the tube so they are at the same height. Using y; = y» in Equation (28.4.8), the pressure and flow speeds at the
two points 1 and 2 are related by

1 1
P+ Spsui = Pr+ 5 psv3
2 2
We can rewrite Equation (28.4.10) as

1
Py =Py = s (v —v})

Let hl and h2 denote the heights of the liquid level in the arms of the U-shaped tube directly beneath points 1 and 2
respectively. Pascal’s Law relates the pressure difference between the two arms of the U-shaped tube according to in the left
arm of the U-shaped tube according to

Piottom = P14 pjgd1 + prgght
In a similar fashion, the pressure at point 2 is given by

Bottom = P2 +Pf9d2 +PHth2



Therefore, setting Equation (28.4.12) equal to Equation (28.4.13), we determine that the pressure difference on the two sides of
the U-shaped tube is

Py — P =ppg(da —di) +prgg(ha — ha)
From Figure 28.8, d3 +hy = dy + hy , therefore d3 —dy = hy — hy = —h We can rewrite Equation (28.4.14) as
Py — Py = (pug— ps) gh

Substituting Equation (28.4.11) into Equation (28.4.15) yields

1
2P (v —}) = (pug —ps) gh

The mass continuity condition (Equation(28.3.5)) implies that vy = (A; /A) vy and so we can rewrite Equation (28.4.16) as

207 ((A1/42) 1) 2 = (omy — p) g1

We can now solve Equation (28.4.17) for the speed of the flow at point 1;

_ " 2(pug —pr)oh
N o (A /A —1)
Q p; ((Al,fAz) 1)

(ref.
https://phys.libretexts.org/Bookshelves/Classical Mechanics/Classical Mechanics (Dourmashki

n)/28: Fluid_Dynamics/28.05: Worked Examples- Bernoullis_Equation )
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85 12.1 Flow Rate and Its Relation to Velocity

¢ Calculate flow rate.
¢ Define units of volume.
» Describe incompressible fluids.

» Explain the consequences of the equation of continuity.

Flow rateQis defined to be the volume of fluid passing by some location through an area dur-
ing a period of time, as seen in Figure 1. In symbols, this can be written as

whereVis the volume andtis the elapsed time.

The SI unit for flow rate ism® /s,but a number of other units forQare in common use. For ex-
ample, the heart of a resting adult pumps blood at a rate of 5.00 liters per minute (L/min). Note
that a liter (L) is 1/1000 of a cubic meter or 1000 cubic centimeters (102 m30r10® em?). In

this text we shall use whatever metric units are most convenient for a given situation.

A
%-—d—ﬂ
.l >
- d . P
V==
t o:‘_{/=¥:,q\7

Figure 1. Flow rate is the volume of fluid per
unit time flowing past a point through the area
A. Here the shaded cylinder of fluid flows past
point P in a uniform pipe in time ¢. The volume
of the cylinder is Ad and the average velocity is
v=d/t so that the tlow rate is Q=Ad/t=Av.



Example 1: Calculating Volume from Flow Rate: The Heart Pumps a Lot of Blood in a Lifetime

How many cubic meters of blood does the heart pump in a 75-year lifetime, assuming

the average flow rate is 5.00 L/min?
Strategy

Time and flow rateQare given, and so the volumeV can be calculated from the definition
of flow rate.

Solution

Solving@Q = V /tfor volume gives

V =Qt.
Substituting known values yields
_ 5.00L 1m?® 5 min
V = (555275 Y)(ﬁ)(5°26 X 10°2%)

= 2.0 x 10° m®.
Discussion

This amount is about 200,000 tons of blood. For comparison, this value is equivalent to
about 200 times the volume of water contained in a 6-lane 50-m lap pool.

(ref. http://pressbooks-dev.oer.hawaii.edu/collegephysics/chapter/12-1-flow-rate-and-its-relation-to-

velocity/#:~:text=We%20can%20useQ%3DA,the%200ther%20variables%20are%20known.&text=The%2

Oflow%20rate%20is%20given,2%20for%20a%20cylindrical%20vessel. )



http://pressbooks-dev.oer.hawaii.edu/collegephysics/chapter/12-1-flow-rate-and-its-relation-to-velocity/#:~:text=We%20can%20useQ%3DA,the%20other%20variables%20are%20known.&text=The%20flow%20rate%20is%20given,2%20for%20a%20cylindrical%20vessel
http://pressbooks-dev.oer.hawaii.edu/collegephysics/chapter/12-1-flow-rate-and-its-relation-to-velocity/#:~:text=We%20can%20useQ%3DA,the%20other%20variables%20are%20known.&text=The%20flow%20rate%20is%20given,2%20for%20a%20cylindrical%20vessel
http://pressbooks-dev.oer.hawaii.edu/collegephysics/chapter/12-1-flow-rate-and-its-relation-to-velocity/#:~:text=We%20can%20useQ%3DA,the%20other%20variables%20are%20known.&text=The%20flow%20rate%20is%20given,2%20for%20a%20cylindrical%20vessel
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Poiseuille’s Law

Poiseuille’s law states that the flow of a fluid depends on different variables such as the radius (R)
and length of the tube (L), pressure gradient (AP), and the viscosity of the fluid (v) as per their

relationship. Poiseuille’s Formula is represented as

APTR*
svL

Q =

Solved Example

Calculate the average speed of the blood when the blood flow through a large artery of radius 2.5 mm is found to be 20 cm long. The pressure across
the ends of the artery is known as 380 Pa.

Solution: Blood viscosity n = 0.0027 N s/m?
=20 cm

Radius = 2.5 mm

The difference of pressure = 380 Pa [P1 - P2)
The average speed is given by

Q= APnr*/ 8nl

(380x3.906x10—11x3.14)
- (8x0.0027x0.20)

The average speed becomes 1.0789 m /s

(ref. https://collegedunia.com/exams/poiseuille-law-formula-derivation-solved-examples-physics-

articleid-4802 )


https://collegedunia.com/exams/fluid-flow-definition-types-and-sample-questions-physics-articleid-2364
https://collegedunia.com/exams/viscosity-definition-types-examples-formulas-sample-questions-chemistry-articleid-549
https://collegedunia.com/exams/poiseuille-law-formula-derivation-solved-examples-physics-articleid-4802
https://collegedunia.com/exams/poiseuille-law-formula-derivation-solved-examples-physics-articleid-4802
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CHAPTER

MOMENTUM ANALYSIS
OF FLOW SYSTEMS

en dealing with engineering problems, it is desirable to obtain EEEEEER
fast and accurate solutions at minimal cost. Most engineering OBJECTIVES
problems, including those associated with fluid flow, can be When you finish reading this chapter,
analyzed using one of three basic approaches: differential, experimental, and you should be able to
control volume. In differential approaches, the problem is formulated accu- [ Identify the varlous kinds of
rately using differential quantities, but the solution of the resulting differ- forces and moments acting on
ential equations is difficult, usually requiring the use of numerical methods conbilis
with extensive computer codes. Experimental approaches complemented - Use control volume analysis to
with dimensional analysis are highly accurate, but they are typically time determine the forces assock
. j ) ’ M ated with fluld flow
consuming and expensive. The finite control volume approach described in
his ch . Kably £ d simple and Iy oi h u Use control volume analysis
t 1‘s“c.apter is remarkably ast an simple and usually gives answers t.at are to determine the moments
sufficiently accurate for most engineering purposes. Therefore, despite the caused by fluld flow and the
approximations involved, the basic finite control volume analysis performed torque transmitted

with paper and pencil has always been an indispensable tool for engineers.

In Chap. 5, the control volume mass and energy analysis of fluid flow
systems was presented. In this chapter, we present the finite control volume
momentum analysis of fluid flow problems. First we give an overview of
Newton’s laws and the conservation relations for linear and angular momen-
tum. Then using the Reynolds transport theorem, we develop the linear
momentum and angular momentum equations for control volumes and use
them to determine the forces and torques associated with fluid flow.

(ref. ‘Fluid Mechanics’ by & Cimbala)
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6—1 = NEWTON’S LAWS

Newton’s laws are relations between motions of bodies and the forces acting
on them. Newton’s first law states that a body at rest remains at rest, and
a body in motion remains in motion at the same velocity in a straight path
when the net force acting on it is zero. Therefore, a body tends to preserve
its state of inertia. Newton’s second law states that the acceleration of a
body is proportional to the net force acting on it and is inversely propor-
tional to its mass. Newton’s third law states that when a body exerts a force
on a second body, the second body exerts an equal and opposite force on
the first. Therefore, the direction of an exposed reaction force depends on
the body taken as the system.
For a rigid body of mass m, Newton's second law is expressed as

;., Newton's second law: f =md=m ﬂ = d(mV) 6-1)
dt dt
where F is the net force acting on the body and a is the acceleration of the
body under the influence of F.

The product of the mass and the velocity of a body is called the linear
, momentum or just the momentum of the body. The momentum of a rigid
L... body of mass m moving with velocity VismvV (Fig. 6-1). Then Newton’s
second law expressed in Eq. 6-1 can also be stated as the rate of change
of the momentum of a body is equal to the net force acting on the body
(Fig. 6-2). This statement is more in line with Newton’s original statement
FIGURE 6-1 of the second law, and it is more appropriate for use in fluid mechanics
Linear momentum is the product of when studying the forces generated as a result of velocity changes of fluid
mass and velocity, and its direction streams. Therefore, in fluid mechanics, Newton’s second law is usually

is the direction of velocity. referred to as the linear momentum equation.

(ref. ‘Fluid Mechanics’ by & Cimbala)
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The momentum of a system remains constant only when the net force act-

ing on it is zero, and thus the momentum of such a system is conserved.
This is known as the conservation of momentum principle. This principle
has proven to be a very useful tool when analyzing collisions such as those
between balls; between balls and rackets, bats, or clubs; and between atoms
or subatomic particles; and explosions such as those that occur in rockets,
missiles, and guns. In fluid mechanics, however, the net force acting on a
system is typically not zero, and we prefer to work with the linear momentum
equation rather than the conservation of momentum principle.
7 : Note that force, acceleration, velocity, and momentum are vector
quantities, and as such they have direction as well as magnitude. Also,
momentum is a constant multiple of velocity, and thus the direction of
momentum is the direction of velocity as shown in Fig. 6-1. Any vector
equation can be written in scalar form for a specified direction using
magnitudes, e.g., F, = ma, = d(mV )/dt in the x-direction.

The counterpart of Newton’s second law for rotating rigid bodies is ex-
pressed as M = Ia, where M is the net moment or torque applied on the
FIGURE 6-2 body, / is the moment of inertia of the body about the axis of rotation, and
Newton’s second law is also expressed  a is the angular acceleration. It can also be expressed in terms of the rate of
as the rate of change of the momentum  change of angular momentum dH/dt as
of a body is equal to the net force
acting on it. Angular momentum equation: M=la=1] —=—""=— (6-2)

where w is the angular velocity. For a rigid body rotating about a fixed x-axis,
the angular momentum equation is written in scalar form as

dew dHr el torque

Angular momentum about x-axis: M. =1, d" = d. (6-3)
t 1

The angular momentum equation can be stated as the rate of change of
the angular momentum of a body is equal to the net torque acting on it : d d d
(Fig. 6-3). : : a

The total angular momentum of a rotating body remains constant when
the net torque acting on it is zero, and thus the angular momentum of such o te ne
systems is conserved. This is known as the conservation of angular momen- of angular momentu
tum principle and is expressed as leo = constant. Many interesting phenom-
ena such as ice skaters spinning faster when they bring their arms close to
their bodies and divers rotating faster when they curl after the jump can be

explained easily with the help of the conservation of angular momentum —_—
principle (in both cases, the moment of inertia / is decreased and thus the FIGURE 6-3
angular velocity @ is increased as the outer parts of the body are brought The rate of change of the angular
closer to the axis of rotation). momentum of a body is equal to

the net torque acting on it.

(ref. ‘Fluid Mechanics’ by & Cimbala)
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6—3 = FORCES ACTING ON A CONTROL
VOLUME

The forces acting on a control volume consist of body forces that act
throughout the entire body of the control volume (such as gravity, electric,
and magnetic forces) and surface forces that act on the control surface (such
as pressure and viscous forces and reaction forces at points of contact). Only
id external forces are considered in the analysis. Internal forces (such as the
pressure force between a fluid and the inner surfaces of the flow section)
are not considered in a control volume analysis unless they are exposed by
passing the control surface through that area.
In control volume analysis, the sum of all forces acting on the control vol-
ume at a particular instant in time is represented by £F and is expressed as

Total force acting on control volume: 2 F = X Fy 4 + 2 Fuypace (6-4)

Body forces act on each volumetric portion of the control volume. The body
force acting on a differential element of fluid of volume dV/ within the con-
trol volume is shown in Fig. 65, and we must perform a volume integral to
account for the net body force on the entire control volume. Surface forces
act on each portion of the control surface. A differential surface element
of area dA and unit outward normal 7 on the control surface is shown in
Fig. 6-5, along with the surface force acting on it. We must perform an area
integral to obtain the net surface force acting on the entire control surface.
As sketched, the surface force may act in a direction independent of that of
the outward normal vector.

The most common body force is that of gravity, which exerts a down- Control volume (CV)

ward force on every differential element of the control volume. While other
body forces, such as electric and magnetic forces, may be important in some
analyses, we consider only gravitational forces here.

The differential body force dFy4, = dF .y acting on the small fluid ele-
ment shown in Fig. 6-6 is simply its weight,

Gravitational force acting on a fluid element: df;m,“y = pgdV (6-5)

where p is the average density of the element and g is the gravitational
vector. In Cartesian coordinates we adopt the convention that g acts in the
negative z-direction, as in Fig. 6-6, so that

Control surface (CS) &

FIGURE 6-5

g= —gZ (6-6) The total force acting on a control

volume is composed of body forces

Gravitational vector in Cartesian coordinates:

Note that the coordinate axes in Fig. 6-6 are oriented so that the gravity
vector acts downward in the —z-direction. On earth at sea level, the gravita-
tional constant g is equal to 9.807 m/s%. Since gravity is the only body force
being considered, integration of Eq. 6-5 yields

Total body force acting on control volume: Y, I_':mdy = J pgdV = meyg (6-7)
cvV

(ref. ‘Fluid Mechanics’ by & Cimbala)

and surface forces; body force is
shown on a differential volume
element, and surface force is shown
on a differential surface element.

dv
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e ay

Surface forces are not as simple to analyze since they consist of both
normal and tangential components. Furthermore, while the physical force l ;
g

acting on a surface is independent of orientation of the coordinate axes, the
description of the force in terms of its coordinate components changes with
orientation (Fig. 6-7). In addition, we are rarely fortunate enough to have E
each of the control surfaces aligned with one of the coordinate axes. While o’ &
not desiring to delve too deeply into tensor algebra, we are forced to define .
a second-order tensor called the stress tensor o; in order to adequately =k
describe the surface stresses at a point in the flow,

dV.p

N N .
dF oy = AF geayiry = pg dV

Stress tensor in Cartesian coordinates: o;= | o, (6-8) x,i

FIGURE 6-6

The diagonal components of the stress tensor, 6, & The gravitational force acting on

» and o, are called

normal stresses; they are composed of pressure (which always acts
inwardly normal) and viscous stresses. Viscous stresses are discussed in
more detail in Chap. 9. The off-diagonal components, 6, o, efc., are
called shear stresses: since pressure can act only normal to a surface, shear
stresses are composed entirely of viscous stresses.

When the face is not parallel to one of the coordinate axes, mathematical
laws for axes rotation and tensors can be used to calculate the normal and
tangential components acting at the face. In addition, an alternate notation
called tensor notation is convenient when working with tensors but is usu-
ally reserved for graduate studies. (For a more in-depth analysis of tensors
and tensor notation see, for example, Kundu and Cohen, 2011.)

In Eq. 6-8. o is defined as the stress (force per unit area) in the j-direction
acting on a face whose normal is in the i-direction. Note that i and j
are merely indices of the tensor and are not the same as unit vectors Tandj.
For example, ., is defined as positive for the stress pointing in the y-direction
on a face whose outward normal is in the x-direction. This component of the

a differential volume element of fluid

is equal to its weight; the axes are
oriented so that the gravity vector acts
downward in the negative z-direction.

dF yrface, ngential

i
i
dF, i

surface. y!

A

Control \
surface

;
dA /dF,

surface, y

Control \ " d
surface
x
(&)
FIGURE 6-7

When coordinate axes are rotated (a)
to (b), the components of the surface
force change, even though the force
itself remains the same; only two
dimensions are shown here.

stress tensor, along with the other eight components, is shown in Fig. 6-8
for the case of a differential fluid element aligned with the axes in Carte-
sian coordinates. All the components in Fig. 6-8 are shown on positive faces
(right, top, and front) and in their positive orientation by definition. Positive
stress components on the opposing faces of the fluid element (not shown)
point in exactly opposite directions.

The dot product of a second-order tensor and a vector yields a second
vector; this operation is often called the contracted product or the inner
product of a tensor and a vector. In our case, it turns out that the inner
product of the stress tensor 6; and the unit outward normal vector n of a
differential surface element yields a vector whose magnitude is the force per
unit area acting on the surface element and whose direction is the direction
of the surface force itself. Mathematically we write

Surface force acting on a differential surface element: d'f?;umw = cr,j-ﬁdA (6-9)

Finally, we integrate Eq. 6-9 over the entire control surface,
Total surface force acting on control surface: Zﬁmﬂ = ]- oy-dA (6-10)
cs
Substitution of Eqs. 67 and 6-10 into Eq. 6-4 yields
ZF: Zf?mdy + Z"?;url'auo = J pgdV + J oy-ndA (6-11)
cv cs

This equation turns out to be quite useful in the derivation of the differ-
ential form of conservation of linear momentum, as discussed in Chap. 9.
For practical control volume analysis, however, it is rare that we need to use
Eq. 611, especially the cumbersome surface integral that it contains.

A careful selection of the control v_qlume enables us to write the total
force acting on the control volume, ZF, as the sum of more readily avail-
able quantities like weight, pressure, and reaction forces. We recommend
the following for control volume analysis:

Toral force: BF = EFpn + El e + o + 5 Foer
28T &gy

—
total force

(6-12)

body force surface forces

(ref. ‘Fluid Mechanics’ by & Cimbala)



88- Forces Acting On a Control Volume:3

A common simplification in the application of Newton's laws of motion is
to subtract the atmospheric pressure and work with gage pressures. This is
because atmospheric pressure acts in all directions, and its effect cancels out
in every direction (Fig. 6-9). This means we can also ignore the pressure
forces at outlet sections where the fluid is discharged at subsonic velocities
to the atmosphere since the discharge pressures in such cases are very near
atmospheric pressure.

As an example of how to wisely choose a control volume, consider con-
trol volume analysis of water flowing steadily through a faucet with a par-
tially closed gate valve spigot (Fig. 6-10). It is desired to calculate the net
force on the flange to ensure that the flange bolts are strong enough. There
are many possible choices for the control volume. Some engineers restrict
their control volumes to the fluid itself, as indicated by CV A (the purple
control volume) in Fig. 6-10. With this control volume, there are pressure
forces that vary along the control surface, there are viscous forces along
the pipe wall and at locations inside the valve, and there is a body force,
namely, the weight of the water in the control volume. Fortunately, to cal-
culate the net force on the flange, we do not need to integrate the pressure
and viscous stresses all along the control surface. Instead, we can lump the
unknown pressure and viscous forces together into one reaction force, repre-
senting the net force of the walls on the water. This force. plus the weight of
the faucet and the water, is equal to the net force on the flange. (We must be
very careful with our signs, of course.)

When choosing a control volume, you are not limited to the fluid alone.
Often it is more convenient to slice the control surface through solid objects
such as walls, struts, or bolts as illustrated by CV B (the red control volume)
in Fig. 6-10. A control volume may even surround an entire object, like the
one shown here. Control volume B is a wise choice because we are not con-
cerned with any details of the flow or even the geometry inside the control
volume. For the case of CV B, we assign a net reaction force acting at the
portions of the control surface that slice through the flange bolts. Then, the
only other things we need to know are the gage pressure of the water at
the flange (the inlet to the control volume) and the weights of the water and
the faucet assembly. The pressure everywhere else along the control surface
is atmospheric (zero gage pressure) and cancels out. This problem is revis-
ited in Section 64, Example 6-7.

(ref. ‘Fluid Mechanics’ by & Cimbala)

dly o,
-
dy
dn
dz
FIGURE 6-8

Components of the stress tensor in
Cartesian coordinates on the right,
top. and front faces.

- P, (zage)

atm

‘With atmospheric
pressure considered

With atmospheric
pressure cancelled out

FIGURE 6-9

Atmospheric pressure acts in all
directions, and thus it can be ignored
when performing force balances since
its effect cancels out in every direction.
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6—4 = THE LINEAR MOMENTUM EQUATION

=
Newton’s second law for a system of mass m subjected to net force T F is
expressed as

= i( % 6-13
= ) (6-13)
where mV is the linear momentum of the system. Noting that both the
density and velocity may change from point to point within the system,
Newton’s second law can be expressed more generally as

- d .
YF= —[ pvdv (6-14)
dr Joys

where 917 dV/ is the momentum of a differential element dV/, which has mass
&m = p dV. Therefore, Newton's second law can be stated as the sum of
all external forces acting on a sysiem is equal 1o the nme rate of change
of linear momentum of the sysiem. This statement is valid for a coordinate
system that is at rest or moves with a constant velocity, called an inerrial
coordinare system or inertial reference frame. Accelerating systems such
as aircraft during takeoff are best analyzed using noninertial (or accel-
erating) coordinate systems fixed to the aircraft. Note that Eq. 614 is a
vector relation, and thus the quantities F' and V have direction as well as
magnitude.

Equation 614 is for a given mass of a solid or fluid and is of limited use
in fluid mechanics since most flow systems are analyzed using control vol-
T umes. The Reynolds rransport theorem developed in Section 4-6 provides
the necessary tools to shift from the system formulation to the control vol-
ume formulation. Setting & = V and thus B = mV. the Reynolds transport
theorem is expressed for linear momentum as (Fig. 6-11)

-

o

P —]
— 'TL’“"* AT

b
Aol L | s

i

(»]

FIGURE 6-11

The linear momentum equation
is obtained by replacing £ in the
Reynolds transport theorem by
the momentum mV, and b by
the momentum per unit mass V.

d{wrf}g,,,‘ _d

—J oV dV + L PV (V) dA (6-15)
Cy 5

dt dt

The left-hand side of this equation is, from Eq. 6-13, equal to EF. Substi-
tuting. the general form of the linear momentum equation that applies to
fixed, moving, or deforming control volumes is

= d _ _
General: YF=— L pVdl + J‘ pVIV..i) dA (6—16)
dt ey s

which is stated in words as

The sum of all The time rate of change The net flow rate of
external forces | = | of the linear momentum | 4 | linear momentum out of the

acting on aCV of the contents of the CV control surface by mass flow

(Pressure
Poggets §Fay PLMAIMJ Here Tl_":. =V- ?cs is the fluid velocity relative to the control surface (for
11 I | ["“;;2;’“ L] l |58 use in mass flow rate calculations at all locations where the fluid crosses the
i control surface), and Vis the_‘l'luid velocity as viewed from an inertial refer-
A3 .41! ence frame. The product oV -#i) dA represents the mass flow rate through
! area element dA into or out of the control volume.

CYRATL | _ For a fixed control volume (no motion or deformation of the control volume),

i V. = Vand the linear momentum equation becomes

tfRes:Licn foroe )
Fiy

= d _ s,
Teed OV 2 7 I V.
Ax 180° elbon 3 d . Fixed CV: ¥F= LU v dl 4+ S,r.r\ Ve ) dA (617}

Note that the momentum equation is a vecror equarion, and thus each term
should be treated as a vector. Also, the components of this equation can be

FIGURE 6-12
In most flow systems, the sum of

forces TF consists of weights,
pressure forces, and reaction forces.
Gage pressures are used here since
atmospheric pressure cancels out on
all sides of the control surface.

(ref. ‘Fluid Mechanics’ by & Cimbala)

resolved along orthogonal coordinates (such as x, y, and Z_i]:l the Cartesian
coordinate system) for convenience. The sum of forces ZF in most cases
consists of weights, pressure forces, and reaction forces (Fig. 6-12). The
momentum equation is commonly used to calculate the forces (usually on
support systems or connectors) induced by the flow.



90- Review of Rotational Motion and Angular

Momentum

6—5 * REVIEW OF ROTATIONAL MOTION
AND ANGULAR MOMENTUM

The motion of a rigid body can be considered to be the combination of
translational motion of its center of mass and rotational motion about its
center of mass. The translational motion is analyzed using the linear
momentum equation, Eq. 6-1. Now we discuss the rotational motion—a
motion during which all points in the body move in circles about the axis
of rotation. Rotational motion is described with angular quantities such as
angular distance #, angular velocity @, and angular acceleration a.



FIGURE 6-29
Analogy between corresponding
linear and angular quantities.

FIGURE 6-28

The relations between angular
distance @, angular velocity w.
and linear velocity V in a plane.

Newton’s second law requires that there must be a force acting in the
tangential direction to cause angular acceleration. The strength of the rotat-
ing effect, called the moment or torgue, is proportional to the magnitude
of the force and its distance from the axis of rotation. The perpendicular
distance from the axis of rotation to the line of action of the force is called
the moment arm, and the magnitude of torque M acting on a point mass m
at normal distance r from the axis of rotation is expressed as

M = rF, = rma, = mria (6-32)

The total torque acting on a rotating rigid body about an axis is determined
by integrating the torque acting on differential mass &m over the entire body
to give

Magnitude of torque: M= J- ra ém = H r ﬁm]a = Ia (6-33)
mass mass

where [ is the moment of inertia of the body about the axis of rotation, which
is a measure of the inertia of a body against rotation. The relation M = [« is
the counterpart of Newton’s second law, with torque replacing force, moment
of inertia replacing mass, and angular acceleration replacing linear accelera-
tion (Fig. 6-29). Note that unlike mass, the rotational inertia of a body also
depends on the distribution of the mass of the body with respect to the axis
of rotation. Therefore, a body whose mass is closely packed about its axis
of rotation has a small resistance against angular acceleration, while a body
whose mass is concentrated at its periphery has a large resistance against
angular acceleration. A flywheel is a good example of the latter.

The linear momentum of a body of mass m having velocity V is mV, and
the direction of linear momentum is identical to the direction of velocity.

The amount of rotation of a point in a body is expressed in terms of the
angle 6 swept by a line of length r that connects the point to the axis of rota-
tion and is perpendicular to the axis. The angle @ is expressed in radians
(rad), which is the arc length corresponding to € on a circle of unit radius.
Noting that the circumference of a circle of radius r is 2zr, the angular
distance traveled by any point in arigid body during a complete rotation is 2 rad.
The physical distance traveled by a point along its circular path is [ = 6r,
where r is the normal distance of the point from the axis of rotation and & is
the angular distance in rad. Note that 1 rad corresponds to 360/(2x) = 57.3°.

The magnitude of angular velocity e is the angular distance traveled per
unit time, and the magnitude of angular acceleration a is the rate of change
of angular velocity. They are expressed as (Fig. 6-28),

dé dlir) 1dl Vv do d’0 14V q

or
V=ro and a,=ra (6-31)

where V is the linear velocity and &, is the linear acceleration in the tangen-
tial direction for a point located at a distance r from the axis of rotation.
Note that @ and a are the same for all points of a rotating rigid body, but V
and a, are not (they are proportional to r).



(ref. ‘Fluid Mechanics’ by & Cimbala)

Noting that the moment of a force is equal to the product of the force and H=rmV
the normal distance, the magnitude of the moment of momentum. called =’-‘:¢’ﬂ"3
the angular momentum, of a point mass m about an axis is expressed as I = o
H = rmV = rmm, where r is the normal distance from the axis of rotation U =_!fj_ﬁ
to the line of action of the momentum vector (Fig. 6-30). Then the total e ! g
angular momentum of a rotating rigid body is determined by integration * i mV = i
o be I“‘ K“me\’/'l'!
Tl : " V=rm
Muagnitude of angular momentum: H = I P dm = H r Emlm = lw (6-34) e __i_ e
mass M I
where again [ is the momeni of inertia of the body about the axis of rota-
tion. [tacgan also be expressed rnfom generally in \-Ei:ltfor form as FIB.UH_E 6-30
Angular momentum of point mass
H=1a (6-35) m rotating at angular velocity @ at

distance r from the axis of rotation.
Note that the angular velocity & is the same at every point of a rigid body.
Newton's second law F = md was expressed in terms of the rate of change
of linear momentum in Eq. 6-1 as F = d(mV Vd. Likewise, the counterpart of
Newton's second law for rotating bodies M = Ia is expressed in Eq. 6-2 in
terms of the rate of change of angular momentum as

—. 4@ du@ J4H
Angul €] ; TN M=la=1—= - —
ML RUATRE it f.ﬁl'[.l'ﬁl.fl’l’)l'l [+ :;l' d_r d:

{6—36)

where M is the net torgue applied on the body about the axis of rotation.

The angular velocity of rotating machinery is typically expressed in rpm
(number of revolutions per minute) and denoted by #. Noting that veloc-
ity is distance traveled per unit time and the angular distance traveled
during each revolution is 2. the angular velocity of rotating machinery is
@ = 2o rad'min or

. . ) e

Angular velocity versus rpm: @ = 2n (rad/min) = E (rad/s) (8—37)

Consider a constant force F acting in the tangential direction on the outer
surface of a shaft of radius r rotating at an rpm of A Noting that work W is
force times distance, and power W is work done per unit time and thus force
times velocity, we have Wy, = FV = Fre = Mw. Therefore, the power
transmitted by a shaft rotating at an rpm of # under the influence of an
applied torque M is (Fig. 6-31)

Shaft power: 'H;"um' = wM = 2mM (6-38)

The kinetic energy of a body of mass m during translational motion is
KE = imV2 Noting that V = res, the rotational kinetic energy of a body of
mass m at a distance » from the axis of rotation is KE = fmr’w?. The total
rotational kinetic energy of a rotating rigid body about an axis is determined
by integrating the rotational kinetic energies of differential masses dm over
the entire body to give

FIGURE 6-31

The relations between angular
. o 1 velocity, rpm, and lhe power
Rotatiomal kinetic energy: KE, = ?le (6—39) transmitted through a rotating shaft.

(ref. ‘Fluid Mechanics’ by & Cimbala)
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M=rx i 6-6 = THE ANGULAR MOMENTUM EQUATION
M= e The linear momentum equation discussed in Section 64 is useful for deter-
FIGURE 6-32 _ mining the relationship between the linear momentum of flow streams
Thle moment of a force F about 2 and the resultant forces. Many engineering problems involve the moment
point @ is the vector product of the of the linear momentum of flow streams, and the rotational effects caused
position vector r and F. by them. Such problems are best analyzed by the angular momentum equa-

tion, also called the moment of momentum equation. An important class of
fluid devices, called furbomachines, which include centrifugal pumps, tur-
bines, and fans. is analyzed by the angular momentum equation.

- The moment of a force F about a point O is the vector (or cross) product
(Fig. 6-32)
Moment of a force: M=7rxF (6-40)

Sense of the
where 7 is the position vector from point O to any point on the line of action
of F. The vector product of two vectors is a vector whose line of action is
normal to the plane that contains the crossed vectors (¢ and F in this case)
and whose magnitude is

Magnitude of the moment of a force: M = Frsin@ (6-41)

where @ is the angle between the lines of action of the vectors r and F.
» Therefore, the magnitude of the moment about point O is equal to the
Axis of magnitude of the force multiplied by the normal distance of the line of
H action of the force from the point O. The sense of the moment vector M

is determined by the right-hand rule: when the fingers of the right hand

I are curled in the direction that the force tends to cause rotation, the thumb

FIGURE 6-33 points the direction of the moment vector (Fig. 6-33). Noie that a force
The determination of the direction of whose line of action passes through point @ produces zero moment about
the moment by the right-hand rule. point 0.

The vector product of 7 and the momentum vector my gives the moment

of momentum, also called the angular momentum, about a point O as @

Moment of momentunt: H=7xmV (6-42) | C©

Therefore, 7 x T/ represents the angular momentum per |Lr|it mass, and the

angular momentum of a differential mass ém = p dV is dH = (F x V)p dV.

Then the angular momentum of a system is determined by integration to be

Moment of momentum (system): Hy, = J (Fx Vpdv 643 |
sys

The rate of change of the moment of momentum is

df,, _
ki =il FxVpdl  (s-ag)
s

- ] Ex Vol Ad

Rate of change of moment of momentum: dt &

The angular momentum equation for a system was expressed in Eq. 6-2as | ©

= C
M= (6-45)
where Z# = X(7 x F) is the net torque or moment applied on the sys- FIGURE 6-34
tem, which is the vector sum of the moments of all forces acting on the The angular momentum equation
system, and dﬁm/di is the rate of change of the angular momentum of the is obtained by replacing B in the
system. Equation 6-45 is stated as the rate of change of angular momentum Reynolds transport theorem by the
of a system is equal to the net torque acting on the system. This equation is angular momentum H., and b by
valid for a fixed quantity of mass and an inertial reference frame, i.e., a refer- the angular momentum per “TEI
ence frame that is fixed or moves with a constant velocity in a straight path. mass 7 x V.

The general control volume formulation of the angular momentum equa-
tion is obtained by setting &= 7 x V and thus B = H in the general Reyn-
olds transport theorem. It gives (Fig. 6-34)

Ay, d[ (7 x V), dU+[ (7 x V)p(Vii) dA (6-46)
==| ¢ 7 -
@ ale) s o
The left-hand side of this equation is, from Eq. 645, equal to S . Substi-
tuting, the angular momentum equation for a general control volume (sta-
tionary or moving, fixed shape or distorting) is

Generat:  TM=2 [ FxVpdV + J % V(W) dA (6-a7)
dt Jey les

which is stated in words as
The net flow rate of

The sum of all The time rate of change
R angular momentum
external moments | = | of the angular momentum | +
. out of the control
acting on a CV of the contents of the CV

surface by mass tflow

Again, T’: =V- T/’cs is the fluid velocity relative to the control surface (for
use in mass flow rate calculations at all locations where the fluid crosses
the control surface), and V' is the fluid velocity as viewed from a fixed refer-
ence frame. The product p(V -#) dA represents the mass flow rate through
dA into or out of the control volume, depending on the sign.

(ref. ‘Fluid Mechanics’ by & Cimbala)



92- The Angular Momentum Equation:2

Special Cases

During steady flow, the amount of angular momentum within the con-
trol volume remains constant, and thus the time rate of change of angular
momentum of the contents of the control volume is zero. Then,

Steady flow: YM= L (7 x V)p(V.-1i) dA (6-49)
S

In many practical applications, the fluid crosses the boundaries of the control
volume at a certain number of inlets and outlets, and it is convenient to replace
the area integral by an algebraic expression written in terms of the average prop-

FIGURE 6-35 erties over the cross-sectional areas where the fluid enters or leaves the control
A rotating lawn sprinkler is a good volume. In such cases, the angular momentum flow rate can be expressed as
example of application of the angular  the difference in the angular momentum of outgoing and incoming streams.
momentum equation. Furthermore, in many cases the moment arm r is either constant along the
© John A. Rizzo/Getty Images RF inlet or outlet (as in radial flow turbomachines) or is large compared to the

diameter of the inlet or outlet pipe (as in rotating lawn sprinklers, Fig. 6-35).
In such cases, the average value of r is used throughout the cross-sectional
area of the inlet or outlet. Then, an approximate form of the angular momen-
tum equation in terms of average properties at inlets and outlets becomes

S 3 5 5
ZM;II (FxVpdV + X (FxmV) — X (Fx mV) (6-50)
Y out in

You may be wondering why we don’t introduce a correction factor into
Eq. 6-50, like we did for conservation of energy (Chap. 5) and for conserva-
tion of linear momentum (Section 6-4). The reason is that the cross product
I S S I of ¥ and mV is dependent on problem geometry. and thus, such a correction
ZM:E‘,’ me—Erme factor would varypirom probﬁ)em to p%f)blemfyTherefore, whereas we can
readily calculate a kinetic energy flux correction factor and a momentum
flux correction factor for fully developed pipe flow that can be applied to
various problems, we cannot do so for angular momentum. Fortunately, in
FIGURE 6-36 many problems of practical engineering interest, the error associated with
The net torque acting on a control using average values of radius and velocity is small, and the approximation
volume during steady flow is equal of Eq. 6-50 is reasonable.
to the difference between the outgoing If the flow is steady, Eq. 6-50 further reduces to (Fig. 6-36)
and incoming angular momentum > =s .
flow rates. Steady flow: Z M= Z(? xmV) — Z (¥ x mV) (6-51)
out in

(ref. ‘Fluid Mechanics’ by & Cimbala)
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Flow with No External Moments
When there are no external moments applied. the angular momentum equa-
tion Eq. 6-50 reduces to

No external moments: 0= d% + X(FxmV) - L(FrxmV)  (6-53)
out in

This is an expression of the conservation of angular momentum principle,

which can be stated as in the absence of external moments, the rate of

change of the angular momentum of a control volume is equal to the differ-

ence between the incoming and outgoing angular momentum fluxes.

When the moment of inertia I of the control volume remains constant, the
first term on the right side of Eq. 6-53 becomes simply moment of inertia
times angular acceleration, Ia. Therefore, the control volume in this case
can be treated as a solid body, with a net torque of

My =l &= %(?xm?f}-gm(?xm?f} (6-54)
(due to a change of angular momentum) acting on it. This approach can
be used to determine the angular acceleration of space vehicles and aircraft
when a rocket is fired in a direction different than the direction of motion.

Radial-Flow Devices

Many rotary-flow devices such as centrifugal pumps and fans involve flow
in the radial direction normal to the axis of rotation and are called radial-
flow devices (Chap. 14). In a centrifugal pump, for example. the fluid enters
the device in the axial direction through the eye of the impeller. turns out-
ward as it flows through the passages between the blades of the impel-
ler, collects in the scroll, and is discharged in the tangential direction, as
shown in Fig. 6-37. Axial-flow devices are easily analyzed using the linear
momentum equation. But radial-flow devices involve large changes in angu-
lar momentum of the fluid and are best analyzed with the help of the angu-
lar momentum equation.



FIGURE 6-37
Side and frontal views of a typical
centrifugal pump.

To analyze a centrifugal pump, we choose the annular region that encloses
the impeller section as the control volume, as shown in Fig. 6-38. Note that
the average flow velocity, in general, has normal and tangential components
at both the inlet and the outlet of the impeller section. Also, when the shaft
rotates at angular velocity w, the impeller blades have tangential velocity ar,
at the inlet and @, at the outlet. For steady, incompressible flow, the conser
vation of mass equation is written as

V==V = Qerp)Vy, = (ZerbV,, (6-55)

where b, and b, are the flow widths at the inlet where r = r; and at the
outlet where r = r,, respectively. (Note that the actual circumferential
cross-sectional area is somewhat less than 2arb since the blade thickness
is not zero.) Then the average normal components V¥ , and V, , of abso-
lute velocity can be expressed in terms of the volumetric flow rate V as

FIGURE 6-38 v v

An annular control volume that Via=3 5 and V.= E— (6-56)
encloses the impeller section of a e Zargdy

centrifugal pump. The normal velocity components ¥, , and V, _ as well as pressure acting on the

inner and outer circumferential areas pass through the shaft center, and thus

they do not contribute to torque about the origin. Then only the tangential

velocity components contribute to torque. and the application of the angular

momentum equation ¥ M = ¥ eV — ¥ rmV to the control volume gives
out in

Euler’s turbine equation: T = MV, — ¥y ) (6-57)

which is known as Euler’s turbine equation. When the angles a@; and a,
between the direction of absolute flow velocities and the radial direction are
known, Eq. 6-37 becomes

T s = mir V50 @ — r V) 5i0a) (6-58)

In the idealized case of the tangential fluid velocity being equal to the blade
angular velocity both at the inlet and the exit, we have V| , = or; and V, , = ar,,
and the torque becomes

Tosan e = M0Ars — ri1) 16-59)

where @ = 27 is the angular velocity of the blades. When the torque is
known, the shaft power is determined from W 4 = T, = 20aT 5.

(ref. ‘Fluid Mechanics’ by & Cimbala)
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SUMMARY

This chapter deals mainly with the conservation of momen-
tum for finite control volumes. The forces acting on the con-
trol volume consist of body forces that act throughout the
entiee body of the control volume (such as gravity, electric,
and magnetic forces) and swrface forces that act on the con-
trol surface (such as the pressure forces and reaction forces
at points of contact). The sum of all forces acting on the
control volume at a particular instant in time is represented
by EF and is expressed as

EF= Efgm-m- + Eﬁm + Ean+ E-Fu']u
fotal Foroe body oz
Mewton's second law can be stated as the sum of all

external forces acting on a system is egual to the time rate of
change of linear momentum of the system. Setting b=V and
thus B = m} in the Reynolds transport theorem and utilizing
MNewton's second law gives the linear momentum equation
for a control volume as

- d = s
YF= EL;&’JU + Lp}’(u.a‘}m

sarface foroes

which reduces to the following special cases:

Steady flow: EF:[ PV dA
CS
Unsteady flow (algebraic form):
~ — L -
XF= ,.TL,"'”U + EfmV— F pmV
! oul ]

Steady flow (algebraic formy; LF= X fmv — T fmV
oul in

No external forces: 0 = dlmVicy + TV — X ¥
d‘ o in
where # is the momentum-flux correction factor. A con-
trol volume whose mass m remains constant can be treated
as a solid body (a fixed-mass sysiem) with a ner throsting
foree (also called simply the thrust) of
sz moyd = E,ﬁni"’— Eﬁm?
in oul

acting on the body.

(ref. ‘Fluid Mechanics’ by & Cimbala)

Newton's second law can also be stated as rhe rate of
change of angular mementum of a system is equal to the
net torque acting on the system. Setting b = ¥ % V and thus
B =H in the general Reynolds transport theorem gives the
angular momentum equarion as

Ti= % L FxVipdl + LS{F x Vyp(V-7) dA
which reduces to the following special cases:
Steady flow: TH= L (Fx VIp(F-7) dA
Unsteady flow (algebraic form):

Ef-?:iLV(Px VipdV + TFx mv — LFx mV
di cat in

Steady and uniform flow:
M= ZrxmV— TrxmV
oul in
Scalar form for one direction:

IM = ErmV — ErmV

No external moments:

A control volume whose moment of inertia f remains constant
can be treated as a solid body (a fixed-mass system), with a
net torque of

Moy = Ioys = TF% iV — EFx mv
im out
acting on the body. This mlation is used to determine the
angular acceleration of a spacecraft when a rocket is fired.
The linear and angular momentum equations are of funda-
mental importance in the analysis of turbomachinery and are
used exensively in Chap. 14.



95- Dimensional Analysis Background

DIMENSIONAL ANALYSIS
AND MODELING

n this chapter, we first review the concepts of dimensions and units. We

then review the fundamental principle of dimensional homogeneity, and

show how it is applied to equations in order to nondimensionalize them
and to identify dimensionless groups. We discuss the concept of similarity
between a model and a prototype. We also describe a powerful tool for
engineers and scientists called dimensional analysis, in which the combina-
tion of dimensional variables, nondimensional variables, and dimensional
constants into nondimensional parameters reduces the number of necessary
independent parameters in a problem. We present a step-by-step method for
obtaining these nondimensional parameters, called the method of repeating
variables, which is based solely on the dimensions of the variables and con-
stants. Finally, we apply this technique to several practical problems to illus-
trate both its utility and its limitations.

(ref. ‘Fluid Mechanics’ by & Cimbala)
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EEEEEEN
OBJECTIVES

When you finish reading this chapter,
you should be able to

| Develop a better
understanding of dimensions,
units, and dimensional homo-
geneity of equations

[ Understand the numerous
benefits of dimensional analysis

[ Know how to use the method
of repeating variables to
identify nondimensional
parameters

[ Understand the concept of
dynamic similarity and how
to apply it to experimental
modeling

(ref. ‘Fluid Mechanics’ by & Cimbala)
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7-1 = DIMENSIONS AND UNITS

A dimension is a measure of a physical quantity (without numerical val-
ues), while a unit is a way to assign a number to that dimension. For exam-
ple, length is a dimension that is measured in units such as microns (um),
feet (ft), centimeters (cm), meters (m), kilometers (km), etc. (Fig. 7-1).
There are seven primary dimensions (also called fundamental or basic
dimensions)}—mass, length, time, temperature, electric current, amount of
light, and amount of matter.

All nonprimary dimensions can be formed by some combination of the seven
primary dimensions.

For example, force has the same dimensions as mass times acceleration (by
Newton’s second law). Thus, in terms of primary dimensions,
Length

Dimensions of force: {Force} = {Mass — } = {mL/t?} 7-1)
Time-

where the brackets indicate “the dimensions of” and the abbreviations are
taken from Table 7-1. You should be aware that some authors prefer force
instead of mass as a primary dimension—we do not follow that practice.

TABLE 7-1

Primary dimensions and their associated primary SI and English units

Dimension Symbol* SI Unit English Unit
Mass m kg (kilogram) Ibm (pound-mass)
Length L m (meter) ft (foot)

Time' t s (second) s (second)
Temperature T K (kelvin) R (rankine)
Electric current I A (ampere) A (ampere)
Amount of light C cd (candela) cd (candela)
Amount of matter N mol (mole) mol (mole)

(ref. ‘Fluid Mechanics’ by & Cimbala)
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7-2 = DIMENSIONAL HOMOGENEITY

We’ve all heard the old saying, You can’t add apples and oranges (Fig. 7-3).
This is actually a simplified expression of a far more global and fundamen-
tal mathematical law for equations, the law of dimensional homogeneity,
stated as

Every additive term in an equation must have the same dimensions.

Consider, for example, the change in total energy of a simple compressible
closed system from one state and/or time (1) to another (2), as illustrated in
Fig. 7-4. The change in total energy of the system (AE) is given by

Change of total energy of a system: AE = AU + AKE + APE (7-2)

where E has three components: internal energy (U), kinetic energy (KE),
and potential energy (PE). These components can be written in terms of the
system mass (m); measurable quantities and thermodynamic properties at
each of the two states, such as speed (V), elevation (z), and specific internal
energy (u); and the gravitational acceleration constant (g),

1

It is straightforward to verify that the left side of Eq. 7-2 and all three additive
terms on the right side of Eq. 7-2 have the same dimensions—energy. Using
the definitions of Eq. 7-3, we write the primary dimensions of each term,

{AE} = {Energy} = {Force x Length} — {AE}= {mL%¢}

Energy )
[AU} = | Mass = {Energy} — {AU} = {mL?/t*}
S
Length? s
{AKE} = { Mass ———; - {AKE} = {mL%/t%}
Time~
Length
{APE} = { Mass ——Length y — ({APE} = {(mL¥t?}
Time

(ref. ‘Fluid Mechanics’ by & Cimbala)
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EXAMPLE 7-2 Dimensional Homogeneity
of the Bernoulli Equation

Probably the most well-known (and most misused) equation in fluid mechanics is W
the Bernoulli equation (Fig. 7-6), discussed in Chap. 5. One standard form of the
\ Bernoulli equation for incompressible irrotational fluid flow is

1
Bernoulli equation: P+ Ep'ﬂ +pgz=C M

(a) Verify that each additive term in the Bernoulli equation has the same dimen-
sions. (b) What are the dimensions of the constant C?

SOLUTION We are to verify that the primary dimensions of each additive
term in Eg. 1 are the same, and we are to determine the dimensions of
constant C.

Analysis («) Each term is written in terms of primary dimensions,

Force Length 1 m
{P} = {Pressure} = =sMass ————— ¢ = § —
Area Time? Length? t°L
; {1 Vz} _ { Mass (Length)ﬁ} 3 {Mass X Lengthz} 3 { m}
?’ ~ | Volume \ Time ~ | Length® x Time?) ~ |£L

Length Mass x Length?
I { Mass g Length} _ { g } _ { m}

Volume Time? Length® x Time?* 2L

Indeed, all three additive terms have the same dimensions.

(b) From the law of dimensional homogeneity, the constant must have the same
dimensions as the other additive terms in the equation. Thus,

m
Primary dimensions of the Bernoulli constant: {C} = {E}
Discussion 1f the dimensions of any of the terms were different from the others,
it would indicate that an error was made somewhere in the analysis.

(ref. ‘Fluid Mechanics’ by & Cimbala)
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Nondimensionalization of Equations

The law of dimensional homogeneity guarantees that every additive term in
an equation has the same dimensions. It follows that if we divide each term
in the equation by a collection of variables and constants whose product
has those same dimensions, the equation is rendered nondimensional
(Fig. 7-7). If, in addition, the nondimensional terms in the equation are of
order unity, the equation is called normalized. Normalization is thus more
restrictive than nondimensionalization, even though the two terms are some-
times (incorrectly) used interchangeably.

Each term in a nondimensional equation is dimensionless.

In the process of nondimensionalizing an equation of motion, nondimen-
sional parameters often appear—most of which are named after a notable
scientist or engineer (e.g., the Reynolds number and the Froude number).
This process is referred to by some authors as inspectional analysis.

(ref. ‘Fluid Mechanics’ by & Cimbala)
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As a simple example, consider the equation of motion describing the ele-
vation z of an object falling by gravity through a vacuum (no air drag), as in w = component of velocity
Fig. 7-8. The initial location of the object is z, and its initial velocity is w in the z-direction
in the z-direction. From high school physics,

d*z
Equation of motion: ~=—g (7-4) 4 o
dt* 7 = vertical distance

Dimensional variables are defined as dimensional quantities that change or
vary in the problem. For the simple differential equation given in Eq. 7-4, ¢ = gravitational
there are two dimensional variables: z (dimension of length) and ¢ (dimension acceleration in the
of time). Nondimensional (or dimensionless) variables are defined as quan- negative z-direction
tities that change or vary in the problem, but have no dimensions; an exam-
ple is angle of rotation, measured in degrees or radians which are dimension-

less units. Gravitational constant g, while dimensional, remains constant and FIGURE 7-8
is called a dimensional constant. Two additional dimensional constants are Object falling in a vacuum. Vertical
relevant to this particular problem, initial location z, and initial vertical speed  velocity is drawn positively, so w < 0
w,. While dimensional constants may change from problem to problem, they for a falling object.

are fixed for a particular problem and are thus distinguished from dimensional
variables. We use the term parameters for the combined set of dimensional
variables, nondimensional variables, and dimensional constants in the problem.
Equation 7-4 is easily solved by integrating twice and applying the initial
conditions. The result is an expression for elevation z at any time f:

(ref. ‘Fluid Mechanics’ by & Cimbala)
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1
Dimensional result: =27y + wyt — 2 gt? (7-5)

The constant 5 and the exponent 2 in Eq. 7-5 are dimensionless results of
the integration. Such constants are called pure constants. Other common
examples of pure constants are 7 and e.

(ref. ‘Fluid Mechanics’ by & Cimbala)
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To nondimensionalize Eq. 7-4, we need to select scaling parameters,
based on the primary dimensions contained in the original equation. In fluid
flow problems there are typically at least three scaling parameters, e.g., L, V,
and P, — P_ (Fig. 7-9), since there are at least three primary dimensions in
the general problem (e.g., mass, length, and time). In the case of the falling
object being discussed here, there are only two primary dimensions, length
and time, and thus we are limited to selecting only two scaling parameters.
We have some options in the selection of the scaling parameters since we
have three available dimensional constants g, z,, and w,. We choose z, and
w,. You are invited to repeat the analysis with g and z, and/or with g and w,.
With these two chosen scaling parameters we nondimensionalize the dimen-
sional variables z and 1. The first step is to list the primary dimensions of all
dimensional variables and dimensional constants in the problem,

Primary dimensions of all parameters:
[={L =1 (=0 =Ly {g={L"

The second step 1s to use our two scaling parameters to nondimensionalize z
and  (by inspection) into nondimensional variables z* and t*,

. W
t=— (7-6)

. . . : 4
Nondimensionalized variables: *=—
i )



Substitution of Eq. 7-6 into Eq. 7—4 gives

dzz dZ(ZOZ:k) WOQ dZZ:}c wﬂz d2z$ | .
—_—= e = — = - - = = -
dr  dggrtiwg? | %o drt . © =7

82y dt*?

which is the desired nondimensional equation. The grouping of dimensional
constants in Eq. 7-7 is the square of a well-known nondimensional param-
eter or dimensionless group called the Froude number,

Wy

Froude number: Fr = (7-8)

8%

The Froude (pronounced “Frude™) number also appears as a nondimen-
sional parameter in free-surface flows (Chap. 13), and can be thought of as
the ratio of inertial force to gravitational force (Fig. 7-10). You should note
that in some older textbooks, Fr is defined as the square of the parameter
shown in Eq. 7-8. Substitution of Eq. 7-8 into Eq. 7-7 yields

d*z* 1

Nondimensionalized equation of motion: = —%3 (7-9)
dr* Fr

In dimensionless form, only one parameter remains, namely the Froude
number. Equation 7-9 is easily solved by integrating twice and applying the
initial conditions. The result is an expression for dimensionless elevation z*
as a function of dimensionless time #*:

|
Nondimensional result: 7F=1+41* - Fe? 2 (7-10)
-

Comparison of Eqgs. 7-5 and 7-10 reveals that they are equivalent. In fact,
for practice, substitute Eqs. 7-6 and 7-8 into Eq. 7-5 to verify Eq. 7-10.

(ref. ‘Fluid Mechanics’ by & Cimbala)
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|
0 EXAMPLE 7-3 lllustration of the Advantages

- of Nondimensionalization

B Your little brother’s high school physics class conducts experiments in a large

j vertical pipe whose inside is kept under vacuum conditions. The students are able to
remotely release a steel ball at initial height z, between 0 and 15 m (measured from
the bottom of the pipe), and with initial vertical speed w, between 0 and 10 m/s. A
computer coupled to a network of photosensors along the pipe enables students to
plot the trajectory of the steel ball (height z plotted as a function of time 7) for each
test. The students are unfamiliar with dimensional analysis or nondimensionalization
techniques, and therefore conduct several “brute force” experiments to determine
how the trajectory is affected by initial conditions z, and w,. First they hold w,
fixed at 4 m/s and conduct experiments at five different values of z,: 3. 6, 9, 12,
and 15 m. The experimental results are shown in Fig. 7-12a. Next, they hold z,
fixed at 10 m and conduct experiments at five different values of w,: 2, 4, 6, 8,
and 10 m/s. These results are shown in Fig. 7-12b. Later that evening, your brother
shows you the data and the trajectory plots and tells you that they plan to conduct
more experiments at different values of z, and w,. You explain to him that by first
nondimensionalizing the data, the problem can be reduced to just one parameter,
and no further experiments are required. Prepare a nondimensional plot to prove
your point and discuss.



SOLUTION A nondimensional plot is to be generated from all the available
trajectory data. Specifically, we are to plot z* as a function of ¢*.

Assumptions The inside of the pipe is subjected to strong enough vacuum
pressure that aerodynamic drag on the ball is negligible.

Properties The gravitational constant is 9.81 m/s2.

Analysis Equation 7—4 is valid for this problem, as is the nondimensionalization
that resulted in Eq. 7-9. As previously discussed, this problem combines three
of the original dimensional parameters (g, z,, and w,) into one nondimensional
parameter, the Froude number. After converting to the dimensionless variables
of Eq. 7-6, the 10 trajectories of Fig. 7—12a and b are replotted in dimension-
less format in Fig. 7-13. It is clear that all the trajectories are of the same fam-
ily, with the Froude number as the only remaining parameter. Fr? varies from
about 0.041 to about 1.0 in these experiments. If any more experiments are to be
conducted, they should include combinations of z, and w, that produce Froude
numbers outside of this range. A large number of additional experiments would
be unnecessary, since all the trajectories would be of the same family as those
plotted in Fig. 7-13.

Discussion At low Froude numbers, gravitational forces are much larger than
inertial forces, and the ball falls to the floor in a relatively short time. At large
values of Fr on the other hand, inertial forces dominate initially, and the ball rises
a significant distance before falling; it takes much longer for the ball to hit the
ground. The students are obviously not able to adjust the gravitational constant,
but if they could, the brute force method would require many more experiments to
document the effect of g. If they nondimensionalize first, however, the dimension-
less trajectory plots already obtained and shown in Fig. 7-13 would be valid for any
value of g: no further experiments would be required unless Fr were outside the
range of tested values.

(ref. ‘Fluid Mechanics’ by & Cimbala)
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EXAMPLE 7-4 Extrapolation of Nondimensionalized Data

|
|
The gravitational constant at the surface of the moon is only about one- m
sixth of that on earth. An astronaut on the moon throws a baseball at an ini- W
tial speed of 21.0 m/s at a 5° angle above the horizon and at 2.0 m above the
moon’s surface (Fig. 7-14). (a) Using the dimensionless data of Example 7-3
shown in Fig. 7-13, predict how long it takes for the baseball to fall to

the ground. (b) Do an exact calculation and compare the result to that of
part (a).

SOLUTION Experimental data obtained on earth are to be used to predict the
time required for a baseball to fall to the ground on the moon.

Assumptions 1 The horizontal velocity of the baseball is irrelevant. 2 The
surface of the moon is perfectly flat near the astronaut. 3 There is no aerodynamic
drag on the ball since there is no atmosphere on the moon. 4 Moon gravity is
one-sixth that of earth.

Properties The gravitational constant on the moon is g_... = 9.81/6 =
1.63 m/s%.

Analysis (a) The Froude number is calculated based on the value of g and the
vertical component of initial speed,

w, = (21.0 m/s) sin(5°) = 1.830 m/s
from which

_owg 0 (1.830mfs)r
a Emoon<o a (163 mf’sz)(ZO 1’1'1) -

Fr?

This value of Fr? is nearly the same as the largest value plotted in Fig. 7-13. Thus,
in terms of dimensionless variables, the baseball strikes the ground at r* = 2.75,
as determined from Fig. 7-13. Converting back to dimensional variables using
Eq. 7-6,

. . . t*zp  2.75(2.0 m)
Estimated time to strike the ground: t=——=—"—"—=3.01s
Wo 1.830 m/s

(b) An exact calculation is obtained by setting z equal to zero in Eq. 7-5 and solv-
ing for time 7 (using the quadratic formula),



Exact time to strike the ground.

wo + Vwi + 22,8

8

=

1.830 m/s + 1/(1.830 m/s)? + 2(2.0 m)(1.63 m/s?) vos
= 1.63 m/s? - s

Discussion If the Froude number had landed between two of the trajectories
of Fig. 7-13, interpolation would have been required. Since some of the num-
bers are precise to only two significant digits, the small difference between the
results of part (a) and part (b) is of no concern. The final result is = 3.0 s to two
significant digits.

(ref. ‘Fluid Mechanics’ by & Cimbala)
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Some Dimensionless Parameters

AP ) AP Pressure difference
Euler number Eu = — | sometimes -
pV spV? Dynamic pressure
Inertial f
Froude number Fr=—— (sometlmes —) n? l,a oree
Gravitational force
pVL VL Inertial force
Reynolds number Re=—=— :
U v Viscous force

Characteristic flow time

Strouhal numb St times S or Sr) ="
rouhal number (sometimes S or Sr) 14 Period of oscillation

(ref. ‘Fluid Mechanics’ by & Cimbala)
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7-3 = DIMENSIONAL ANALYSIS AND SIMILARITY

Nondimensionalization of an equation by inspection is useful only when we
know the equation to begin with. However, in many cases in real-life engi-
neering, the equations are either not known or too difficult to solve; often-
times experimentation is the only method of obtaining reliable information.
In most experiments, to save time and money, tests are performed on a geo-
metrically scaled model, rather than on the full-scale prototype. In such
cases, care must be taken to properly scale the results. We introduce here a
powerful technique called dimensional analysis. While typically taught in
fluid mechanics, dimensional analysis is useful in all disciplines, especially
when it is necessary to design and conduct experiments. You are encouraged
to use this powerful tool in other subjects as well, not just in fluid mechanics.
The three primary purposes of dimensional analysis are

e To generate nondimensional parameters that help in the design of
experiments (physical and/or numerical) and in the reporting of
experimental results

e To obtain scaling laws so that prototype performance can be predicted
from model performance

e To (sometimes) predict trends in the relationship between parameters

(ref. ‘Fluid Mechanics’ by & Cimbala)
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Before discussing the fechnique of dimensional analysis, we first explain
the underlying concept of dimensional analysis—the principle of similarity.
There are three necessary conditions for complete similarity between a
model and a prototype. The first condition is geometric similarity—the
model must be the same shape as the prototype, but may be scaled by some
constant scale factor. The second condition is kinematic similarity, which
means that the velocity at any point in the model flow must be proportional

(by a constant scale factor) to the velocity at the corresponding point in the
prototype flow (Fig. 7-16). Specifically, for kinematic similarity the velocity
at corresponding points must scale in magnitude and must point in the same
relative direction. You may think of geometric similarity as length-scale
equivalence and kinematic similarity as time-scale equivalence. Geometric
similarity is a prerequisite for kinematic similarity. Just as the geometric
scale factor can be less than, equal to, or greater than one, so can the velocity
scale factor. In Fig. 7-16, for example, the geometric scale factor is less than
one (model smaller than prototype), but the velocity scale is greater than one
(velocities around the model are greater than those around the prototype).
You may recall from Chap. 4 that streamlines are kinematic phenomena;
hence, the streamline pattern in the model flow is a geometrically scaled
copy of that in the prototype flow when kinematic similarity is achieved.

The third and most restrictive similarity condition is that of
dynamic similarity. Dynamic similarity is achieved when all forces in the
model flow scale by a constant factor to corresponding forces in the prototype
flow (force-scale equivalence). As with geometric and kinematic similarity,
the scale factor for forces can be less than, equal to, or greater than one. In
Fig. 7-16 for example. the force-scale factor is less than one since the force
on the model building is less than that on the prototype. Kinematic similar-
ity is a necessary but insufficient condition for dynamic similarity. It is thus
possible for a model flow and a prototype flow to achieve both geomet-
ric and kinematic similarity, yet not dynamic similarity. All three similarity
conditions must exist for complete similarity to be ensured.



In a general flow field, complete similarity between a model and prototype is
achieved only when there is geometric, kinematic, and dynamic similarity.

We let uppercase Greek letter Pi (II) denote a nondimensional parameter.
In Section 7-2, we have already discussed one I, namely the Froude num-
ber, Fr. In a general dimensional analysis problem, there is one II that we
call the dependent TI, giving it the notation II,. The parameter IT, is in
general a function of several other IT's, which we call independent II's. The
functional relationship is

Functional relationship between IT's: 11, = f(I1,, T1,, ... | IT}) (7-11)

where k is the total number of IT’s.

Consider an experiment in which a scale model is tested to simulate a
prototype flow. To ensure complete similarity between the model and the
prototype, each independent IT of the model (subscript m) must be identical to
the corresponding independent IT of the prototype (subscript p), i.e., II, , =
I, . I, =11 I, =

2,p 3.p k, p*

To ensure complete similarity, the model and prototype must be geometrically
similar, and all independent I1 groups must match between model and
prototype.

Under these conditions the dependent I1 of the model (II, ) is guaranteed
to also equal the dependent II of the prototype (I, ). Mathematically, we
write a conditional statement for achieving similarity,

If I, , =1, and 1L, =1 ... and I, ,, =11 .
then II, , =TI, , (7-12)
Consider, for example, the design of a new sports car, the aerodynamics Prototype car
of which is to be tested in a wind tunnel. To save money, it is desirable to Vs
e

test a small, geometrically scaled model of the car rather than a full-scale
prototype of the car (Fig. 7-17). In the case of aerodynamic drag on an
automobile, it turns out that if the flow is approximated as incompressible,
there are only two IT’s in the problem,

Fp pPVL ‘ 17
I, = fI1,)  where II, = VL and II, = = (7-13) 2
The procedure used to generate these II's is discussed in Section 7-4. In Model car
Eq. 7-13, Fp is the magnitude of the aerodynamic drag on the car, p is the v
—_—

air density, V is the car’s speed (or the speed of the air in the wind tunnel),
L is the length of the car, and p is the viscosity of the air. I, is a nonstand-
ard form of the drag coefficient, and II, is the Reynolds number, Re. You
will find that many problems in fluid mechanics involve a Reynolds number
(Fig. 7-18).
The Reynolds number is the most well known and useful dimensionless
parameter in all of fluid mechanics.

In the problem at hand there is only one independent IT, and Eq. 7-12
ensures that if the independent IT's match (the Reynolds numbers match:
I, ,, =11, ), then the dependent IT's also match (I, , = II, ). This enables
engineers to measure the aerodynamic drag on the model car and then use
this value to predict the aerodynamic drag on the prototype car.

(ref. ‘Fluid Mechanics’ by & Cimbala)
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Geometric similarity between
a prototype car of length L,
and a model car of length L,
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2
" EXAMPLE 7-5 Similarity between Model and Prototype Cars

B The aerodynamic drag of a new sports car is to be predicted at a speed of 50.0 mi/h

B at an air temperature of 25°C. Automotive engineers build a one-fifth scale model

g of the car to test in a wind tunnel. It is winter and the wind tunnel is located in an
unheated building; the temperature of the wind tunnel air is only about 5°C. Deter-
mine how fast the engineers should run the wind tunnel in order to achieve similarity
between the model and the prototype.

SOLUTION We are to utilize the concept of similarity to determine the speed of
the wind tunnel.

Assumptions 1 Compressibility of the air is negligible (the validity of this
approximation is discussed later). 2 The wind tunnel walls are far enough
away so as to not interfere with the aerodynamic drag on the model car.
3 The model is geometrically similar to the prototype. 4 The wind tunnel
has a moving belt to simulate the ground under the car, as in Fig. 7-19. (The
moving belt is necessary in order to achieve kinematic similarity everywhere in the
flow, in particular underneath the car.)

Properties For air at atmospheric pressure and at T = 25°C, p = 1.184 kg/m’
and ¢ = 1.849 x 10~ kg/m-s. Similarly, at T = 5°C, p = 1.269 kg/m® and
i = 1754 x 10~ kg/m:s.

Analysis Since there is only one independent IT in this problem, the similarity equa-
tion (Eq. 7-12) holds if I, ,, = I1, ,, where I, is given by Eq. 7-13, and we call it
the Reynolds number. Thus, we write

Vv pV
=&"__’"L”'=H2 — Re =_uL_p

I
Hon P " Hy

= Re

2. m m

Wind tunnel test section

which we solve for the unknown wind tunnel speed for the model
tests, V,,

=)@

1.754 x 10~ kg/m-s )( 1.184 kg/m?
1.849 x 10~ kg/m-s / \ 1.269 kg/m*

= (50.0 mi/h)( >(5) = 221 mi/h

Thus, to ensure similarity, the wind tunnel should be run at 221 mi/h (to three

Moving belt  Drag balance significant digits). Note that we were never given the actual length of either car,
FIGURE 719 but the ratio of L, to L,, is known because the prototype is five times larger than the
scale model. When the dimensional parameters are rearranged as nondimensional
A drag balance is a device used ratios (as done here), the unit system is irrelevant. Since the units in each numerator
in a wind tunnel to measure the aero- cancel those in each denominator, no unit conversions are necessary.
dynamic drag of a body. When testing Discussion This speed is quite high (about 100 m/s), and the wind tunnel may
automobile models, a moving belt is not be able to run at that speed. Furthermore, the incompressible approximation
often added to the floor of the wind may come into question at this high speed (we discuss this in more detail in
tunnel to simulate the moving ground Example 7-8).

(from the car’s frame of reference).

(ref. ‘Fluid Mechanics’ by & Cimbala)
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EXAMPLE 7-6 Prediction of Aerodynamic Drag Force
on a Prototype Car

This example is a follow-up to Example 7-5. Suppose the engineers run the wind ®
tunnel at 221 mi/h to achieve similarity between the model and the prototype.
The aerodynamic drag force on the model car is measured with a drag balance
(Fig. 7-19). Several drag readings are recorded, and the average drag force on the
model is 21.2 Ibf. Predict the aerodynamic drag force on the prototype (at 50 mi/h
and 25°C).

SOLUTION Because of similarity, the model results are to be scaled up to
predict the aerodynamic drag force on the prototype.

Analysis The similarity equation (Eq. 7-12) shows that since I1, ,, =I1
I1, ,, where I1, is given for this problem by Eq. 7-13. Thus, we write

Hl,m=

p

H . FD,H’J’ - l_.[ - FD+F
l.m = VQLE_ lL,p = V22
pm m—m pP PP

which we solve for the unknown aerodynamic drag force on the prototype
car, Fj, .

B AVIATEAS
D.p — Dfmpm V L

m m

1.184 kg/m3)(5{}.0 mi/h
1.269 kg/m* /\ 221 mi/h

2
= (21.2 lbﬂ( ) (5) = 25.3 Ibf

Prototype

Discussion By arranging the dimensional parameters as nondimensional ratios,
the units cancel nicely even though they are a mixture of SI and English units.
Because both velocity and length are squared in the equation for II,, the higher
speed in the wind tunnel nearly compensates for the model’s smaller size, and
the drag force on the model is nearly the same as that on the prototype. In fact, if
the density and viscosity of the air in the wind tunnel were identical to those of
the air flowing over the prototype, the two drag forces would be identical as well

(Fig. 7-20). ' L,

(ref. ‘Fluid Mechanics’ by & Cimbala)
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7-4 = THE METHOD OF REPEATING VARIABLES
AND THE BUCKINGHAM Pl THEOREM

We have seen several examples of the usefulness and power of dimensional
analysis. Now we are ready to learn how to generate the nondimensional
parameters, i.e., the II'’s. There are several methods that have been developed
for this purpose, but the most popular (and simplest) method is the method
of repeating variables, popularized by Edgar Buckingham (1867-1940).
The method was first published by the Russian scientist Dimitri Riabou-
chinsky (1882-1962) in 1911. We can think of this method as a step-by-step
procedure or “recipe” for obtaining nondimensional parameters. There are
six steps, listed concisely in Fig. 7-22, and in more detail in Table 7-2.
These steps are explained in further detail as we work through a number of
example problems.

As with most new procedures, the best way to learn is by example and
practice. As a simple first example, consider a ball falling in a vacuum as
discussed in Section 7-2. Let us pretend that we do not know that Eq. 74
is appropriate for this problem, nor do we know much physics concerning
falling objects. In fact, suppose that all we know is that the instantaneous

The Method of Repeating Variables

TABLE 7-2

Step 1: List the parameters in the problem Detailed description of the six steps that comprise the method ti
and count their total number #. . ! P ! P P method of repeating
variables*
Step 2: Lfisttheme primary dimensions of each Step1 List the parameters (dimensional variables, nondimensional variables,
o 0 PSS and dimensional constants) and count them. Let n be the total number
Step 3: Set the reduction j as the number of parameters in the problem, including the dependent variable. Make
of primary dimensions. Calculate k. sure that any listed independent parameter is indeed independent of the
the expected number of IT's, others, i.e., it cannot be expressed in terms of them. (For example,
k=n-j don’t include radius r and area A = #r2, since r and A are not
Step 4: Choose j repeating parameters. independent.)
Step2  List the primary dimensions for each of the n parameters.

Step 5: Construct the & 11's, and manipulate

a5 necessary. Step3  Guess the reduction j. As a first guess, set j equal to the number of
primary dimensions represented in the problem. The expected number of IT's
Step 6: Write the final functional relationship (k) is equal to n minus j, according to the Buckingham Pi theorem,
and check your algebra.
The Buckingham Pi theorem: k=n-j (7-14)
FIGUR_E 7-22 . If at this step or during any subsequent step, the analysis does not work out,
A concise summary of the six steps verify that you have included enough parameters in step 1. Otherwise, go
that comprise the method of repeating back and reduce j by one and try again.
variables. Step4  Choose j repeating parameters that will be used to construct each IT. Since
the repeating parameters have the potential to appear in each IT, be sure to
choose them wisely (Table 7-3).
Step5S  Generate the I1's one at a time by grouping the j repeating parameters
with one of the remaining parameters, forcing the product to be
dimensionless. In this way, construct all k IT's. By convention the
first I, designated as I1,, is the dependent I1 (the one on the left side of the
list). Manipulate the IT’s as necessary to achieve established dimensionless
groups (Table 7-5).
Step6 Check that all the IT’s are indeed dimensionless. Write the final

functional relationship in the form of Eq. 7-11.

* This is a step-by-step method for finding the dimensionless IT groups when performing a dimensional

analysis.



wy = initial vertical speed

g = gravitational
- — initial acceleratonin the — elevation z of the ball must be a function of time 7, initial vertical speed w,
7p = initial negative z-direction | _ . . o . )
elevation o initial elevation z;, and gravitational constant g (Fig. 7-23). The beauty of
dimensional analysis is that the only other thing we need to know is the pri-
2 = elevation of ball mary dimensions of each of these quantities. As we go through each step of
=t Wy, 70 ©) the method of repeating variables, we explain some of the subtleties of the

technique in more detail using the falling ball as an example.

z =0 (datum plane)

Step 1

FIGURE 7-23 There are five parameters (dimensional variables, nondimensional variables,
Setup for dimensional analysis of a and dimensional constants) in this problem; n = 5. They are listed in func-
ball falling in a vacuum. Elevation z tional form, with the dependent variable listed as a function of the inde-
is a function of time 7, initial verti- pendent variables and constants:
cal speed w,, initial elevation z,, and
gravitational constant g. List of relevant parameters: 2=flt.wyz5.8) n=3

Step 2

The primary dimensions of each parameter are listed here. We recommend
writing each dimension with exponents since this helps with later algebra.

z t Wy % 8
L") {t") L't} L L'ty

Step 3
As a first guess, j is set equal to 2, the number of primary dimensions repre-
sented in the problem (L. and t).

Reduction: i=2

If this value of j is correct, the number of IT’s predicted by the Buckingham
Pi theorem is

Number of expected I1's: k=n-j=5-2=3

Step 4
We need to choose two repeating parameters since j = 2. Since this is often
the hardest (or at least the most mysterious) part of the method of repeating
variables, several guidelines about choosing repeating parameters are listed
in Table 7-3.

Following the guidelines of Table 7-3 on the next page, the wisest choice
of two repeating parameters is w, and z,.

Repeating parameters: w, and g



Step 5

Now we combine these repeating parameters into products with each of the
remaining parameters, one at a time, to create the IT's. The first IT is always
the dependent 11 and is formed with the dependent variable z.

Dependent T1: I, = zwgz (7-15)

where a, and b, are constant exponents that need to be determined. We
apply the primary dimensions of step 2 into Eq. 7-15 and force the II to be
dimensionless by setting the exponent of each primary dimension to zero:

Dimensions of 11;: 1} = (L%} = {zwdizd) = (LY(L'e HaLhy
Since primary dimensions are by definition independent of each other, we

equate the exponents of each primary dimension independently to solve for
exponents a, and b, (Fig. 7-24).

Time: () = [t~} 0=-a, a=0

Length: (L% = {L'LaL®}y O=1+a +b, b =-1-a b =-1

Equation 7-15 thus becomes

z

II, =
<o

(7-16)

In similar fashion we create the first independent II (I1,) by combining
the repeating parameters with independent variable z.

. - B o
First independent 11 I, = rwiz b

Dimensions of Tl,:  {I1,} = {L%°} = {twgzb) = {t(L1t~1)“lb)



Equating exponents,

Time: = O0=1l-a a=1
Length: L% ={LsL» O=ay+b, by=-a, b,=-1
I1, is thus
wot
Mm,=— (7-17)
%

Finally we create the second independent I1 (I1;) by combining the repeat-
ing parameters with g and forcing the 11 to be dimensionless (Fig. 7-26).

Second independent I1: I1, = gwz P

Dimensions of 11, I} = (L%} = {gwgzds) = [LYALhalt)

Equating exponents,

Time: =2 0=-2-a a=-2
Length: L% = {L'LaLb)  O0=1l+4ay+by by=-1—a, by=1
I1; is thus
I, = g—z'; (7-18)
Wo

All three IT’s have been found, but at this point it is prudent to examine
them to see if any manipulation is required. We see immediately that IT, and
I1, are the same as the nondimensionalized variables z* and #* defined by
Eq. 7-6—no manipulation is necessary for these. However, we recognize
that the third TT must be raised to the power of —3 to be of the same form
as an established dimensionless parameter, namely the Froude number of
Eq. 7-8:

Modified TT In = (7gz0)*1f2 - F
. ied = = = 7-19
o lﬁe 3 3, modified Wé /igzﬂ r ( )

Such manipulation is often necessary to put the II's into proper estab-
lished form. The II of Eq. 7-18 is not wrong, and there is certainly no
mathematical advantage of Eq. 7-19 over Eq. 7-18. Instead, we like to
say that Eq. 7-19 is more “socially acceptable” than Eq. 7-18, since it is
a named, established nondimensional parameter that is commonly used in
the literature. Table 7—4 lists some guidelines for manipulation of nondi-
mensional I groups into established nondimensional parameters.

Table 7-5 lists some established nondimensional parameters, most of
which are named after a notable scientist or engineer (see Fig. 7-27 and the
Historical Spotlight on p. 317). This list is by no means exhaustive. When-
ever possible, you should manipulate your IT's as necessary in order to con-
vert them into established nondimensional parameters.



Step 6
We should double-check that the II's are indeed dimensionless (Fig.
7-28). You can verify this on your own for the present example. We are
finally ready to write the functional relationship between the nondimen-
sional parameters. Combining Eqs. 7-16, 7-17, and 7-19 into the form of
Eq. 7-11,

t
Relationship between ITs: I, = fIL,11;) - L f (wo . wo)

2\ e Vi

Or, in terms of the nondimensional variables z* and t* defined previously
by Eq. 7-6 and the definition of the Froude number,

Final result of dimensional analysis: 7% = f(t*, Fr) (7-20)

It is useful to compare the result of dimensional analysis, Eq. 7-20, to the
exact analytical result, Eq. 7-10. The method of repeating variables properly
predicts the functional relationship between dimensionless groups. However,

The method of repeating variables cannot predict the exact mathematical
form of the equation.

(ref. ‘Fluid Mechanics’ by & Cimbala)



112- Differential Analysis of Fluid Flow:
Introduction

DIFFERENTIAL ANALYSIS
OF FLUID FLOW

conservation of mass (the continuity equation) and Newton’s second law
(the Navier—Stokes equation). These equations apply to every point in the
flow field and thus enable us to solve for all details of the flow everywhere

I n this chapter we derive the differential equations of fluid motion, namely,

in the flow domain. Unfortunately, most differential equations encountered
in fluid mechanics are very difficult to solve and often require the aid of
a computer. Also, these equations must be combined when necessary with
additional equations, such as an equation of state and an equation for energy
and/or species transport. We provide a step-by-step procedure for solving this
set of differential equations of fluid motion and obtain analytical solutions
for several simple examples. We also introduce the concept of the stream
function; curves of constant stream function turn out to be streamlines in
two-dimensional flow fields.

(ref. ‘Fluid Mechanics’ by & Cimbala)
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Control volume

Flow out
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Flowin |
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FIGURE 91

(a) In control volume analysis, the
interior of the control volume is
treated like a black box, but (b) in
differential analysis, all the details
of the flow are solved at every point
within the flow domain.

Preliminaries 1

9—1 = INTRODUCTION

In Chap. 5, we derived control volume versions of the laws of conservation of
mass and energy, and in Chap. 6 we did the same for momentum. The control
volume technique is useful when we are interested in the overall features of a
flow, such as mass flow rate into and out of the control volume or net forces
applied to bodies. An example is sketched in Fig. 9-1a for the case of wind
flowing around a satellite dish. A rectangular control volume is taken around
the vicinity of the satellite dish, as sketched. If we know the air velocity along
the entire control surface, we can calculate the net reaction force on the stand
without ever knowing any details about the geometry of the satellite dish. The
interior of the control volume is in fact treated like a “black box™ in control
volume analysis—we cannot obtain detailed knowledge about flow properties
such as velocity or pressure at points inside the control volume.

Differential analysis, on the other hand, involves application of differen-
tial equations of fluid motion to any and every point in the flow field over a
region called the flow domain. You can think of the differential technique as
the analysis of millions of tiny control volumes stacked end to end and on top
of each other all throughout the flow field. In the limit as the number of tiny
control volumes goes to infinity, and the size of each control volume shrinks
to a point, the conservation equations simplify to a set of partial differential
equations that are valid at any point in the flow. When solved. these differen-
tial equations yield details about the velocity, density, pressure, etc., at every
point throughout the entire flow domain. In Fig. 9-1b, for example, differential

analysis ot airflow around the satellite dish yields streamline shapes, a detailed
pressure distribution around the dish, etc. From these details, we can integrate
to find gross features of the flow such as the net force on the satellite dish.

In a fluid flow problem such as the one illustrated in Fig. 9-1 in which
air density and temperature changes are insignificant, it is sufficient to solve
two differential equations of motion—conservation of mass and Newton’s
second law (the linear momentum equation). For three-dimensional incom-
pressible flow, there are four unknowns (velocity components u, v, w, and
pressure P) and four equations (one from conservation of mass, which is
a scalar equation, and three from Newton’s second law, which is a vector
equation). As we shall see, the equations are coupled, meaning that some
of the variables appear in all four equations; the set of differential equations
must therefore be solved simultaneously for all four unknowns. In addition,
boundary conditions for the variables must be specified at all boundaries
of the flow domain, including inlets, outlets, and walls. Finally, if the flow
is unsteady, we must march our solution along in time as the flow field
changes. You can see how differential analysis of fluid flow can become
quite complicated and difficult. Computers are a tremendous help here, as
discussed in Chap. 15. Nevertheless, there is much we can do analytically,
and we start by deriving the differential equation for conservation of mass.

(ref. ‘Fluid Mechanics’ by & Cimbala)



114- Differential Analysis of Fluid Flow:

Preliminaries 2

9-2 = CONSERVATION OF MASS—
THE CONTINUITY EQUATION

Through application of the Reynolds transport theorem (Chap. 4),

we have

the following general expression for conservation of mass as applied to a

control volume:

Conservation of mass for a CV:

<1

X

I
dap =, i
0=J *dV+J pV-ndA (9-1) .
cv 01 cs I ¥
oY
Recall that Eq. 9-1 is valid for both fixed and moving control volumes, !
provided that the velocity vector is the absolute velocity (as seen by a pammm—.
fixed observer). When there are well-defined inlets and outlets, Eq. 9-1 is s
rewritten as £
ap . .
—dV=Ym—- >m 9-2 Y
LV ot zm: E{ ©-2 dy
. . X ax 9z
In words, the net rate of change of mass within the control volume is equal -
to the rate at which mass flows into the control volume minus the rate at
which mass flows out of the control volume. Equation 9-2 applies to any FIGURE 9-2
control volume, regardless of its size. To generate a differential equation for To derive a differential conservation
conservation of mass, we imagine the control volume shrinking to infinitesi- equation, we imagine shrinking a
mal size, with dimensions dx. dy. and dz (Fig. 9-2). In the limit, the entire control volume to infinitesimal size.

control volume shrinks to a point in the flow.

(ref. ‘Fluid Mechanics’ by & Cimbala)
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Preliminaries 3

Derivation Using the Divergence Theorem

The quickest and most straightforward way to derive the differential form
of conservation of mass is to apply the divergence theorem to Eq. 9-1.
The divergence theorem is also called Gauss’s theorem, named after the
German mathematician Johann Carl Friedrich Gauss (1777-1855). The
divergence theorem allows us to transform a volume integral of the diver-
gence of a vector into an area integral over the surface that defines the vol-
ume. For any vector G the divergence of G is defined as V- G and the
divergence theorem is written as

Divergence theorem: J V.GdV = 4) G-ridA (9-3)
v A

The circle on the area integral i1s used to emphasize that the integral must
be evaluated around the entire closed area A that surrounds volume V. Note
that the control surface of Eq. 9-1 is a closed area, even though we do not
always add the circle to the integral symbol. Equation 9-3 applies to any vol-

— —
ume, SO we choose the control volume of Eq. 9-1. We also let G = pV
since G can be any vector. Substitution of Eq. 9-3 into Eq. 9-1 converts the
area integral into a volume integral,

op NN
O:J dV+[ V-(pV) dV
cv Ot cv

We now combine the two volume integrals into one,
ap — —
— + V-(pV)|dV =0 (9-4)
v | Of

Finally, we argue that Eq. 9—4 must hold for any control volume regardless
of its size or shape. This is possible only if the integrand (the terms within



square brackets) is identically zero. Hence, we have a general differential
equation for conservation of mass, better known as the continuity equation:

[ —

d
Continuity equation: a—p + V- (pV) =0 (9-5)
It

Equation 9-5 is the compressible form of the continuity equation since we
have not assumed incompressible flow. It is valid at any point in the flow
domain.

(ref. ‘Fluid Mechanics’ by & Cimbala)
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Preliminaries 4

Alternative Form of the Continuity Equation
We expand Eq. 9-5 by using the product rule on the divergence term,

—p+§)-(17)—a—p+17§)+ VV=0 (9-9)
dt P dt prp

Material derivative of p

Recognizing the material derivative in Eq. 9-9 (see Chap. 4), and dividing
by p, we write the compressible continuity equation in an alternative form,

Alternative form of the continuity equation:

1Dp

+VV=0 9-10
» Dt ( )

Equation 9-10 shows that as we follow a fluid element through the flow field
(we call this a material element), its density changes as vV changes (Fig. 9-9).

(ref. ‘Fluid Mechanics’ by & Cimbala)
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Continuity Equation

On the other hand, if changes in the density of the material element are
negligibly small compared to the magnitude of the density itself as the element
moves around, then both terms in Eq. 9-10 are negligibly small; V-V =0 and
p ! Dp/Dt = 0, and the flow is approximated as incompressible.

(ref. ‘Fluid Mechanics’ by & Cimbala)
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Derivation Using an Infinitesimal Control Volume
We derive the continuity equation in a different way, by starting with a con-
trol volume on which we apply conservation of mass. Consider an infini-
tesimal box-shaped control volume aligned with the axes in Cartesian coor-
dinates (Fig. 9-3). The dimensions of the box are dx, dy, and dz, and the
center of the box is shown at some arbitrary point P from the origin (the
box can be located anywhere in the flow field). At the center of the box
we define the density as p and the velocity components as u, v, and w, as
shown. At locations away from the center of the box, we use a Taylor series
expansion about the center of the box (point P). [The series expansion is
named in honor of its creator, the English mathematician Brook Taylor
(1685-1731).] For example, the center of the right-most face of the box is
located a distance dx/2 from the middle of the box in the x-direction; the
value of pu at that point is

: 2 2
dpw) dx 1 *(pu) (dx> ©-6)

+ — . -
ox 2 2! ox? 2

(pu)center of right face =pu+

(ref. ‘Fluid Mechanics’ by & Cimbala)
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the Divergence Theorem

As the box representing the control volume shrinks to a point, however, sec-
ond-order and higher terms become negligible. For example, suppose dx/L =
1073, where L is some characteristic length scale of the flow domain. Then
(dx/L)* = 107°, a factor of a thousand less than dx/L. In fact, the smaller dx,
the better the assumption that second-order terms are negligible. Applying
this truncated Taylor series expansion to the density times the normal veloc-
ity component at the center point of each of the six faces of the box, we have

) d(pu) dx
Center Of”ghrfa'ce: (pu)cemer of right face = pu + ox ?
0 dx
Center Ofleﬁface: (pu)cemer of left face = PU — ('Ou) "
ox 2
dpw) dz
Center offronrface: (row)cenler of front face =pw + 0 7
<
d(pw) dz
Center of rear face: (PW) center of rear face = PW — P
d(pv) dy
Center ofropface: (pv)center of top face =po+ ay 7
d d
Center Of borromface: (10 U)center of bottom face = po — (;U) 2y
Y

(ref. ‘Fluid Mechanics’ by & Cimbala)



120- Derivation of The Continuity Equation
Using an Infinitesimal Control Volume

The mass flow rate into or out of one of the faces is equal to the density A =surface area
times the normal velocity component at the center point of the face times V,, = average normal
the surface area of the face. In other words, m = pV A at each face, where velocity component
V, is the magnitude of the normal velocity through the face and A is the
surface area of the face (Fig. 9-4). The mass flow rate through each face ¥
of our infinitesimal control volume is illustrated in Fig. 9-5. We could con-
struct truncated Taylor series expansions at the center of each face for the N
remaining (nonnormal) velocity components as well, but this is unnecessary
since these components are tangential to the face under consideration. For

z

example, the value of pv at the center of the right face can be estimated by FIGURE 9-4
a similar expansion, but since v is tangential to the right face of the box, it The mass flow rate through a
contributes nothing to the mass flow rate into or out of that face. surface is equal to pV,A.

As the control volume shrinks to a point, the value of the volume integral
on the left-hand side of Eq. 9-2 becomes

Rate of change of mass within CV:

dp dap
va 3 dV = 3 dx dy dz (9-7)

(ref. ‘Fluid Mechanics’ by & Cimbala)
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Infinitesimal Control Volume

since the volume of the box is dx dy dz. We now apply the approximations
of Fig. 9-5 to the right-hand side of Eq. 9-2. We add up all the mass flow
rates into and out of the control volume through the faces. The left, bottom,
and back faces contribute to mass inflow, and the first term on the right-
hand side of Eq. 9-2 becomes

Net mass flow rate into CV:

. dpu) d. d(pv) dy dlpw) dz
§m§(,’)u— (;x)%)dydz+(pu— ([; )?))dxdz+(pw— (ja:)?) dx dy

v

left face bottom face rear face

v

! d(pv) dy
—— — |dx dz
- (pu+ ay 2) x
x
H Hpw) dz
(/rwf (S’W)E)[h dy
: ' )
| -

dy

= dpu) £ dvde —b—po E _._ dpu) dx dvd-
2 a2 yaz : L pu+ o 7 ydaz

o
(,m#"””ﬁ)m ay Lz 4 FIGURE 9-5
gz 2 dx I The inflow or outflow of mass
through each face of the differential

(m _9pw) ’i—")h dz control volume; the red dots indicate
a2 the center of each face.

Similarly, the right, top, and front faces contribute to mass outflow, and the
he Divergence Operatio second term on the right-hand side of Eq. 9-2 becomes

esian coordinates Net mass flow rate out of CV:

d d d ) P d Fil dy dlpw) dz
drical coordinate g;mg (/Ju+ (gr)%) (jydz+(pu+ (g:') %) dx dz+ (pw+ (g—?)?) dx dy

right face top face front face

2 J We substitute Eq. 9-7 and these two equations for mass flow rate into
Eq. 9-2. Many of the terms cancel each other out; after combining and sim-
plifying the remaining terms, we are left with
FIGURE 9-6

ap d(pu) a(pv) d(pw)
The divergence operation in Cartesian —dxdydz = — dxdydz — dx dydz —

A A N oJt ox y z

and cylindrical coordinates.

dx dy dz

The volume of the box, dx dy dz, appears in each term and can be elimi-
nated. After rearrangement we end up with the following differential
equation for conservation of mass in Cartesian coordinates:
Continuity equation in Cartesian coordinates:
dp  dlpu) d(pv)  Apw)
- =0 (9-8)
ot ox dy 0z

Equation 9-8 is the compressible form of the continuity equation in Cartesian
coordinates. It is written in more compact form by recognizing the divergence
operation (Fig. 9-6), yielding the same equation as Eq. 9-5.

(ref. ‘Fluid Mechanics’ by & Cimbala)
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of the Continuity Equation

Alternative Form of the Continuity Equation
We expand Eq. 9-5 by using the product rule on the divergence term,

o + V- (pV) = o + ViVp + pVV=20 (9-9)

Material derivative of p

Recognizing the material derivative in Eq. 9-9 (see Chap. 4), and dividing
by p, we write the compressible continuity equation in an alternative form,

Alternative form of the continuity equation:

1 Dp ——
oD TVV=0 (8-10) FIGURE 9-9
As a material element moves through
Equation 9-10 shows that as we follow a fluid element through the flow field a flow field, its density changes
(we call this a material element), its density changes as V-V changes (Fig. 9-9). according to Eq. 9-10.

On the other hand, if changes in the density of the material element are
negligibly small compared to the magnitude of the density itself as the element
moves around, then both terms in Eq. 9-10 are negligibly small; V-V 2 0 and
p~! Dp/Dt = 0, and the flow is approximated as incompressible.

(ref. ‘Fluid Mechanics’ by & Cimbala)
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Coordinates

Continuity Equation in Cylindrical Coordinates
Many problems in fluid mechanics are more conveniently solved in cylin-
drical coordinates (r, 8, z) (often called cylindrical polar coordinates),
rather than in Cartesian coordinates. For simplicity, we introduce cylindri-
cal coordinates in two dimensions first (Fig. 9-10a). By convention, r is
the radial distance from the origin to some point (P), and @ is the angle
measured from the x-axis (@ is always defined as mathematically positive
in the counterclockwise direction). Velocity components, u, and u,, and unit
vectors, Er and Eﬁ, are also shown in Fig. 9-10a. In three dimensions, imag-
ine sliding everything in Fig. 9-10a out of the page along the z-axis (nor-
mal to the xy-plane) by some distance z. We have attempted to draw this in
Fig. 9-10b. In three dimensions, we have a third velocity component, u._,
and a third unit vector, EZ, also sketched in Fig. 9-10b.

The following coordinate transformations are obtained from Fig. 9-10:

Coordinate transformations:

3 . . y
r=3x*+3y x=rcosf y=rsinf 6O=tan"'=— (9-11)
x

Coordinate z is the same in cylindrical and Cartesian coordinates.
To obtain an expression for the continuity equation in cylindrical coordi-
, nates, we have two choices. First, we can use Eq. 9-5 directly, since it was
derived without regard to our choice of coordinate system. We simply look
up the expression for the divergence operator in cylindrical coordinates in
a vector calculus book (e.g., Spiegel, 1968; see also Fig. 9-6). Second, we
can draw a three-dimensional infinitesimal fluid element in cylindrical coor-
dinates and analyze mass flow rates into and out of the element, similar to
what we did before in Cartesian coordinates. Either way, we end up with

Continuity equation in cylindrical coordinates:

dp 1 d(rpu,) 1 d(puy) d'(pu:) 0

9-12
a.f+r or +r 06 * 0z ¢ )

(ref. ‘Fluid Mechanics’ by & Cimbala)
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Special Cases of the Continuity Equation

We now look at two special cases, or simplifications, of the continuity equa-
tion. In particular, we first consider steady compressible flow, and then
incompressible flow.

Special Case 1: Steady Compressible Flow
If the flow is compressible but steady, d/dt of any variable is equal to zero.
Thus, Eq. 9-5 reduces to

_
Steady continuity equation: V-(pV) =0 (9-13)

In Cartesian coordinates, Eq. 9-13 reduces to
0 d dpw
(pu) N (pv) N (pw) _ 0

(9-14)
Ox dy dz
In cylindrical coordinates, Eq. 9—13 reduces to
1 d(rpu,) 1 d(puy)  Ipu,)
- +— =0 (9-15)

r o Ty o8 T o

Special Case 2: Incompressible Flow

If the flow is approximated as incompressible, density is not a function of
time or space. Thus the unsteady term in Eq. 9-5 disappears and p can be
taken outside of the divergence operator. Equation 9-5 therefore reduces to

Incompressible continuity equation: V-vV=10 (9-16)

The same result is obtained if we start with Eq. 9-10 and recognize that
for an incompressible flow, density does not change appreciably following a
fluid particle, as pointed out previously. Thus the material derivative of p is
approximately zero, and Eq. 9-10 reduces immediately to Eq. 9-16.

You may have noticed that no time derivatives remain in Eq. 9—-16. We
conclude from this that even if the flow is unsteady, Eq. 9-16 applies at
any instant in time. Physically, this means that as the velocity field changes
in one part of an incompressible flow field, the entire rest of the flow field
immediately adjusts to the change such that Eq. 9-16 is satisfied at all
times. For compressible flow this is not the case. In fact, a disturbance in

(ref. ‘Fluid Mechanics’ by & Cimbala)
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equation

In Cartesian coordinates, Eq. 9-16 is

Incompressible continuity equation in Cartesian coordinates:
a—u+@+ﬂ=0 (9-17)
ox dy 0z
Equation 9-17 is the form of the continuity equation you will probably
encounter most often. It applies to steady or unsteady, incompressible,

three-dimensional flow, and you would do well to memorize it.
In cylindrical coordinates, Eq. 9-16 is

Incompressible continuity equation in cylindrical coordinates:

l d(ru,) l d(uy) a(u:) 0 o1
ror Tr a0 o T (3-18)

(ref. ‘Fluid Mechanics’ by & Cimbala)



126- Examples of Application of the continuity
equation: Design of a converging duct

|
0 EXAMPLE 9-2 Design of a Compressible Converging Duct

B A two-dimensional converging duct is being designed for a high-speed wind tun-
B nel. The bottom wall of the duct is to be flat and horizontal, and the top wall
g is to be curved in such a way that the axial wind speed u increases approxi-
I mately linearly from u, = 100 m/s at section (1) to u, = 300 m/s at section

Ax=20m
T N
20m |~y Ry
~a —_— —_—
V] i —|
" 6))
FIGURE 9-12

Converging duct, designed for a high-
speed wind tunnel (not to scale).

(2) (Fig. 9-12). Meanwhile, the air density p is to decrease approximately lin-
early from p, = 1.2 kg/m? at section (1) to p, = 0.85 kg/m? at section (2). The
converging duct is 2.0 m long and is 2.0 m high at section (1). (a) Predict the
y-component of velocity, u(x, y), in the duct. (b) Plot the approximate shape of
the duct, ignoring friction on the walls. (¢) How high should the duct be at sec-
tion (2), the exit of the duct?

SOLUTION For given velocity component u and density p, we are to predict
velocity component v, plot an approximate shape of the duct, and predict its height
at the duct exit.

Assumptions 1 The flow is steady and two-dimensional in the xy-plane.
2 Friction on the walls is ignored. 3 Axial velocity u increases linearly with x, and
density p decreases linearly with x.

Properties The fluid is air at room temperature (25°C). The speed of sound is
about 346 nv/s, so the flow is subsonic, but compressible.

Analysis (a) We wrilte expressions for u and p, forcing them to be linear in x,

=1 (300 — 100) m/s
Ax 20m

u

u=u +Cx where C,6= = 100 s~! ]

and

pr—p (085 — 1.2) kg/m’®
Ax 20m

p=p+Cx where C,= )

=—0.175 kg/m’

The steady continuity equation (Eq. 9-14) for this two-dimensional compressible
flow simplifies to

d(pu) N d(pv) . d(gj}) _o = 9pv) _ 9w

= 3
o o ox @)




Substituting Eqs. 1 and 2 into Eq. 3 and noting that C, and C, are constants,

d(pv) __ a(py + C,x)(uy + C,x)] = —(p,C, + u,C) - 2C,C,x

dy dx
2
] Integration with respect to y gives
155 po=—(p,C, + u,C)y — 2C.C, xy + fix) @)
- Note that since the integration is a partial integration, we have added an arbi-
Y trary function of x instead of simply a constant of integration. Next, we apply
] \\ boundary conditions. We argue that since the bottom wall is flat and horizontal,
] v must equal zero at y = 0 for any x. This is possible only if f(x) = 0. Solving
0.5 _E‘L\\ Eq. 4 for v gives
e G R E— —(pC, +u,C)y — 2C,C,xy —(p,C, +u,C,y —2C,C, xy
T = - D=
0 LA L L Y L Y I B P2 P + Cpx
0 0.5 1 \ 1.3 2
(5)
Bottom wall

(b) Using Eqgs. 1 and 5 and the technique described in Chap. 4, we plot several
EIGURE 9-13 streamlines between x = 0 and x = 2.0 m in Fig. 9-13. The streamline starting at

Streamlines for the converging duct x =0, y = 2.0 m approximates the top wall of the duct.

of Example 9-2.

(c) At section (2), the top streamline crosses y = 0.941 m at x = 2.0 m. Thus, the
predicted height of the duct at section (2) is 0.941 m.

Discussion You can verify that the combination of Egs. 1, 2, and 5 satisfies the
continuity equation. However, this alone does not guarantee that the density and
velocity components will actually follow these equations if the duct were to be built
as designed here. The actual flow depends on the pressure drop between sections
(1) and (2); only one unique pressure drop can yield the desired flow acceleration.
Temperature may also change considerably in this kind of compressible flow in
which the air accelerates toward sonic speeds.

(ref. ‘Fluid Mechanics’ by & Cimbala)
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equation: Two-Dimensional Flow

|
B EXAMPLE 9-3 Incompressibility of an Unsteady

- Two-Dimensional Flow

B Consider the velocity field of Example 4-5—an unsteady, two-dimensional velocity

B field given by V = (u, v) = (0.5 + 0.8¥)i + [1.5 + 2.5 sin (wr) — 0.8y], where
angular frequency w is equal to 2z rad/s (a physical frequency of 1 Hz). Verify that
this flow field can be approximated as incompressible.

SOLUTION We are to verify that a given velocity field is incompressible.
Assumptions 1 The flow is two-dimensional, implying no z-component of velocity
and no variation of u or v with z.

Analysis The components of velocity in the x- and y-directions, respectively, are

u=054+08x and o=15+ 2.5sin(wt)— 0.8y

If the flow is incompressible, Eq. 9-16 must apply. More specifically, in Cartesian
coordinates Eq. 9-17 must apply. Let’s check:

du dv d
—+—+7aﬁ=0 - 08-08=0
dx  dy Z
o e —
0.8 —0.8 0since 2-D
So we see that the incompressible continuity equation is indeed satisfied at any instant
in time, and this flow field may be approximated as incompressible.
Discussion Although there is an unsteady term in o, it has no y-derivative and

drops out of the continuity equation.

(ref. ‘Fluid Mechanics’ by & Cimbala)



128- Examples of Application of the continuity
equation: Three-Dimensional Flow

|
¥ EXAMPLE 9-4 Finding a Missing Velocity Component

B The u velocity component of a steady, two-dimensional, incompressible flow field
B is u = ax + by, where a and b are constants. Velocity component v is missing
B (Fig. 9-14). Generate an expression for v as a function of x and y.

SOLUTION We are to find the y component of velocity v, using a given expression
for u.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is
two-dimensional in the xy-plane, implying that w = 0 and neither « nor v depends
on z.

Analysis We plug the velocity components into the steady incompressible conti-
nuity equation,

Condition for incompressibility:

av du vy auv
? = _E - . — a— = —a
Y —_ = Y

a 0

Next we integrate with respect to y. Note that since the integration is a partial inte-
gration, we must add some arbitrary function of x instead of simply a constant of
integration.

Solution: 0= —ay + f(x)

If the flow were three-dimensional, we would add a function of x and z instead.
Discussion To satisfy the incompressible continuity equation, any function of
x will work since there are no derivatives of v with respect to x in the continu-
ity equation. Not all functions of x are necessarily physically possible, however,
since the flow may not be able to satisfy the steady conservation of momentum
equation.

(ref. ‘Fluid Mechanics’ by & Cimbala)
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equation: Three-Dimensional Flow

EXAMPLE 9-5 Two-Dimensional, Incompressible, Vortical Flow =

Uy Consider a two-dimensional, incompressible flow in cylindrical coordinates; the :
tangential velocity component is u, = K/r, where K is a constant. This represents B
a class of vortical flows. Generate an expression for the other velocity compo-
nent, u,.

SOLUTION For a given tangential velocity component, we are to generate an
expression for the radial velocity component.

Assumptions 1 The flow is two-dimensional in the xy- (r6-) plane (velocity is
not a function of z, and u_ = 0 everywhere). 2 The flow is incompressible.
Analysis The incompressible continuity equation (Eq. 9-18) for this two-dimensional
case simplifies to

1000 10 W Hew g
roor r g6 Z ar a8

—
0(2-D)

m

The given expression for u, is not a function of #, and therefore Eq. 1 reduces to
d(ru,) —0
dar
where we have introduced an arbitrary function of @ and 7 instead of a con-
stant of integration, since we performed a partial integration with respect to r.
Solving for u,. 760
W £
u, = (3)
Thus. any radial velocity component of the form given by Eq. 3 yields atwo-dimensional,
incompressible velocity field that satisfies the continuity equation.
We discuss some specific cases. The simplest case is when f(6.7) = 0
(u, = 0, uy = K/r). This yields the line vortex discussed in Chap. 4, as sketched in
(b) Fig. 9-15a. Another simple case is when f(#,r) = C, where C is a constant. This
yields a radial velocity whose magnitude decays as 1/r. For negative C, imagine a
FIGURE 9-15 spiraling line vortex/sink flow, in which fluid elements not only revolve around the
Streamlines and velocity profiles origin, but get sucked into a sink at the origin (actually a line sink along the z-axis).
for (a) a line vortex flow and (b) a This is illustrated in Fig. 9—15b.
spiraling line vortex/sink flow.

- ru,=f6.1) @

(ref. ‘Fluid Mechanics’ by & Cimbala)
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equation: Incompressible Flow

|
¥ EXAMPLE 9-7 Conditions for Incompressible Flow

| Consider a steady velocity field given by V = (u, v, w) = a(x’y + yz)sT> + bxyzf
B + cxk. where a, b, and ¢ are constants. Under what conditions is this flow field
I incompressible?

|
SOLUTION We are to determine a relationship between constants a, b, and ¢ m
that ensures incompressibility. u

Assumptions 1 The flow is steady. 2 The flow is incompressible (under certain ™
constraints to be determined). B
Analysis We apply Eq. 9-17 to the given velocity field,

d d &IE'

_u+_b‘r+ =0 - 2axy + 2bxy = 0
dx dy z
—_ = =

2axy  2bxy 0

Thus to guarantee incompressibility, constants @ and »# must be equal in magnitude
but opposite in sign.

Condition for incompressibility: a=—b

Discussion 1If a were not equal to —b, this might still be a valid flow field, but
density would have to vary with location in the flow field. In other words, the
flow would be compressible, and Eq. 9—14 would need to be satisfied in place of
Eq. 9-17.

(ref. ‘Fluid Mechanics’ by & Cimbala)
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Coordinates

9-3 = THE STREAM FUNCTION

The Stream Function in Cartesian Coordinates
Consider the simple case of incompressible, two-dimensional flow in the
xy-plane. The continuity equation (Eq. 9-17) in Cartesian coordinates reduces to

L -

dx * ady (=19
A clever variable transformation enables us to rewrite Eq. 9-19 in terms of
one dependent variable (y) instead of twe dependent variables (u and v). We
define the stream function y as (Fig. 9-17)

Incompressible, two-dimensional stream function in Cartesian coordinates:

dyr dyr

H=— and n= (9-20)
dy

S ox

The stream function and the corresponding velocity potential function

(Chap. 10) were first introduced by the Italian mathematician Joseph Louis
Lagrange (1736-1813). Substitution of Eq. 9-20 into Eq. 9-19 yields

a oy d dyr oy a*y

E(a__J +E(_E> “axoy oyox
which is 1dentically satisfied for any smooth function yi{x, y), because the
order of differentiation (y then x versus x then y) is irrelevant.

You may ask why we chose to put the negative sign on v rather than on u.
(We could have defined the stream function with the signs reversed, and
continuity would still have been identically satisfied.) The answer is that
although the sign is arbitrary, the definition of Eq. 9-20 leads to flow from
left to right as y increases in the y-direction, which is usually preferred.
Most fluid mechanics books define y in this way, although sometimes y is




defined with the opposite signs (e.g., in some British textbooks and in the
indoor air quality field, Heinsohn and Cimbala, 2003).

What have we gained by this transformation? First, as already mentioned,
a single variable (y) replaces tweo variables (u and v)}—once y is known,
we can generate both u and v via Eq. 9-20, and we are guaranteed that the
solution satisfies continuity, Eq. 9—19. Second, it turns out that the stream
function has useful physical significance (Fig. 9—18). Namely,

Curves of constant y are streamlines of the flow.

This is easily proven by considering a streamline in the xy-plane, as sketched
in Fig. 9-19. Recall from Chap. 4 that along such a streamline,

dy v
Along a streamline: — == =  —pdi+udy=0
dx u = "
i ity

where we have applied Eq. 9-20, the definition of . Thus,
dyr dy
Along a streamline: —dx +——dy=0 (9-21)
dx dy
But for any smooth function y of two variables x and y, we know by the
chain rule of mathematics that the total change of y from point (x, y) to
another point (x + dx, y + dy) some infinitesimal distance away is
Total change of y: dy=—dx+—dy (9-22)
By comparing Eq. 9-21 to Eq. 9-22 we see that dyr = 0 along a streamline;
thus we have proven the statement that y is constant along streamlines.

- EXAMPI F 9-8 Calculation of the Velacitv Field

(ref. ‘Fluid Mechanics’ by & Cimbala)
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FIGURE 9—18
Curves of constant stream function
represent streamlines of the flow.
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: EXAMPLE 9-8 Calculation of the Velocity Field

L from the Stream Function

B A steady, two-dimensional, incompressible flow field in the xy-plane has a

J stream function given by y = ax® + by + cx, where a, b, and ¢ are constants:
a= 050 (ms), b=-=20m/s, and ¢ = —1.5 m/s. (a) Obtain expressions for
velocity components u and v. (b) Verify that the flow field satisfies the incom-
pressible continuity equation. (¢) Plot several streamlines of the flow in the
upper-right quadrant.

SOLUTION For a given stream function, we are to calculate the velocity compo-
nents, verify incompressibility, and plot flow streamlines.
Assumptions 1 The flow is steady. 2 The flow is incompressible (this assump-
tion is to be verified). 3 The flow is two-dimensional in the xy-plane, implying that
w = 0 and neither « nor v depend on z.
Analysis (a) We use Eq. 9-20 to obtain expressions for u and v by differentiating
the stream function,

u :ﬁ—]"b‘:.ﬁI and u:—a—w: —3ax* — ¢

dy dx

(b) Since u is not a function of x, and v is not a function of y, we see immediately

that the two-dimensional, incompressible continuity equation (Eq. 9-19) is satis-
fied. In fact, since y is smooth in x and y, the two-dimensional, incompressible
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FIGURE 9-20
Streamlines for the velocity field of
Example 9-8; the value of constant
y is indicated for each streamline,
and velocity vectors are shown at

four locations.

continuity equation in the xy-plane is automatically satisfied by the very defini-
tion of y. We conclude that the flow is indeed incompressible.

(c) To plot streamlines, we solve the given equation for either y as a function of
x and w, or x as a function of y and y. In this case, the former is easier, and we

have
. . w— ax’ — ex
Equation for a streamline: y=""p

This equation is plotted in Fig. 9-20 for several values of y, and for the provided
values of a, b, and c. The flow is nearly straight down at large values of x, but veers

upward forx < | m.
= 1 m. In fact, v is nega-

Discussion You can verify that v = 0 at x =
tive for x > 1 m and positive for x < 1 m. The direction of the flow can

also be determined by picking an arbitrary point in the flow, say (x = 3 m,
v =4 m), and calculating the velocity there. We get u = —2.0 m/s and v = —12.0 m/s
at this point, either of which shows that fluid flows to the lower left in this region
of the flow field. For clarity, the velocity vector at this point is also plotted in Fig.
9-20; it is clearly parallel to the streamline near that point. Velocity vectors at three

other locations are also plotted.

Calculation of Stream Function

far a Vnnwmnm Ualarcitu Ciald

EXAMPLE 9-9

(ref. ‘Fluid Mechanics’ by & Cimbala)
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EXAMPLE 9-9 Calculation of Stream Function
for a Known Velocity Field

Consider a steady, two-dimensional, incompressible velocity field with
u=ax + b and v = —ay + cx, where a, b, and ¢ are constants: a = 0.50 s
b= 1.5 m/s, and ¢ = 0.35 s~'. Generate an expression for the stream function and
plot some streamlines of the flow in the upper-right quadrant.

SOLUTION For a given velocity ficld we are to generate an expression for y
and plot several streamlines for given values of constants a, b, and c.
Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is
two-dimensional in the xy-plane, implying that w = 0 and neither « nor v depend
on z.

Analysis We start by picking one of the two parts of Eq. 9-20 that define the
stream function (it doesn’t matter which part we choose—the solution will be iden-
tical).

dy

—=u=ax+b

ay
Next we integrate with respect to y, noting that this is a partial integration, so we
add an arbitrary function of the other variable, x. rather than a constant of integra-

tion,
w = axy + by + g(x) (1)

Now we choose the other part of Eq. 9-20, differentiate Eq. 1, and rearrange as
follows:

d

___w__ _ ’
e g'(x) (2)

where g'(x) denotes dgldx since g is a function of only one variable, x. We
now have two expressions for velocity component v, the equation given in the



. . y ]
problem statement and Eq. 2. We equate these and integrate with respect to x to 5 N \ \ \\"‘-.. [~164
find g(x), ] \\\“--12 —

2 4] \ \_‘ T
v=—ay+cx=—ay—g'x) — gx)=—cx — gx)=—c—+C (3) ] \ 10—
2 § 8.
3 o
Note that here we have added an arbitrary constant of integration C since g is a ] \“'---....6 —
function of x only. Finally, substituting Eq. 3 into Eq. 1 yields the final expression y,m 3 :\.____ 2 I
for y, 1 w=4mYs _...-/'-
1 e el M
. x? 1 —
Solution: y=axy +by —c 7 1= () 4) ] 0—"] -~
0 ] el — 27 /_.f
To plot the streamlines, we note that Eq. 4 represents a family of curves, one ] L B _4/ ~g
unique curve for each value of the constant (y — C). Since C is arbitrary, it is com- B ] § // J/_é
mon to set it equal to zero, although it can be set to any desired value. For simplicity SRR RN LR R
~ . . 0 1 2 3 4 5
we set C = 0 and solve Eq. 4 for y as a function of x, yielding m
. . oyt a2
Equation for streamlines: y= o tb (5) EIGURE 9-21

Streamlines for the velocity field of
Example 9-9; the value of constant y
is indicated for each streamline.

For the given values of constants a, b, and ¢, we plot Eq. 5 for several values
of y in Fig. 9-21; these curves of constant y are streamlines of the flow. From
Fig. 9-21 we see that this is a smoothly converging flow in the upper-right
quadrant.

Discussion 1t is always good to check your algebra. In this example, you should
substitute Eq. 4 into Eq. 9-20 to verify that the correct velocity components are
obtained.

(ref. ‘Fluid Mechanics’ by & Cimbala)
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FIGURE 9—-28

Streamlines for the velocity field of
Example 9-12, with K = 10 m?%s
and C = 0; the value of constant y is
indicated for several streamlines.

1

Coordinates

u
EXAMPLE 9-12 Stream Function in Cylindrical Coordinates m

|
Consider a line vortex, defined as steady, planar, incompressible flow in which the m
velocity components are u, = 0 and u,; = K/r, where K is a constant. This flow is H
represented in Fig. 9-154. Derive an expression for the stream function w(r, #), and
prove that the streamlines are circles.

SOLUTION For a given velocity ficld in cylindrical coordinates, we arc to
derive an expression for the stream function and show that the streamlines are cir-
cular.

Assumptions 1 The flow is steady. 2 The flow is incompressible. 3 The flow is
planar in the ré-plane.

Analysis We use the definition of stream function given by Eq. 9-27. We can
choose either component to start with; we choose the tangential component,

dyr K .
o= =y y=—-Klnr+ f(0) (Y]

Now we use the other component of Eq. 9-27,

U

1
u= =1 @

where the prime denotes a derivative with respect to 8. By equating «, from the
given information to Eq. 2, we see that

f®=0 - fir=cC
where C is an arbitrary constant of integration. Equation 1 is thus
Solution: w=—-Knr+C %))

Finally, we see from Eq. 3 that curves of constant y are produced by setting r
to a constant value. Since curves of constant r are circles by definition, streamlines
(curves of constant y) must therefore be circles about the origin, as in Fig.
9-15a.

For given values of C and w, we solve Eq. 3 for r to plot the streamlines,

Eguation for sireamlines:  r = e~ Ww-CVK “)

For K = 10 m%s and C = 0, streamlines from y = 0 to 22 are plotted in
Fig. 9-28.

Discussion Notice that for a uniform increment in the value of y, the streamlines
get closer and closer together near the origin as the tangential velocity increases.
This is a direct result of the statement that the difference in the value of y from one
streamline to another is equal to the volume flow rate per unit width between the
two streamlines.

(ref. ‘Fluid Mechanics’ by & Cimbala)
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9—-4 = THE DIFFERENTIAL LINEAR MOMENTUM
EQUATION—CAUCHY’S EQUATION

Through application of the Reynolds transport theorem (Chap. 4), we have
the general expression for the linear momentum equation as applied to a
control volume,

Eﬁ:l pEdU‘FJ
C

o, TdA = J i(pi_;) dv + [ (GW)V-idA  (9-32)
C5 Cs

v cv Ot

where o; is the stress tensor introduced in Chap. 6. Components of i
on the positive faces of an infinitesimal rectangular control volume are
shown in Fig. 9-29. Equation 9-32 applies to both fixed and moving con-
trol volumes, provided that V is the absolute velocity (as seen from a fixed
observer). For the special case of flow with well defined inlets and outlets,

Eq. 9-32 is simplified as follows:

TF= X Ry + T Faraee = J LNV + 3 V- SV -39
cv 01 out in

where V in the last two terms is taken as the average velocity at an inlet or
outlet, and f is the momentum flux correction factor (Chap. 6). In words, the
total force acting on the control volume is equal to the rate at which momen-
tum changes within the control volume plus the rate at which momentum
flows out of the control volume minus the rate at which momentum flows
into the control volume. Equation 9-33 applies to any control volume,
regardless of its size. To generate a differential linear momentum equa-
tion, we imagine the control volume shrinking to infinitesimal size. In the
limit, the entire control volume shrinks to a point in the flow (Fig. 9-2). We
take the same approach here as we did for conservation of mass; namely, we
show more than one way to derive the differential form of the linear momen-
tum equation.

(ref. ‘Fluid Mechanics’ by & Cimbala)
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Derivation Using the Divergence Theorem

The most straightforward (and most elegant) way to derive the differen-
tial form of the momentum equation is to apply the divergence theorem of
Eq. 9-3. A more general form of the divergence theorem applies not only
to vectors, but to other quantities as well, such as tensors, as illustrated in

Fig. 9-30. Specifically, if we replace Gj; in the extended divergence theorem

of Fig. 9-30 with the quantity (pV)V, a second-order tensor, the last term in
The Extended Divergence Theorem Eq. 9-32 becomes

J @ﬁﬁﬁdA=J V.V av ©-34)
CS vV

— —
where V V is a vector product called the outer product of the velocity vector
with itself. (The outer product of two vectors is not the same as the inner
or dot product, nor is it the same as the cross product of the two vectors.)

FIGURE 9-30 Similarly, if we replace G in Fig. 9-30 by the stress tensor oy, the second
An extended form of the divergence term on the left-hand side of Eq. 9-32 becomes

theorem is usetful not only for vectors, - -

but also for tensors. In the equation, Ls oy ndA = .[:v Vo, dV (9-35)

G, (or G) is a second-order tensor, I/
is a volume, and A is the surface area
that encloses and defines the volume.

Thus, the two surface integrals of Eq. 9-32 become volume integrals by
applying Egs. 9-34 and 9-35. We combine and rearrange the terms, and
rewrite Eq. 9-32 as

Jd = - L =
LV [E PV) + V-(pVV) — pg — V-cr,“,] dV =0 (9-36)

Finally, we argue that Eq. 9-36 must hold for any control volume regardless
of its size or shape. This is possible only if the integrand (enclosed by square
brackets) is identically zero. Hence, we have a general differential equation
for linear momentum, known as Cauchy’s equation,

d = = o= L =
Cauchy’s equation: E({)V) + V-(pVV) = pg + Vo (9-37)

Equation 9-37 is named in honor of the French engineer and mathemati-
cian Augustin Louis de Cauchy (1789-1857). It is valid for compressible as
well as incompressible flow since we have not made any assumptions about
incompressibility. It is valid at any point in the flow domain (Fig. 9-31).
Note that Eq. 9-37 is a vector equation, and thus represents three scalar
equations, one for each coordinate axis in three-dimensional problems.

(ref. ‘Fluid Mechanics’ by & Cimbala)
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FIGURE 9-37

For fluids at rest, the only stress on
a fluid element is the hydrostatic
pressure, which always acts inward
and normal to any surface. Note that
we are ignoring gravity in this case;
otherwise pressure would increase
in the direction of the gravitational
acceleration.

9-5 = THE NAVIER-STOKES EQUATION

Introduction

Cauchy’s equation (Eq. 9-37 or its alternative form Eq. 9-48) is not very
useful to us as is, because the stress tensor o contains nine components, six
of which are independent (because of symmetry). Thus, in addition to den-
sity and the three velocity components, there are six additional unknowns,
for a total of 10 unknowns. (In Cartesian coordinates the unknowns are p, u,
Uy Wy Gy Oy Oys Oy Oy and o_.) Meanwhile, we have discussed only four
equations so far—continuity (one equation) and Cauchy’s equation (three
equations). Of course, to be mathematically solvable, the number of equa-
tions must equal the number of unknowns. and thus we need six more equa-
tions. These equations are called constitutive equations, and they enable
us to write the components of the stress tensor in terms of the velocity field
and pressure field.

The first thing we do is separate the pressure stresses and the viscous
stresses. When a fluid is at rest, the only stress acting at any surface of any
fluid element is pressure P, which always acts inward and normal to the
surface (Fig. 9-37). Thus, regardless of the orientation of the coordinate
axes, for a fluid at rest the stress tensor reduces to

O Oy O -P 0 0
Fluid at rest: 6;=\o, o, o,|=|0 =P 0 (9-52)
= o-ZJr' Iz O 0 _P

Pressure P in Eq. 9-52 is the same as the thermodynamic pressure with
which we are familiar from our study of thermodynamics. P is related to
temperature and density through some type of equation of state (e.g., the
ideal gas law). As a side note, this further complicates a compressible fluid
flow analysis because we introduce yet another unknown, namely, tempera-
ture 7. This new unknown requires another equation—the differential form
of the energy equation—which is not discussed in this text.



When a fluid is moving, pressure still acts inwardly normal, but viscous
stresses may also exist. We generalize Eq. 9-52 for moving fluids as

Moving fluids:
6.\:’( G.ry 6.‘(2 _P 0 0 T.'f.‘r T‘(} Xz
o;=\|0, o0, o, |=(0 —-P O)+|7, 1, 7,.] (9-53
e v = 0 0 _P TZ'( TZ_\" TZ:

where we have introduced a new tensor, Tip> called the viscous stress tensor
or the deviatoric stress tensor. Mathematically, we have not helped the sit-
uation because we have replaced the six unknown components of o; with six
unknown components of Tijs and have added another unknown, pressure P.
Fortunately, however, there are constitutive equations that express 7; in
terms of the velocity field and measurable fluid properties such as viscosity.
The actual form of the constitutive relations depends on the type of fluid, as
discussed shortly.

As a side note, there are some subtleties associated with the pressure in
Eq. 9-53. If the fluid is incompressible, we have no equation of state (it
is replaced by the equation p = constant), and we can no longer define P
as the thermodynamic pressure. Instead, we define P in Eq. 9-53 as the

mechanical pressure,

m

. 1
Mechanical pressure: P = 3 (6,+o0,+0) (9-54)

We see from Eq. 9-54 that mechanical pressure is the mean normal stress
acting inwardly on a fluid element. It is therefore also called mean pressure
by some authors. Thus, when dealing with incompressible fluid flows, pres-
sure variable P is always interpreted as the mechanical pressure P,. For
compressible flow fields however, pressure P in Eq. 9-53 is the thermody-
namic pressure, but the mean normal stress felt on the surfaces of a fluid
element is not necessarily the same as P (pressure variable P and mechani-
cal pressure P, are not necessarily equivalent). You are referred to Panton
(1996) or Kundu et al. (2011) for a more detailed discussion of mechanical
pressure.

(ref. ‘Fluid Mechanics’ by & Cimbala)
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Newtonian versus Non-Newtonian Fluids prm— i
The study of the deformation of flowing fluids is called rheology; the rhe- plastic
ological behavior of various fluids is sketched in Fig. 9-38. In this text, -

we concentrate on Newtonian fluids, defined as fluids for which the stress ] i
tensor is linearly proportional to the strain rate tensor. Newtonian fluids |~ Yield

(stress proportional to strain rate) are analogous to elastic solids (Hooke’s s Newtonian
law: stress proportional to strain). Many common fluids, such as air and o
other gases, water, kerosene, gasoline, and other oil-based liquids, are New- thickening
tonian fluids. Fluids for which the stress tensor is not linearly related to

the strain rate tensor are called non-Newtonian fluids. Examples include

slurries and colloidal suspensions, polymer solutions, blood, paste, and cake Strain rate

batter. Some non-Newtonian fluids exhibit a “memory”—the shear stress

depends not only on the local strain rate, but also on its history. A fluid that FIGURE 9-38
returns (partially) to its original shape after the applied stress is released is  Rheological behavior of fluids—stress
called viscoelastic. as a function of strain rate.

Some non-Newtonian fluids are called shear thinning fluids or
“gl"!]géa pseudoplastic fluids, because the more the fluid is sheared, the less viscous
dilatant fluid! it becomes. A good example is paint. Paint is very viscous when poured from
the can or when picked up by a paintbrush, since the shear rate is small. How-
ever, as we apply the paint to the wall, the thin layer of paint between the
paintbrush and the wall is subjected to a large shear rate. and it becomes much
less viscous. Plastic fluids are those in which the shear thinning effect is
extreme. In some fluids a finite stress called the yield stress is required before
the fluid begins to flow at all; such fluids are called Bingham plastic fluids.
Certain pastes such as acne cream and toothpaste are examples of Bingham
plastic fluids. If you hold the tube upside down, the paste does not flow, even
though there is a nonzero stress due to gravity. However, if you squeeze the
tube (greatly increasing the stress), the paste flows like a very viscous fluid.

[ think he
means
quicksand.

FIGURE 9_3:9 ) . Other fluids show the opposite effect and are called shear thickening fluids
When an engineer falls into quicksand o dilatant fluids; the more the fluid is sheared, the more viscous it becomes.
(a dilatant fluid), the faster he tries The best example is quicksand, a thick mixture of sand and water. As we all

to move, the more viscous the fluid

know from Hollywood movies, it is easy to move slowly through quicksand,
becomes.

since the viscosity is low; but if you panic and try to move quickly, the vis-
cous resistance increases considerably and you get “stuck” (Fig. 9-39). You
can create your own quicksand by mixing two parts cornstarch with one part
water—try it! Shear thickening fluids are used in some exercise equipment—
the faster you pull, the more resistance you encounter.

(ref. ‘Fluid Mechanics’ by & Cimbala)
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Derivation of the Navier—Stokes Equation
for Incompressible, Isothermal Flow

From this point on, we limit our discussion to Newtonian fluids, where by
definition the stress tensor is linearly proportional to the strain rate ten-
sor. The general result (for compressible flow) is rather involved and is not
included here. Instead, we assume incompressible flow (p = constant). We
also assume nearly isothermal flow—namely, that local changes in tem-
perature are small or nonexistent; this eliminates the need for a differential
energy equation. A further consequence of the latter assumption is that fluid
properties, such as dynamic viscosity p and kinematic viscosity v, are con-
stant as well (Fig. 9-40). With these assumptions, it can be shown (Kundu
et al., 2011) that the viscous stress tensor reduces to

Viscous stress tensor for an incompressible Newtonian fluid with constant properties:

0 d flo 3 0 Tu

where £; is the strain rate tensor defined in Chap. 4. Equation 9-55 shows
that stress is linearly proportional to strain. In Cartesian coordinates, the
nine components of the viscous stress tensor are listed, only six of which
are independent due to symmetry:

22 (2 2) (20
'udx # dy dx K’ az dx

= 2,u£,j (9-55)

FIGURE 9-40 w To Te
. . . ’ < do  du av dvo  dw
The incompressible flow approxima- R LS B e + o 2u P o + By (9-56)
tion implies constant density, and the z I row Y R
. . . . . k2 fa zz aw a w v ow
1sotherma1' appl:ommatnon implies y( i l) y( LN 7“) 2 w
constant viscosity. dx oz dy 0z dz

In Cartesian coordinates the stress tensor of Eq. 9-53 thus becomes

5 du (au N au) (du N aw)
H— ul—+—) u
P 0 0 dx dy dx dz Ox

Jov 0 a d aw
oc=10 —-P 0|+]|u (a—v + a—u) 2u a_l) ,u( aU + a—w) (9-57)
0 0 —p X v v Z y

(% + du) (E + @) 2 a'H"
\ox " az) dy 0z r
Now we substitute Eq. 9-57 into the three Cartesian components of

Cauchy’s equation. Let’s consider the x-component first. Equation 9-51a
becomes

Du 0P 5 02 a(du du) d(aw du) o8
Dt~ ax T P&ETHGETRG Ty T o Ta) Y

Notice that since pressure consists of a normal stress only, it contributes
only one term to Eq. 9-58. However, since the viscous stress tensor con-
sists of both normal and shear stresses, it contributes three terms. (This is a
direct result of taking the divergence of a second-order tensor, by the way.)

=




We note that as long as the velocity components are smooth functions of
x, v, and z, the order of differentiation is irrelevant. For example, the first
part of the last term in Eq. 9-58 can be rewritten as

2 (), (2
“az dx _“ax az

After some clever rearrangement of the viscous terms in Eq. 9-58,

wiaatan e taes Tz

3 6P+ N | (0u+60+5w) +62u+62u+62u
T T PTG ox dy 9z axr a9

=-——+pgtu

Du oP 0%u d du 0 dv  du d ow  odu
Dr = ox

The term in parentheses is zero because of the continuity equation for
incompressible flow (Eq. 9—17). We also recognize the last three terms as
the Laplacian of velocity component u in Cartesian coordinates (Fig. 9—41).
Thus, we write the x-component of the momentum equation as
Du aP
= V2
P Dt ox + pg, + pVu

Similarly, the y- and z-components of the momentum equation reduce to

(9-59a)

bo_ 9P v? 9-59b
Pbr = FN + pg, + uvV-o (9-59b)
and
Dw ar 5
=——+pg. + uV'w (9-59¢)

pﬁ_ 0z

respectively. Finally, we combine the three components into one vector
equation; the result is the Navier—Stokes equation for incompressible flow
with constant viscosity.

(ref. ‘Fluid Mechanics’ by & Cimbala)

The Laplacian Operator
Cartesian coordinates:
PP, PP
P S R
Cylindrical coordinates:
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FIGURE 9-41

The Laplacian operator, shown here
in both Cartesian and cylindrical
coordinates, appears in the viscous
term of the incompressible
Navier—Stokes equation.
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Continuity and Navier-Stokes Equations

in Cartesian Coordinates

The continuity equation (Eq. 9-16) and the Navier—Stokes equation
(Eq. 9-60) are expanded in Cartesian coordinates (x, y, z) and (u, v, w):

Incompressible continuity equation:

du N dv N dw
dx dy dz

0 (9-61a)

x-component of the incompressible Navier—Stokes equation:

tu—+o—+w =——=+pg.tu +

(du ou u 6u) oP (6% 0%u N 0%u
P\ ot ox dy 0z ox ox*  ay* a7

) (9-61b)
y-component of the incompressible Navier—Stokes equation:

d*v N v 0%
x> ayz 0z

do Jo do do dP

—tu—to—4w— ) =——+pg +
p(dr “ox T oy waz) ay P8 ‘”(

z-component of the incompressible Navier—Stokes equation:

(aw N ow N ow N aw) daP e s ((}Qw . 3w N alw) o et
- H— U— w - —_— _
P\ "% Ty T oz o TPET M G T o T o) B



Continuity and Navier-Stokes Equations

in Cylindrical Coordinates
The continuity equation (Eq. 9-16) and the Navier—Stokes equation
(Eq. 9-60) are expanded in cylindrical coordinates (r. 8, z) and (u,. uy, u.):

1O0u) 10wy o)
r o Tr a8 Ta (9-62a)

Incompressible continuity equation:

r-component of the incompressible Navier—Stokes equation:

a a a ; d
( i, u, g Oy U u,)

a T T e T Ty

aP et [1 9 ( du,) u, 1%, 2 du, 3u
= - ——\r— =

ar PE T M ar ar 2
B-component of the incompressible Navier—Stokes equation:

du du u, du i du
p(J o, Yo  HH a)

=+ — + — 9-62b
2T 2ol azz] ©-620)

u.——

a Pt ety Ty,

a ( Bug) u, N 1 0%, N 2 du, N 62u9] 062
r— | - —+—=—+—= — -62¢
o) P P T T a2 '

z-component of the incompressible Navier—Stokes equation:

(auz du,  uy du, &u:)
— tu—+——+
P\or "% or T 08 T e

__top [1
T T e TS T,

au,) 1 0% u.
—= 2 (9-62d)
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(ref. ‘Fluid Mechanics’ by & Cimbala)
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FIGURE 9-43

An alternative form for the
first two viscous terms in
the r- and #-components of

the Navier—Stokes equation.
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Three-Dimensional Incompressible Flow 9—-6 = DIFFERENTIAL ANALYSIS
Four variables or unknowns: OF FLUID FLOW PROBLEMS

« Pressure P

- i semrrrenn e In this section we show how to apply the differential equations of motion in

both Cartesian and cylindrical coordinates. There are two types of problems

Four equations of motion: for which the differential equations (continuity and Navier—Stokes) are useful:
o [SrnuiEe e Calculating the pressure field for a known velocity field
v-vV=0

e Calculating both the velocity and pressure fields for a flow of known

« Three components of Navier—Stokes, L.
b geometry and known boundary conditions

POV =P+ pg+ pv?V N . . . N
Dt For simplicity, we consider only incompressible flow, eliminating calcula-
tion of p as a variable. In addition, the form of the Navier-Stokes equa-

FIGURE 9-45 tion derived in Section 95 is valid only for Newtonian fluids with constant
A general three-dimensional but properties (viscosity, thermal conductivity, etc.). Finally, we assume negligi-
incompressible flow field with ble temperature variations, so that T is not a variable. We are left with four
constant properties requires four variables or unknowns (pressure plus three components of velocity), and we
equations to solve for four unknowns.  ave four differential equations (Fig. 9-45).

(ref. ‘Fluid Mechanics’ by & Cimbala)
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10-6 = THE BOUNDARY LAYER
APPROXIMATION

As discussed in Sections 10—4 and 10-5, there are at least two flow situ-
ations in which the viscous term in the Navier—Stokes equation can be
neglected. The first occurs in high Reynolds number regions of flow where
net viscous forces are known to be negligible compared to inertial and/or

pressure forces: we call these inviscid regions of flow. The second situation
occurs when the vorticity is negligibly small; we call these irrotational or
potential regions of flow. In either case, removal of the viscous terms from
the Navier—Stokes equation yields the Euler equation (Eq. 10-13 and also
Eq. 10-25). While the math is greatly simplified by dropping the viscous
terms, there are some serious deficiencies associated with application of the
Euler equation to practical engineering flow problems. High on the list of
deficiencies is the inability to specify the no-slip condition at solid walls.
This leads to unphysical results such as zero viscous shear forces on solid
walls and zero aerodynamic drag on bodies immersed in a free stream. We
can therefore think of the Euler equation and the Navier—Stokes equation as
two mountains separated by a huge chasm (Fig. 10-75a4). We make the fol-
lowing statement about the boundary layer approximation:

The boundary layer approximation bridges the gap between the Euler
equation and the Navier—Stokes equation, and between the slip condition
and the no-slip condition at solid walls (Fig. 10-75b).

From a historical perspective, by the mid-1800s, the Navier-Stokes
equation was known, but couldn’t be solved except for flows of very sim-
ple geometries. Meanwhile, mathematicians were able to obtain beautiful
analytical solutions of the Euler equation and of the potential flow equa-
tions for flows of complex geometry, but their results were often physi-
cally meaningless. Hence, the only reliable way to study fluid flows was
empirically, i.e., with experiments. A major breakthrough in fluid mechan-
ics occurred in 1904 when Ludwig Prandtl (1875-1953) introduced the
boundary layer approximation. Prandtl’s idea was to divide the flow into
two regions: an outer flow region that is inviscid and/or irrotational, and
an inner flow region called a boundary layer—a very thin region of flow
near a solid wall where viscous forces and rotationality cannot be ignored
(Fig. 10-76). In the outer flow region, we use the continuity and Euler
equations to obtain the outer flow velocity field, and the Bernoulli equa-
tion to obtain the pressure ficld. Alternatively, if the outer flow region is
irrotational, we may use the potential flow techniques discussed in Section
10-5 (e.g.. superposition) o obtain the outer flow velocity field. In either
case, we solve for the outer flow region first, and then fit in a thin boundary
layer in regions where rotationality and viscous forces cannot be neglected.
Within the boundary layer we solve the boundary layer equations, to be
discussed shortly. (Note that the boundary layer equations are themselves
approximations of the full Navier—Stokes equation, as we will see.)



The key to successful application of the boundary layer approximation is
the assumption that the boundary layer is very thin. The classic example is a
uniform stream flowing parallel to a long flat plate aligned with the x-axis.
Boundary layer thickness 6 at some location x along the plate is sketched
in Fig. 10-77. By convention, & is usually defined as the distance away from
the wall at which the velocity component parallel to the wall is 99 percent
of the fluid speed outside the boundary layer. It turns out that for a given
fluid and plate, the higher the free-stream speed V, the thinner the boundary
layer (Fig. 10-77). In nondimensional terms, we define the Reynolds number
based on distance x along the wall,

pVx  Vx
Reynolds number along a flat plate: Re, =—=— (10-60)
_ Py N

Hence,

At a given x-location, the higher the Reynolds number, the thinner the
boundary layer.

In other words, the higher the Reynolds number, all else being equal, the more
reliable the boundary layer approximation. We are confident that the bound-
ary layer 1s thin when 6 <« x (or, expressed nondimensionally, d/x < 1).

The shape of the boundary layer profile can be obtained experimentally by
flow visualization. An example is shown in Fig. 10-78 for a laminar boundary
layer on a flat plate. Taken over 60 years ago by F. X. Wortmann, this is now
considered a classic photograph of a laminar flat plate boundary layer profile.

(ref. ‘Fluid Mechanics’ by & Cimbala)
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The Boundary Layer Equations

Now that we have a physical feel for boundary layers, we need the

equations of motion to be used in boundary layer calculations—the v

boundary layer equations. For simplicity we consider only steady, two- Boundary layer

dimensional flow in the xy-plane in Cartesian coordinates. The methodolo;
y-p 2y ‘_

used here can be extended, however, to axisymmetric boundary layers or
to three-dimensional boundary layers in any coordinate system. We neglect
gravity since we are not dealing with free surfaces or with buoyancy-driven

flows (free convection flows), where gravitational effects dominate. We : T ‘
consider only laminar boundary layers; turbulent boundary layer equations —\\E

are beyond the scope of this text. For the case of a boundary layer along a

solid wall, we adopt a coordinate system in which x is everywhere paral- FIGURE 10-85
lel to the wall and y is everywhere normal to the wall (Fig. 10-85). This  The boundary layer coordinate system
coordinate system is called a boundary layer coordinate system. When for flow over a body; x follows the
we solve the boundary layer equations, we do so at one x-location at a time, surface and is typically set to zero at
using this coordinate system locally, and it is locally orthogonal. It is not  the front stagnation point of the body,
critical where we define x = 0, but for flow over a body, as in Fig. 10-85, and y is everywhere normal to the
we typically set x = 0 at the front stagnation point. surface locally.

How do we decide which terms to keep and which to neglect? To answer
this question, we redo the nondimensionalization of the equations of motion
based on appropriate length and velocity scales within the boundary layer. A
magnified view of a portion of the boundary layer of Fig. 10-85 is sketched
in Fig. 10-86. Since the order of magnitude of x is L, we use L as an appro-
priatc length scale for distances in the streamwise direction and for deriva-
tives of velocity and pressure with respect to x. However, this length scale is
much too large for derivatives with respect to y. It makes more sense to use &
as the length scale for distances in the direction normal to the streamwise
direction and for derivatives with respect to y. Similarly, while the charac-
teristic velocity scale is V for the whole flow field, it is more appropriate to
use U as the characteristic velocity scale for boundary layers, where U is the
magnitude of the velocity component parallel to the wall at a location just
above the boundary layer (Fig. 10-86). U is in general a function of x. Thus,
within the boundary layer at some value of x, the orders of magnitude are

d 1 a 1
~U P-=P ~pU* —~— —~— 10-62
“ P NTL » s (10-62)
The order of magnitude of velocity component » is not specified in Eq. 1062,
but is instead obtained {rom the continuity equation. Applying the orders of
magnitude in Eq. 10-62 to the incompressible continuity equation in two

dimensions,

du N do 0 U o
oL _ .2
ox  dy L &
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Since the two terms have to balance each other, they must be of the same order
of magnitude. Thus we obtain the order of magnitude of velocity component o,
vs 10-63

D~ — -
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Since 6/L <« 1 in a boundary layer (the boundary layer is very thin), we
conclude that v < u in a boundary layer (Fig. 10-87). From Egs. 10-62



and 10-63, we define the following nondimensional variables within the
boundary layer:

x*=£ v*=l u*:i 0*=£ x=P_P"°
L - 4] U Us pU?
Since we used appropriate scales, all these nondimensional variables are of
order unity—i.c., they are normalized variables (Chap. 7).
We now consider the x- and y-components of the Navier—Stokes equation.
We substitute these nondimensional variables into the y-momentum equa-
tion, giving

dv do 1 aP 0% v
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After some algebra and after multiplying each term by L*/(U?5), we get

u* 9v* + v* Ll = —(£)2 o + (L) oot + (L)(E)Z v (10-64)

o ay* s) oyt T \UL/ o2 \UL/\5) ay*

Comparing terms in Eq. 10-64, the middle term on the right side is clearly
orders of magnitude smaller than any other term since Re;, = UL/v > 1.
For the same reason, the last term on the right is much smaller than the
first term on the right. Neglecting these two terms leaves the two terms on
the left and the first term on the right. However, since L > 4, the pressure
gradient term is orders of magnitude greater than the advective terms on
the left side of the equation. Thus, the only term left in Eq. 10-64 is the
pressure term. Since no other term in the equation can balance that term,
we have no choice but to set it equal to zero. Thus, the nondimensional
y-momentum equation reduces to

apP*
>0
ay*

or, in terms of the physical variables,

aP
Normal pressure gradient through a boundary layer: F

y

12

0 (10-65)

In words, although pressure may vary along the wall (in the x-direction),
there is negligible change in pressure in the direction normal to the wall.
This is illustrated in Fig. 10-88. At x = x;, P = P, at all values of y across
the boundary layer from the wall to the outer flow. At some other x-location,
X = X,, the pressure may have changed, but P = P, at all values of y across
that portion of the boundary layer.

The pressure across a boundary layer (y-direction) is nearly constant.

Physically, because the boundary layer is so thin, streamlines within the
boundary layer have negligible curvature when observed at the scale of the
boundary layer thickness. Curved streamlines require a centripetal accelera-
tion, which comes from a pressure gradient along the radius of curvature.
Since the streamlines are not significantly curved in a thin boundary layer,
there is no significant pressure gradient across the boundary layer.



Returning to the development of the boundary layer equations, we use
Eq. 1065 to greatly simplify the x-component of the momentum equation.
Specifically, since P is not a function of y, we replace dP/dx by dP/dx,
where P is the value of pressure calculated from our outer flow approxima-
tion (using either continuity plus Euler, or the potential flow equations plus
Bernoulli). The x-component of the Navier—Stokes equation becomes

,
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After some algebra, and after multiplying each term by L/U?, we get

o O L our _ dPr ( v ) Fur ( v )(E)? o (10-66)
ax* ay*  dx* UL/ ox*? UL/\&/ ay*?

Comparing terms in Eq. 10-66, the middle term on the right side is clearly
orders of magnitude smaller than the terms on the left side, since Re, =
ULlv > 1. What about the last term on the right? If we neglect this term,
we throw out all the viscous terms and are back to the Euler equation.
Clearly this term must remain. Furthermore, since all the remaining terms in
Eq. 10-66 are of order unity, the combination of parameters in parentheses
in the last term on the right side of Eq. 1066 must also be of order unity,

(Z)5) -

Again recognizing that Re, = UL/v, we see immediately that

o 1

—_—

L Re,

(10-67)

This confirms our previous statement that at a given streamwise location
along the wall, the larger the Reynolds number, the thinner the boundary
layer. It we substitute x for L in Eq. 1067, we also conclude that for a lami-
nar boundary layer on a flat plate, where U(x) = V = constant, 6 grows like
the square root of x (Fig. 10-90).



In terms of the original (physical) variables, Eq. 10-66 is written as

boundary | ; ou you__1dP P o es
x-momentum boundary layer equation. uw—+v—=———+v -
yiayered dx ay P dx ay* { ]

Note that the last term in Eq. 10—68 is not negligible in the boundary layer,
since the y-derivative of velocity gradient du/dy is sufficiently large to
offset the (typically small) value of kinematic viscosity v. Finally, since we
know from our y-momentum equation analysis that the pressure across the
boundary layer is the same as that outside the boundary layer (Eq. 10-63),
we apply the Bernoulli equation to the outer flow region. Differentiating
with respect to x we get
P o1 1dP  dU

— + —U? = constant  — = =U (10-69)
P2 P dx dx

where we note that both P and U are functions of x only, as illustrated in

Fig. 10-91. Substitution of Eq. 10-69 into Eq. 10-68 yields

(10-70)

and we have eliminated pressure from the boundary layer equations.

We summarize the set of equations of motion for a steady, incompress-
ible, laminar boundary layer in the xy-plane without significant gravitational
effects,

d d
Boundary | ' ox o
OURAary laver equarions. - 10-11
e que du ou dll d-u ( )
H—+v—=U—4+v—
dx dy dx dy-

(ref. ‘Fluid Mechanics’ by & Cimbala)



